|
1
|
Varki A: Biological roles of glycans.
Glycobiology. 27:3–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pinho SS and Reis CA: Glycosylation in
cancer: Mechanisms and clinical implications. Nat Rev Cancer.
15:540–555. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Munkley J and Elliott DJ: Hallmarks of
glycosylation in cancer. Oncotarget. 7:35478–35489. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Vajaria BN and Patel PS: Glycosylation: A
hallmark of cancer? Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang PH, Lee WL, Juang CM, Yang YH, Lo WH,
Lai CR, Hsieh SL and Yuan CC: Altered mRNA expressions of
sialyltransferases in ovarian cancers. Gynecol Oncol. 99:631–639.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bhide GP and Colley KJ: Sialylation of
N-glycans: Mechanism, cellular compartmentalization and function.
Histochem Cell Biol. 147:149–174. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Munkley J, Oltean S, Vodak D, Wilson BT,
Livermore KE, Zhou Y, Star E, Floros VI, Johannessen B, Knight B,
et al: The androgen receptor controls expression of the
cancer-associated sTn antigen and cell adhesion through induction
of ST6GalNAc1 in prostate cancer. Oncotarget. 6:34358–34374. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Vajaria BN, Patel KR, Begum R and Patel
PS: Sialylation: An Avenue to Target Cancer Cells. Pathol Oncol
Res. 22:443–447. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Munkley J: The role of Sialyl-Tn in
cancer. Int J Mol Sci. 17:2752016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Scott E and Munkley J: Glycans as
biomarkers in prostate cancer. Int J Mol Sci. 20:E13892019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang Z, Wuhrer M and Holst S: Serum
sialylation changes in cancer. Glycoconj J. 35:139–160. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dall'Olio F: The
sialyl-alpha2,6-lactosaminyl-structure: Biosynthesis and functional
role. Glycoconj J. 17:669–676. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hsieh CC, Shyr YM, Liao WY, Chen TH, Wang
SE, Lu PC, Lin PY, Chen YB, Mao WY, Han HY, et al: Elevation of
β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive
manner promotes pancreatic cancer metastasis. Oncotarget.
8:7691–7709. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wei A, Fan B, Zhao Y, Zhang H, Wang L, Yu
X, Yuan Q, Yang D and Wang S: ST6Gal-I overexpression facilitates
prostate cancer progression via the PI3K/Akt/GSK-3β/β-catenin
signaling pathway. Oncotarget. 7:65374–65388. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lu J, Isaji T, Im S, Fukuda T, Hashii N,
Takakura D, Kawasaki N and Gu J: β-Galactoside
α2,6-sialyltranferase 1 promotes transforming growth
factor-β-mediated epithelial-mesenchymal transition. J Biol Chem.
289:34627–34641. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wichert B, Milde-Langosch K, Galatenko V,
Schmalfeldt B and Oliveira-Ferrer L: Prognostic role of the
sialyltransferase ST6GAL1 in ovarian cancer. Glycobiology.
28:898–903. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hebbar M, Krzewinski-Recchi MA, Hornez L,
Verdière A, Harduin-Lepers A, Bonneterre J, Delannoy P and Peyrat
JP: Prognostic value of tumoral sialyltransferase expression and
circulating E-selectin concentrations in node-negative breast
cancer patients. Int J Biol Markers. 18:116–122. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jones RB, Dorsett KA, Hjelmeland AB and
Bellis SL: The ST6Gal-I sialyltransferase protects tumor cells
against hypoxia by enhancing HIF-1α signaling. J Biol Chem.
293:5659–5667. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu Z, Swindall AF, Kesterson RA, Schoeb
TR, Bullard DC and Bellis SL: ST6Gal-I regulates macrophage
apoptosis via α2-6 sialylation of the TNFR1 death receptor. J Biol
Chem. 286:39654–39662. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Meng Q, Ren C, Wang L, Zhao Y and Wang S:
Knockdown of ST6Gal-I inhibits the growth and invasion of
osteosarcoma MG-63 cells. Biomed Pharmacother. 72:172–178. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yamamoto H, Oviedo A, Sweeley C, Saito T
and Moskal JR: Alpha2,6-sialylation of cell-surface N-glycans
inhibits glioma formation in vivo. Cancer Res. 61:6822–6829.
2001.PubMed/NCBI
|
|
24
|
Zhao Y, Wei A, Zhang H, Chen X, Wang L,
Zhang H, Yu X, Yuan Q, Zhang J and Wang S: α2,6-Sialylation
mediates hepatocellular carcinoma growth in vitro and in vivo by
targeting the Wnt/β-catenin pathway. Oncogenesis. 6:e3432017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Munkley J: Glycosylation is a global
target for androgen control in prostate cancer cells. Endocr Relat
Cancer. 24:R49–R64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Munkley J, Vodak D, Livermore KE, James K,
Wilson BT, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries
LW, et al: Glycosylation is an androgen-regulated process essential
for prostate cancer cell viability. EBioMedicine. 8:103–116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Recchi MA, Hebbar M, Hornez L,
Harduin-Lepers A, Peyrat JP and Delannoy P: Multiplex reverse
transcription polymerase chain reaction assessment of
sialyltransferase expression in human breast cancer. Cancer Res.
58:4066–4070. 1998.PubMed/NCBI
|
|
28
|
Bassaganas S, Allende H, Cobler L, Ortiz
MR, Llop E, de Bolós C and Peracaula R: Inflammatory cytokines
regulate the expression of glycosyltransferases involved in the
biosynthesis of tumor-associated sialylated glycans in pancreatic
cancer cell lines. Cytokine. 75:197–206. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Agrawal P, Fontanals-Cirera B, Sokolova E,
Jacob S, Vaiana CA, Argibay D, Davalos V, McDermott M, Nayak S,
Darvishian F, et al: A Systems biology approach identifies FUT8 as
a driver of melanoma metastasis. Cancer Cell. 31:804–819.e7. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Munkley J: The glycosylation landscape of
pancreatic cancer. Oncol Lett. 17:2569–2575. 2019.PubMed/NCBI
|
|
31
|
Antony P, Rose M, Heidenreich A, Knuchel
R, Gaisa NT and Dahl E: Epigenetic inactivation of ST6GAL1 in human
bladder cancer. BMC Cancer. 14:9012014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jin K, Li T, van Dam H, Zhou F and Zhang
L: Molecular insights into tumour metastasis: Tracing the dominant
events. J Pathol. 241:567–577. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Montanari M, Rossetti S, Cavaliere C,
D'Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E,
Iovane G, Piscitelli R, et al: Epithelial-mesenchymal transition in
prostate cancer: An overview. Oncotarget. 8:35376–35389. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Goossens S, Vandamme N, Van Vlierberghe P
and Berx G: EMT transcription factors in cancer development
re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer.
1868:584–591. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park JJ and Lee M: Increasing the α 2, 6
sialylation of glycoproteins may contribute to metastatic spread
and therapeutic resistance in colorectal cancer. Gut Liver.
7:629–641. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X,
Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, et al: Tn and
sialyl-Tn antigens, aberrant O-glycomics as human disease markers.
Proteomics. Proteomics Clin Appl. 7:618–631. 2013.PubMed/NCBI
|
|
37
|
Schultz MJ, Swindall AF and Bellis SL:
Regulation of the metastatic cell phenotype by sialylated glycans.
Cancer Metastasis Rev. 31:501–518. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kannagi R, Izawa M, Koike T, Miyazaki K
and Kimura N: Carbohydrate-mediated cell adhesion in cancer
metastasis and angiogenesis. Cancer Sci. 95:377–384. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Irimura T, Nakamori S, Matsushita Y,
Taniuchi Y, Todoroki N, Tsuji T, Izumi Y, Kawamura Y, Hoff SD,
Cleary KR, et al: Colorectal cancer metastasis determined by
carbohydrate-mediated cell adhesion: Role of sialyl-LeX antigens.
Semin Cancer Biol. 4:319–324. 1993.PubMed/NCBI
|
|
40
|
Ugorski M and Laskowska A: Sialyl
Lewis(a): A tumor-associated carbohydrate antigen involved in
adhesion and metastatic potential of cancer cells. Acta Biochim
Pol. 49:303–311. 2002.PubMed/NCBI
|
|
41
|
Murugaesu N, Iravani M, van Weverwijk A,
Ivetic A, Johnson DA, Antonopoulos A, Fearns A, Jamal-Hanjani M,
Sims D, Fenwick K, et al: An in vivo functional screen identifies
ST6GalNAc2 sialyltransferase as a breast cancer metastasis
suppressor. Cancer Discov. 4:304–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhao Y, Li Y, Ma H, Dong W, Zhou H, Song
X, Zhang J and Jia L: Modification of sialylation mediates the
invasive properties and chemosensitivity of human hepatocellular
carcinoma. Mol Cell Proteomics. 13:520–536. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang PH, Lee WL, Lee YR, Juang CM, Chen
YJ, Chao HT, Tsai YC and Yuan CC: Enhanced expression of alpha
2,6-sialyltransferase ST6Gal I in cervical squamous cell carcinoma.
Gynecol Oncol. 89:395–401. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lin S, Kemmner W, Grigull S and Schlag PM:
Cell surface alpha 2,6 sialylation affects adhesion of breast
carcinoma cells. Exp Cell Res. 276:101–110. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Feitelson MA, Arzumanyan A, Kulathinal RJ,
Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML,
Nawroth R, Sanchez-Garcia I, et al: Sustained proliferation in
cancer: Mechanisms and novel therapeutic targets. Semin Cancer
Biol. 35 (Suppl):S25–S54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ma X, Dong W, Su Z, Zhao L, Miao Y, Li N,
Zhou H and Jia L: Functional roles of sialylation in breast cancer
progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis.
7:e25612016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Luo J, Manning BD and Cantley LC:
Targeting the PI3K-Akt pathway in human cancer: Rationale and
promise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tokunaga E, Kimura Y, Mashino K, Oki E,
Kataoka A, Ohno S, Morita M, Kakeji Y, Baba H and Maehara Y:
Activation of PI3K/Akt signaling and hormone resistance in breast
cancer. Breast Cancer. 13:137–144. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Deying W, Feng G, Shumei L, Hui Z, Ming L
and Hongqing W: CAF-derived HGF promotes cell proliferation and
drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78
signalling in ovarian cancer cells. Biosci Rep. 37:BSR201604702017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
De Marco C, Laudanna C, Rinaldo N,
Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A,
Zoppoli P, et al: Specific gene expression signatures induced by
the multiple oncogenic alterations that occur within the
PTEN/PI3K/AKT pathway in lung cancer. PLoS One. 12:e01788652017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh
P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A,
et al: Therapeutic targeting of replicative immortality. Semin
Cancer Biol. 35 (Suppl):S104–S128. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Roninson IB: Tumor cell senescence in
cancer treatment. Cancer Res. 63:2705–2715. 2003.PubMed/NCBI
|
|
53
|
Braig M and Schmitt CA: Oncogene-induced
senescence: Putting the brakes on tumor development. Cancer Res.
66:2881–2884. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lin AW and Lowe SW: Oncogenic ras
activates the ARF-p53 pathway to suppress epithelial cell
transformation. Proc Natl Acad Sci USA. 98:5025–5030. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Courtois-Cox S, Jones SL and Cichowski K:
Many roads lead to oncogene-induced senescence. Oncogene.
27:2801–2809. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chou TY, Hart GW and Dang CV: c-Myc is
glycosylated at threonine 58, a known phosphorylation site and a
mutational hot spot in lymphomas. J Biol Chem. 270:18961–18965.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Castellano E and Downward J: RAS
interaction with PI3K: More than just another effector pathway.
Genes Cancer. 2:261–274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Delmas V, Beermann F, Martinozzi S,
Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F,
Viros A, et al: Beta-catenin induces immortalization of melanocytes
by suppressing p16INK4a expression and cooperates with N-Ras in
melanoma development. Genes Dev. 21:2923–2935. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang Y, Toh L, Lau P and Wang X: Human
telomerase reverse transcriptase (hTERT) is a novel target of the
Wnt/β-catenin pathway in human cancer. J Biol Chem.
287:32494–32511. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Eelen G, Dubois C, Cantelmo AR, Goveia J,
Brüning U, DeRan M, Jarugumilli G, van Rijssel J, Saladino G,
Comitani F, et al: Role of glutamine synthetase in angiogenesis
beyond glutamine synthesis. Nature. 561:63–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hanahan D and Folkman J: Patterns and
emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
De Palma M, Biziato D and Petrova TV:
Microenvironmental regulation of tumour angiogenesis. Nat Rev
Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chiodelli P, Rezzola S, Urbinati C,
Federici Signori F, Monti E, Ronca R, Presta M and Rusnati M:
Contribution of vascular endothelial growth factor receptor-2
sialylation to the process of angiogenesis. Oncogene. 36:6531–6541.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cheng WK and Oon CE: How glycosylation
aids tumor angiogenesis: An updated review. Biomed Pharmacother.
103:1246–1252. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Croci DO, Cerliani JP, Pinto NA, Morosi LG
and Rabinovich GA: Regulatory role of glycans in the control of
hypoxia-driven angiogenesis and sensitivity to anti-angiogenic
treatment. Glycobiology. 24:1283–1290. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lynch TP, Ferrer CM, Jackson SR, Shahriari
KS, Vosseller K and Reginato MJ: Critical role of O-Linked
beta-N-acetylglucosamine transferase in prostate cancer invasion,
angiogenesis, and metastasis. J Biol Chem. 287:11070–11081. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Croci DO, Cerliani JP, Dalotto-Moreno T,
Méndez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, Toscano MA,
Caramelo JJ, García-Vallejo JJ, Ouyang J, et al:
Glycosylation-dependent lectin-receptor interactions preserve
angiogenesis in anti-VEGF refractory tumors. Cell. 156:744–758.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Croci DO and Rabinovich GA: Linking tumor
hypoxia with VEGFR2 signaling and compensatory angiogenesis:
Glycans make the difference. Oncoimmunology. 3:e293802014.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
LaGory EL and Giaccia AJ: The
ever-expanding role of HIF in tumour and stromal biology. Nat Cell
Biol. 18:356–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang W, Xiong Z, Wei T, Li Q, Tan Y, Ling
L and Feng X: Nuclear factor 90 promotes angiogenesis by regulating
HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in
human cervical cancer. Cell Death Dis. 9:2762018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Evans EK and Kornbluth S: Regulation of
apoptosis in Xenopus egg extracts. Adv Enzyme Regul. 38:265–280.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lowe M, Lane JD, Woodman PG and Allan VJ:
Caspase-mediated cleavage of syntaxin 5 and giantin accompanies
inhibition of secretory traffic during apoptosis. J Cell Sci.
117:1139–1150. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kerr JF: History of the events leading to
the formulation of the apoptosis concept. Toxicology 181–182.
471–474. 2002. View Article : Google Scholar
|
|
74
|
Fernald K and Kurokawa M: Evading
apoptosis in cancer. Trends Cell Biol. 23:620–633. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Adams JM and Cory S: Bcl-2-regulated
apoptosis: Mechanism and therapeutic potential. Curr Opin Immunol.
19:488–496. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Walker BK, Lei H and Krag SS: A functional
link between N-linked glycosylation and apoptosis in Chinese
hamster ovary cells. Biochem Biophys Res Commun. 250:264–270. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang D, Liu X, Gao J, Sun Y, Liu T, Yan Q
and Yang X: The role of epithelial cell adhesion molecule
N-glycosylation on apoptosis in breast cancer cells. Tumour Biol.
39:10104283176959732017.PubMed/NCBI
|
|
78
|
Rapoport E and Pendu JL: Glycosylation
alterations of cells in late phase apoptosis from colon carcinomas.
Glycobiology. 9:1337–1345. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gwak H, Kim S, Dhanasekaran DN and Song
YS: Resveratrol triggers ER stress-mediated apoptosis by disrupting
N-linked glycosylation of proteins in ovarian cancer cells. Cancer
Lett. 371:347–353. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Seyrek K, Richter M and Lavrik IN:
Decoding the sweet regulation of apoptosis: The role of
glycosylation and galectins in apoptotic signaling pathways. Cell
Death Differ. 26:981–993. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Suzuki O, Abe M and Hashimoto Y:
Caspase-dependent drug-induced apoptosis is regulated by cell
surface sialylation in human B-cell lymphoma. Oncol Lett.
10:687–690. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Meesmann HM, Fehr EM, Kierschke S,
Herrmann M, Bilyy R, Heyder P, Blank N, Krienke S, Lorenz HM and
Schiller M: Decrease of sialic acid residues as an eat-me signal on
the surface of apoptotic lymphocytes. J Cell Sci. 123:3347–3356.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Peter ME, Hellbardt S, Schwartz-Albiez R,
Westendorp MO, Walczak H, Moldenhauer G, Grell M and Krammer PH:
Cell surface sialylation plays a role in modulating sensitivity
towards APO-1-mediated apoptotic cell death. Cell Death Differ.
2:163–171. 1995.PubMed/NCBI
|
|
84
|
Swindall AF and Bellis SL: Sialylation of
the Fas death receptor by ST6Gal-I provides protection against
Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem.
286:22982–22990. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yao R and Cooper GM: Requirement for
phosphatidylinositol-3 kinase in the prevention of apoptosis by
nerve growth factor. Science. 267:2003–2006. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Franke TF, Kaplan DR and Cantley LC: PI3K:
Downstream AKTion blocks apoptosis. Cell. 88:435–437. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Burkhart DL and Sage J: Cellular
mechanisms of tumour suppression by the retinoblastoma gene. Nat
Rev Cancer. 8:671–682. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Masuda M, Yageta M, Fukuhara H, Kuramochi
M, Maruyama T, Nomoto A and Murakami Y: The tumor suppressor
protein TSLC1 is involved in cell-cell adhesion. J Biol Chem.
277:31014–31019. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Bierie B and Moses HL: TGF-beta and
cancer. Cytokine Growth Factor Rev. 17:29–40. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ferrer CM, Lynch TP, Sodi VL, Falcone JN,
Schwab LP, Peacock DL, Vocadlo DJ, Seagroves TN and Reginato MJ:
O-GlcNAcylation regulates cancer metabolism and survival stress
signaling via regulation of the HIF-1 pathway. Mol Cell.
54:820–831. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ferrer CM and Reginato MJ: Sweet
connections: O-GlcNAcylation links cancer cell metabolism and
survival. Mol Cell Oncol. 2:e9618092014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su
M, Zhao L, Liu J, Qu C, Wei R, et al: Enhanced fructose utilization
mediated by SLC2A5 is a unique metabolic feature of acute myeloid
leukemia with therapeutic potential. Cancer Cell. 30:779–791. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vinay DS, Ryan EP, Pawelec G, Talib WH,
Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et
al: Immune evasion in cancer: Mechanistic basis and therapeutic
strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wrzesinski SH, Wan YY and Flavell RA:
Transforming growth factor-beta and the immune response:
Implications for anticancer therapy. Clin Cancer Res. 13:5262–5270.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yoshimura A and Muto G: TGF-β function in
immune suppression. Curr Top Microbiol Immunol. 350:127–147.
2011.PubMed/NCBI
|
|
97
|
DeNardo DG, Andreu P and Coussens LM:
Interactions between lymphocytes and myeloid cells regulate
pro-versus anti-tumor immunity. Cancer Metastasis Rev. 29:309–316.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Qian BZ and Pollard JW: Macrophage
diversity enhances tumor progression and metastasis. Cell.
141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Colotta F, Allavena P, Sica A, Garlanda C
and Mantovani A: Cancer-related inflammation, the seventh hallmark
of cancer: Links to genetic instability. Carcinogenesis.
30:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Dube DH and Bertozzi CR: Glycans in cancer
and inflammation-potential for therapeutics and diagnostics. Nat
Rev Drug Discov. 4:477–488. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Marth JD and Grewal PK: Mammalian
glycosylation in immunity. Nat Rev Immunol. 8:874–887. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hennet T, Chui D, Paulson JC and Marth JD:
Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad
Sci USA. 95:4504–4509. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Engdahl C, Bondt A, Harre U, Raufer J,
Pfeifle R, Camponeschi A, Wuhrer M, Seeling M, Mårtensson IL,
Nimmerjahn F, et al: Estrogen induces St6gal1 expression and
increases IgG sialylation in mice and patients with rheumatoid
arthritis: A potential explanation for the increased risk of
rheumatoid arthritis in postmenopausal women. Arthritis Res Ther.
20:842018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Perdicchio M, Ilarregui JM, Verstege MI,
Cornelissen LA, Schetters ST, Engels S, Ambrosini M, Kalay H,
Veninga H, den Haan JM, et al: Sialic acid-modified antigens impose
tolerance via inhibition of T-cell proliferation and de novo
induction of regulatory T cells. Proc Natl Acad Sci USA.
113:3329–3334. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chou RH, Wang YN, Hsieh YH, Li LY, Xia W,
Chang WC, Chang LC, Cheng CC, Lai CC, Hsu JL, et al: EGFR modulates
DNA synthesis and repair through Tyr phosphorylation of histone H4.
Dev Cell. 30:224–237. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Britain CM, Holdbrooks AT, Anderson JC,
Willey CD and Bellis SL: Sialylation of EGFR by the ST6Gal-I
sialyltransferase promotes EGFR activation and resistance to
gefitinib-mediated cell death. J Ovarian Res. 11:122018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chiricolo M, Malagolini N, Bonfiglioli S
and Dall'Olio F: Phenotypic changes induced by expression of
beta-galactoside alpha2,6 sialyltransferase I in the human colon
cancer cell line SW948. Glycobiology. 16:146–154. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Schultz MJ, Holdbrooks AT, Chakraborty A,
Grizzle WE, Landen CN, Buchsbaum DJ, Conner MG, Arend RC, Yoon KJ,
Klug CA, et al: The tumor-associated glycosyltransferase ST6Gal-I
regulates stem cell transcription factors and confers a cancer stem
cell phenotype. Cancer Res. 76:3978–3988. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Gretschel S, Haensch W, Schlag PM and
Kemmner W: Clinical relevance of sialyltransferases ST6GAL-I and
ST3GAL-III in gastric cancer. Oncology. 65:139–145. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ma H, Zhou H, Song X, Shi S, Zhang J and
Jia L: Modification of sialylation is associated with multidrug
resistance in human acute myeloid leukemia. Oncogene. 34:726–740.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Pousset D, Piller V, Bureaud N, Monsigny M
and Piller F: Increased alpha2,6 sialylation of N-glycans in a
transgenic mouse model of hepatocellular carcinoma. Cancer Res.
57:4249–4256. 1997.PubMed/NCBI
|