You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Shao A, Wang L, Hu K, Yu C, Pan C and Zhang S: The role of lncRNAs in the distant metastasis of breast cancer. Front Oncol. 9:4072019. View Article : Google Scholar : PubMed/NCBI | |
|
Spill F, Reynolds DS, Kamm RD and Zaman MH: Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 40:41–48. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wan L, Pantel K and Kang Y: Tumor metastasis: Moving new biological insights into the clinic. Nat Med. 19:1450–1464. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kozłowski J, Kozłowska A and Kocki J: Breast cancer metastasis-insight into selected molecular mechanisms of the phenomenon. Postepy Hig Med Dosw (Online). 69:447–451. 2014. View Article : Google Scholar | |
|
Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bray SJ: Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol. 7:678–689. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA and Israël A: A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Mol Cell. 5:207–216. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J and Elowitz MB: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature. 465:86–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S and Griffin JD: MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 26:484–489. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
D'Souza B, Miyamoto A and Weinmaster G: The many facets of Notch ligands. Oncogene. 27:5148–5167. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Visan I: Asymmetric division. Nature Immunol. 13:1202012. View Article : Google Scholar | |
|
Santoro A, Vlachou T, Carminati M, Pelicci PG and Mapelli M: Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep. 17:1700–1720. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, Lindeman GJ and Visvader JE: Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 3:429–441. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dontu G, Jackson KW, Mcnicholas E, Kawamura MJ, Abdallah WM and Wicha MS: Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6:R605–R615. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Rhyu MS, Jan LY and Jan YN: Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell. 76:477–491. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
McGill MA and McGlade CJ: Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem. 278:23196–23203. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Honeth G, Bendahl PO, Ringnér M, Saal LH, Gruvberger-Saal SK, Lövgren K, Grabau D, Fernö M, Borg A and Hegardt C: The CD44+/CD24-phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 10:R532008. View Article : Google Scholar : PubMed/NCBI | |
|
Calaf GM, Ponce-Cusi R and Abarca-Quinones J: Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer. Oncol Rep. 39:2741–2748. 2018.PubMed/NCBI | |
|
Huiping L, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, Wen S, Chang YF, Bachmann MH, Shimono Y, et al: Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA. 107:18115–18120. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, et al: Molecular definition of breast tumor heterogeneity. Cancer Cell. 11:259–273. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Azzam DJ, Zhao D, Sun J, Minn AJ, Ranganathan P, Drews-Elger K, Han X, Picon-Ruiz M, Gilbert CA, Wander SA, et al: Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses. EMBO Mol Med. 5:1502–1522. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chakrabarti R, Wei Y, Romano RA, DeCoste C, Kang Y and Sinha S: Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells. 30:1496–1508. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Guturi KKN, Gautreau B, Patel PS, Saad A, Morii M, Mateo F, Palomero L, Barbour H, Gomez A, et al: Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 128:4525–4542. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC and Werb Z: GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell. 13:141–152. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukačišin M, Romano RA, Smalley K, Liu S, Yang Q, Ibrahim T, et al: Elf5 inhibits epithelial mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. 14:1212–1222. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lin HY, Liang YK, Dou XW, Chen CF, Wei XL, Zeng, Bai JW, Guo YX, Lin FF, Huang WH, et al: Notch3 inhibits epithelial-mesenchymal transition in breast cancer via a novel mechanism, upregulation of GATA-3 expression. Oncogenesis. 7:592018. View Article : Google Scholar : PubMed/NCBI | |
|
Mack GS and Marshall A: Lost in migration. Nat Biotechnol. 28:214–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Li J, Cadilha BL, Markota A, Voigt C, Huang Z, Lin PP, Wang DD, Dai J, Kranz G, et al: Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci Adv. 5:eaav42752019. View Article : Google Scholar : PubMed/NCBI | |
|
Shao S and Zhao X, Zhang X, Luo M, Zuo X, Huang S, Wang Y, Gu S and Zhao X: Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer. 14:282015. View Article : Google Scholar : PubMed/NCBI | |
|
Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I and Karsan A: Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 204:2935–2948. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Imanaka N, Chen J and Griffin JD: Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 102:351–360. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jian J, Yang Q, Shao Y, Axelrod D, Smith J, Singh B, Krauter S, Chiriboga L, Yang Z, Li J and Huang X: A link between premenopausal iron deficiency and breast cancer malignancy. BMC Cancer. 13:3072013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Chen X, Wang Y, Qu Z, Lu Q, Zhao J, Yan X, Zhang H and Zhou Y: Notch3 is important for TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1. Cancer Gene Ther. 21:364–372. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bolos V, Mira E, Martinez-Poveda B, Luxán G, Cañamero M, Martínez-A C, Mañes S and de la Pompa JL: Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Res. 15:R542013. View Article : Google Scholar : PubMed/NCBI | |
|
Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J and Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30:770–782. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X and Zhao X, Shao S, Zuo X, Ning Q, Luo M, Gu S and Zhao X: Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol. 46:1141–1148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kim RK, Kaushik N, Suh Y, Yoo KC, Cui YH, Kim MJ, Lee HJ, Kim IG and Lee SJ: Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget. 7:53430–53442. 2016.PubMed/NCBI | |
|
Jin S, Mutvei AP, Chivukula IV, Andersson ER, Ramsköld D, Sandberg R, Lee KL, Kronqvist P, Mamaeva V, Ostling P, et al: Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene. 32:4892–4902. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Shao X, Sun H, Liu K, Ding Z, Chen J, Fang L, Su W, Hong Y and Li H and Li H: NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling. Oncotarget. 7:61036–61053. 2016.PubMed/NCBI | |
|
Garcia-Heredia JM, Verdugo Sivianes EM, Lucena-Cacace A, Molina-Pinelo S and Carnero A: Numb-like (NumbL) downregulation increases tumorigenicity, cancer stem cell-like properties and resistance to chemotherapy. Oncotarget. 7:63611–63628. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Fu L, Gu F and Ma Y: Notch1 is involved in migration and invasion of human breast cancer cells. Oncol Rep. 26:1295–1303. 2011.PubMed/NCBI | |
|
Dou XW, Liang YK, Lin HY, Wei XL, Zhang YQ, Bai JW, Chen CF, Chen M, Du CW, Li YC, et al: Notch3 maintains luminal phenotype and suppresses tumorigenesis and metastasis of breast cancer via trans-activating estrogen receptor-alpha. Theranostics. 7:4041–4056. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhao F, Lu J, Li T, Yang H, Wu C and Liu Y: Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation. PLoS One. 9:e959122014. View Article : Google Scholar : PubMed/NCBI | |
|
Mahmood N, Mihalcioiu C and Rabbani SA: Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, Prognostic, and therapeutic applications. Front Oncol. 8:242018. View Article : Google Scholar : PubMed/NCBI | |
|
Heiss MM, Allgayer H, Gruetzner KU, Funke I, Babic R, Jauch KW and Schildberg FW: Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: A reference to early systemic disease in solid cancer. Nat Med. 1:1035–1039. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Shimizu M, Cohen B, Goldvasser P, Berman H, Virtanen C and Reedijk M: Plasminogen activator uPA is a direct transcriptional target of the JAG1-Notch receptor signaling pathway in breast cancer. Cancer Res. 71:277–286. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Song J: Notch signaling mediates Tumor-CAF crosstalk in basal-like breast cancer. 2014. | |
|
Liu ZJ, Lsemenza G and Zhang HF: Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 16:32–43. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL: HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol Med. 8 (Suppl 4):S62–S67. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Harris AL: Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
De EF, Maggiolini M and Musti AM: Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci. 19:20112018. View Article : Google Scholar | |
|
Lim SO, Kim HS, Quan X, Ahn SM, Kim H, Hsieh D, Seong JK and Jung G: Notch1 binds and induces degradation of Snail in hepatocellular carcinoma. BMC Biol. 9:832011. View Article : Google Scholar : PubMed/NCBI | |
|
Boufraqech M, Zhang L, Nilubol N, Sadowski SM, Kotian S, Quezado M and Kebebew E: Lysyl Oxidase (LOX) Transcriptionally Regulates SNAI2 Expression and TIMP4 Secretion in Human Cancers. Clin Cancer Res. 22:4491–4504. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Villanueva MT: Metastasis: LOX does some prepping. Nat Rev Cancer. 15:3842015. View Article : Google Scholar : PubMed/NCBI | |
|
Deshmukh SK, Srivastava SK, Tyagi N, Ahmad A, Singh AP, Ghadhban AAL, Dyess DL, Carter JE, Dugger K and Singh S: Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: A closer look at the surroundings. Carcinogenesis. 38:757–765. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Aboussekhra A: Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol. 55:841–849. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas C, et al: Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol. 16:889–901. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Procopio MG, Laszlo C, Al Labban D, Kim DE, Bordignon P, Jo SH, Goruppi S, Menietti E, Ostano P, Ala U, et al: Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol. 17:1193–1204. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cho OH, Shin HM, Miele L, Golde TE, Fauq A, Minter LM and Osborne BA: Notch regulates cytolytic effector function in CD8+ T cells. J Immunol. 182:3380–3389. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu H, Zmina PM, Huang AY, Askew D and Bedogni B: Inhibiting Notch1 enhances immunotherapy efficacy in melanoma by preventing Notch1 dependent immune suppressive properties. Cancer Lett. 434:144–151. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sugimoto K, Maekawa Y, Kitamura A, Nishida J, Koyanagi A, Yagita H, Kojima H, Chiba S, Shimada M and Yasutomo K: Notch2 signaling is required for potent antitumor immunity in vivo. J Immunol. 184:4673–4678. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Palaga T, Wongchana W and Kueanjinda P: Notch signaling in macrophages in the context of cancer immunity. Front Immunol. 9:6522018. View Article : Google Scholar : PubMed/NCBI | |
|
Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JL, Huang F, He F, Gao CC, Liang SQ, Ma PF, Dong GY, Han H and Qin HY: Forced activation of notch in macrophages represses tumor growth by upregulating miR-125a and disabling tumor-associated macrophages. Cancer Res. 76:1403–1415. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Yao H and Hu H: Disrupting Tumor Angiogenesis and ‘the Hunger Games’ for Breast Cancer. Adv Exp Med Biol. 1026:1712017. View Article : Google Scholar : PubMed/NCBI | |
|
Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med. 49:407–424. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Cuervo H, Nielsen CM, Simonetto DA, Ferrell L, Shah VH and Wang RA: Endothelial notch signaling is essential to prevent hepatic vascular malformations in mice. Hepatology. 64:1302–1316. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kontomanolis EN, Kalagasidou S, Pouliliou S, Anthoulaki X, Georgiou N, Papamanolis V and Fasoulakis ZN: The notch pathway in breast cancer progression. ScientificWorldJournal. 2018:24154892018. View Article : Google Scholar : PubMed/NCBI | |
|
Blanco R and Gerhardt H: VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. 3:a0065692013. View Article : Google Scholar : PubMed/NCBI | |
|
Siekmann AF, Covassin L and Lawson ND: Modulation of VEGF signalling output by the Notch pathway. Bioessays. 30:303–313. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R and Ish-Horowicz D: Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation. 69:135–144. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, et al: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 445:776–780. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Suchting S and Eichmann A: Jagged gives endothelial tip cells an edge. Cell. 137:988–990. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Phng LK and Gerhardt H: Angiogenesis: A team effort coordinated by notch. Dev Cell. 16:196–208. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Oon CE, Li JL, Sainson R, Sheldon H, Turley H, Leek R and Harris A: 360 Role of DLL4 and JAG1 in tumour angiogenesis. EJC Supplements. 8:92. 2010. View Article : Google Scholar | |
|
Panin VM, Papayannopoulos V, Wilson R and Irvine KD: Fringe modulates Notch-ligand interactions. Nature. 387:908–912. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Boareto M, Jolly MK, Ben-Jacob E and Onuchic JN: Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proc Natl Acad Sci USA. 112:E3836–E3844. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The Notch Ligands Dll4 and Jagged1 have opposing effects on Angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JY, Li CF, Chu PY, Lai YS, Chen CH, Jiang SS, Hou MF and Hung WC: Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1. Oncotarget. 7:27689–27710. 2016.PubMed/NCBI | |
|
Rodriguez-Vita J and Fischer A: Notch signaling facilitates crossing of endothelial barriers by tumor cells. Mol Cell Oncol. 4:e13118282017. View Article : Google Scholar : PubMed/NCBI | |
|
White DE and Muller WJ: Multifaceted Roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 12:135–142. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Deford P, Brown K, Richards RL, King A, Newburn K, Westover K and Albig AR: MAGP2 controls Notch via interactions with RGD binding integrins: Identification of a novel ECM-integrin-Notch signaling axis. Exp Cell Res. 341:84–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C and Sethi T: Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem. 282:28991–29001. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Zheng X, Meng F, Han Y, Song Y, Liu F, Li S, Zhang L, Gu F, Zhang X and Fu L: Overexpression of β1 integrin contributes to polarity reversal and a poor prognosis of breast invasive micropapillary carcinoma. Oncotarget. 9:4338–4353. 2017.PubMed/NCBI | |
|
Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S and Klemke R: Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci. 123:2332–2341. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Guo P and Rafii S: Dangerous liaisons: Deviant endothelium NOTCHes toward tumor metastasis. Cancer Cell. 31:301–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lianidou ES and Markou A: Circulating tumor cells in breast cancer: Detection systems, molecular characterization, and future challenges. Clin Chem. 57:1242–1255. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Boral D, Vishnoi M, Liu HN, Yin W, Sprouse ML, Scamardo A, Hong DS, Tan TZ, Thiery JP, Chang JC and Marchetti D: Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun. 8:1962017. View Article : Google Scholar : PubMed/NCBI | |
|
Portanova P, Notaro A, Pellerito O, Sabella S, Giuliano M and Calvaruso G: Notch inhibition restores TRAIL-mediated apoptosis via AP1-dependent upregulation of DR4 and DR5 TRAIL receptors in MDA-MB-231 breast cancer cells. Int J Oncol. 43:121–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Day TW, Huang S and Safa AR: c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells. Biochem Pharmacol. 76:1694–1704. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JW, Kim MJ, Kim KJ, Yun HJ, Chae JS, Hwang SG, Chang TS, Park HS, Lee KW, Han PL, et al: Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. Proc Natl Acad Sci USA. 102:14308–14313. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Archibald A, Mihai C, Macara IG and McCaffrey L: Oncogenic suppression of apoptosis uncovers a Rac1/JNK proliferation pathway activated by loss of Par3. Oncogene. 34:3199–3206. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zou W, Liu X, Yue P, Zhou Z, Sporn MB, Lotan R, Khuri FR and Sun SY: c-Jun NH2-terminal kinase-mediated up-regulation of death receptor 5 contributes to induction of apoptosis by the novel synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1, 9-dien-28-oate in human lung cancer cells. Cancer Res. 64:7570–7578. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Naik S, MacFarlane M and Sarin A: Notch4 signaling confers susceptibility to TRAIL-Induced Apoptosis in breast cancer cells. J Cell Biochem. 116:1371–1380. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Phipps LE, Hino S and Muschel RJ: Targeting cell spreading: A method of sensitizing metastatic tumor cells to TRAIL-induced apoptosis. Mol Cancer Res. 9:249–258. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Meurette O, Stylianou S, Rock R, Collu GM, Gilmore AP and Brennan K: Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res. 69:5015–5022. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tao L, Roberts AL, Dunphy KA, Bigelow C, Yan H and Jerry DJ: Repression of mammary stem/progenitor cells by p53 is mediated by Notch and separable from apoptotic activity. Stem Cells. 29:119–127. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Su F, Zhu S, Ruan J, Muftuoglu Y, Zhang L and Yuan Q: Combination therapy of RY10-4 with the gamma-secretase inhibitor DAPT shows promise in treating HER2-amplified breast cancer. Oncotarget. 7:4142–4154. 2016.PubMed/NCBI | |
|
Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 8:179–183. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhang J, Xiong N, Li S, Chen Y, Yang H, Wu C, Zeng H and Liu Y: Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol. 33:332016. View Article : Google Scholar : PubMed/NCBI | |
|
Guerrero-Zotano A, Mayer IA and Arteaga CL: PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 35:515–524. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mungamuri SK, Yang X, Thor AD and Somasundaram K: Survival signaling by Notch1: Mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 66:4715–4724. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dotto GP: Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer. 9:587–595. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SB, Chae GW, Lee J, Park J, Tak H, Chung JH, Park TG, Ahn JK and Joe CO: Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ. 14:982–991. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Cherdyntseva NV, Litviakov NV, Denisov EV, Gervas PA and Cherdyntsev ES: Circulating tumor cells in breast cancer: Functional heterogeneity, pathogenetic and clinical aspects. Exp Oncol. 39:2–11. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, Wang Y, Tang C, Li H, Lu H, et al: Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 118:18–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Simões BM, O'Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, Alférez DG, Spence K, Santiago-Gómez A, Chemi F, et al: Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-Dependent cancer stem cell activity. Cell Rep. 12:1968–1977. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sansone P, Ceccarelli C, Berishaj M, Chang Q, Rajasekhar VK, Perna F, Bowman RL, Vidone M, Daly L, Nnoli J, et al: Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun. 7:104422016. View Article : Google Scholar : PubMed/NCBI | |
|
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, et al: Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 159:499–513. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Arteaga CL and Engelman JA: ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 25:282–303. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, Yu M, Sundaresan TK, Licausi JA, Desai R, et al: HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 537:102–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kang Y: Dissecting Tumor-Stromal interactions in breast cancer bone metastasis. Endocrinol Metab (Seoul). 31:206–212. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P and Hauschka PV: Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. 177:1459–1469. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sethi N, Dai X, Winter CG and Kang Y: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 19:192–205. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JH and Welch DR: Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res. 57:2384–2387. 1997.PubMed/NCBI | |
|
Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, et al: Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 411:613–617. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Leone A, Flatow U, Vanhoutte K and Steeg PS: Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: Effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene. 8:2325–2333. 1993.PubMed/NCBI | |
|
Yu HG, Huang JA, Yang YN, Huang H, Luo HS, Yu JP, Meier JJ, Schrader H, Bastian A, Schmidt WE and Schmitz F: The effects of acetylsalicylic acid on proliferation, apoptosis, and invasion of cyclooxygenase-2 negative colon cancer cells. Eur J Clin Invest. 32:838–846. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Moon CM, Kwon JH, Kim JS, Oh SH, Jin Lee K, Park JJ, Pil Hong S, Cheon JH, Kim TI and Kim WH: Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer. Int J Cancer. 134:519–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ignesti M, Barraco M, Nallamothu G, Woolworth JA, Duchi S, Gargiulo G, Cavaliere V and Hsu T: Notch signaling during development requires the function of awd, the Drosophila homolog of human metastasis suppressor gene Nm23. BMC Biol. 12:122014. View Article : Google Scholar : PubMed/NCBI | |
|
Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E and Massagué J: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 17:867–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XY, Penalva LO, Yuan H, Linnoila RI, Lu J, Okano H and Glazer RI: Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer. 9:2212010. View Article : Google Scholar : PubMed/NCBI | |
|
Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G and Egan SE: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65:8530–8537. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tanabe H, Takayama I, Nishiyama T, Shimazaki M, Kii I, Li M, Amizuka N, Katsube K and Kudo A: Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells. PLoS One. 5:e122342010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, Kawashima N, Suzuk N, Yamamoto M, Ohnishi K, Katsube K, Tanabe H, Kudo A, Saito M and Suda H: Periostin is a negative regulator of mineralization in the dental pulp tissue. Odontology. 103:152–159. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N and Kudo A: Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem. 285:2028–2039. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Aguirre-Ghiso JA: Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 7:834–846. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Aguirre Ghiso JA, Kovalski K and Ossowski L: Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol. 147:89–104. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Masiero M, Minuzzo S, Pusceddu I, Moserle L, Persano L, Agnusdei V, Tosello V, Basso G, Amadori A and Indraccolo S: Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells. Leukemia. 25:588–598. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Enderling H, Almog N and Hlatky L: Systems biology of tumor dormancy. Springer; New York: 2013, View Article : Google Scholar | |
|
Zhang Y, Li J, Lai XN, Jiao XQ, Xiong JP and Xiong LX: Focus on Cdc42 in Breast Cancer: New insights, target therapy development and non-coding RNAs. Cells. 8(pii): E1462019. View Article : Google Scholar : PubMed/NCBI | |
|
Ors-Kumoglu G, Gulce-Iz S and Biray-Avci C: Therapeutic microRNAs in human cancer. Cytotechnology. 71:411–425. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MY, Fu J, Xiao X, Wu J and Wu RC: MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett. 354:311–319. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li XJ, Ji MH, Zhong SL, Zha QB, Xu JJ, Zhao JH and Tang JH: MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Arch Med Res. 43:514–521. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rui X, Zhao H, Xiao X, Wang L, Mo L and Yao Y: MicroRNA-34a suppresses breast cancer cell proliferation and invasion by targeting Notch1. Exp Ther Med. 16:4387–4392. 2018.PubMed/NCBI | |
|
Lan L, Wang Y, Pan Z, Wang B, Yue Z, Jiang Z, Li L, Wang C and Tang H: Rhamnetin induces apoptosis in human breast cancer cells via the miR-34a/Notch-1 signaling pathway. Oncol Lett. 17:676–682. 2019.PubMed/NCBI | |
|
Kang L, Mao J, Tao Y, Song B, Ma W, Lu Y, Zhao L, Li J, Yang B and Li L: MiR-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci. 106:700–708. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Park EY, Chang E, Lee EJ, Lee HW, Kang HG, Chun KH, Woo YM, Kong HK, Ko JY, Suzuki H, et al: Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res. 74:7573–7582. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Suman S, Das TP and Damodaran C: Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer. 109:2587–2596. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Heller G, Altenberger C, Steiner I, Topakian T, Ziegler B, Tomasich E, Lang G, End-Pfützenreuter A, Zehetmayer S, Döme B, et al: DNA methylation of microRNA-coding genes in non-small-cell lung cancer patients. J Pathol. 245:387–398. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li WJ, Xie XX, Bai J, Wang C, Zhao L and Jiang DQ: Increased expression of miR-1179 inhibits breast cancer cell metastasis by modulating Notch signaling pathway and correlates with favorable prognosis. Eur Rev Med Pharmacol Sci. 22:8374–8382. 2018.PubMed/NCBI | |
|
Kong P, Chen L, Yu M, Tao J, Liu J, Wang Y, Pan H, Zhou W and Wang S: miR-3178 inhibits cell proliferation and metastasis by targeting Notch1 in triple-negative breast cancer. Cell Death Dis. 9:10592018. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammadi-Yeganeh S, Mansouri A and Paryan M: Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer. Chem Biol Drug Des. 86:1185–1191. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang YK, Lin HY, Dou XW, Chen M, Wei XL, Zhang YQ, Wu Y, Chen CF, Bai JW, Xiao YS, et al: MiR-221/222 promote epithelial-mesenchymal transition by targeting Notch3 in breast cancer cell lines. NPJ Breast Cancer. 4:202018. View Article : Google Scholar : PubMed/NCBI | |
|
Forloni M, Dogra SK, Dong Y, Conte D Jr, Ou J, Zhu LJ, Deng A, Mahalingam M, Green MR and Wajapeyee N: miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. Elife. 3:e014602014. View Article : Google Scholar : PubMed/NCBI | |
|
Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X and Liu Y: Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun. 378:259–263. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Marino N, Woditschka S, Reed LT, Nakayama J, Mayer M, Wetzel M and Steeg PS: Breast cancer metastasis: Issues for the personalization of its prevention and treatment. Am J Pathol. 183:1084–1095. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Locatelli MA, Aftimos P, Dees EC, LoRusso PM, Pegram MD, Awada A, Huang B, Cesari R, Jiang Y, Shaik MN, et al: Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget. 8:2320–2328. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Piha-Paul SA, Munster PN, Hollebecque A, Argilés G, Dajani O, Cheng JD, Wang R, Swift A, Tosolini A and Gupta S: Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur J Cancer. 51:1865–1873. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Takebe N, Nguyen D and Yang SX: Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol Ther. 141:140–149. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
So JY, Wahler J, Das Gupta S, Salerno DM, Maehr H, Uskokovic M and Suh N: HES1-mediated inhibition of Notch1 signaling by a Gemini vitamin D analog leads to decreased CD44+/CD24−/low tumor-initiating subpopulation in basal-like breast cancer. J Steroid Biochem Mol Biol. 148:111–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Krop IE, Kosh M, Fearen I, Savoie JG, Dallob AL, Matthews CK, Stone J, Winer EP, Freedman SJ and LoRusso PM: Phase I pharmacokinetic (PK), and pharmacodynamic (PD) trial of the novel oral Notch inhibitor MK-0752 in patients (pts) with advanced breast cancer (BC) and other solid tumors. Ann Oncol. 22:1413–1419. 2006. | |
|
Locatelli M and Curigliano G: Notch inhibitors and their role in the treatment of triple negative breast cancer: Promises and failures. Curr Opin Oncol. 29:411–427. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sanchez L, Muchene L, Lorenzo-Luaces P, Viada C, Rodriguez PC, Alfonso S, Crombet T, Neninger E, Shkedy Z and Lage A: Differential effects of two therapeutic cancer vaccines on short- and long-term survival populations among patients with advanced lung cancer. Semin Oncol. 45:52–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Makhoul I, Atiq M, Alwbari A and Kieber-Emmons T: Breast cancer immunotherapy: An update. Breast Cancer (Auckl). May 30–2018.(Epud ahead of print). doi: 10.1177/1178223418774802. View Article : Google Scholar | |
|
Gu X, Lu C, He D, Lu Y, Jin J, Liu D and Ma X: Notch3 negatively regulates chemoresistance in breast cancers. Tumour Biol. Oct 14–2016.(Epub ahead of print). View Article : Google Scholar | |
|
Lu X and Kang Y: Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc Natl Acad Sci USA. 106:9385–9390. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Colombo M, Raposo G and Thery C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lowry MC, Gallagher WM and O'Driscoll L: The role of exosomes in breast cancer. Clin Chem. 61:1457–1465. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N and Eberhart CG: The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: A potential mechanism of therapeutic resistance. Clin Cancer Res. 16:6060–6070. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hanna A, Metge BJ, Bailey SK, Chen D, Chandrashekar DS, Varambally S, Samant RS and Shevde LA: Inhibition of Hedgehog signaling reprograms the dysfunctional immune microenvironment in breast cancer. Oncoimmunology. 8:15482412018. View Article : Google Scholar : PubMed/NCBI |