Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells

  • Authors:
    • Lei Yu
    • Rujia Xie
    • Tian Tian
    • Lu Zheng
    • Lei Tang
    • Shuang Cai
    • Zihua Ma
    • Ting Yang
    • Bing Han
    • Qin Yang
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
    Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3537-3544
    |
    Published online on: August 2, 2019
       https://doi.org/10.3892/ol.2019.10705
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor that has demonstrated clinical activity against various solid tumors. The aim of the present study was to explore the effects of SAHA on the apoptosis of HepG2 liver cancer cells, as well as the potential mechanisms involved in histone acetylation and endoplasmic reticulum (ER) stress. HepG2 cells were treated with various doses of SAHA (0, 1, 6 and 12 µM), and apoptosis was measured by flow cytometry. The levels of ER stress‑associated molecules, including 78 kDa glucose‑regulated protein (GRP78), PRKR‑like endoplasmic reticulum kinase (PERK), phosphorylated (p)‑PERK, activating transcription factor 4 (ATF4) and C/EBP‑homologous protein (CHOP), were quantitated by western blot analysis and reverse transcription‑quantitative PCR assay. The expression levels of acetylated histone H4 (acH4, acH4 lysine (K)5 and acH4K12) were detected by western blot analysis. The effects of SAHA on the acetylation of H4 in the promoter regions of GRP78, ATF4 and CHOP were evaluated by chromatin immunoprecipitation assays. Following treatment with higher doses of SAHA (6 and 12 µM) for 48 h, the proliferation of HepG2 cells was significantly suppressed. SAHA induced dose‑dependent apoptosis and increased both protein and mRNA expression levels of GRP78, ATF4 and CHOP in HepG2 cells. The protein expression of PERK was markedly decreased by treatment with SAHA, whereas the p‑PERK expression level was notably increased, which resulted in increased p‑PERK/PERK ratio. Furthermore, the acetylation levels of H4 in the promoter regions of GRP78, ATF4 and CHOP were significantly increased in HepG2 cells exposed to 6 µM SAHA for 36 h. Thus, SAHA induces apoptosis in HepG2 cells by activating the ER stress‑mediated apoptotic signaling pathway, at least partially by enhancing the acetylation of histone H4 on the promoter regions of ER‑stress associated genes, including GRP78, ATF4 and CHOP.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Buurman R, Sandbothe M, Schlegelberger B and Skawran B: HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma. Eur J Med Res. 21:262016. View Article : Google Scholar : PubMed/NCBI

2 

Chen QW, Zhu XY, Li YY and Meng ZQ: Epigenetic regulation and cancer (review). Oncol Rep. 31:523–532. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Muhammad JS, Khan MR and Ghias K: DNA methylation as an epigenetic regulator of gallbladder cancer: An overview. Int J Surg. 53:178–183. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G and Lakshmanan M: Role of novel histone modifications in cancer. Oncotarget. 9:11414–11426. 2017.PubMed/NCBI

5 

Khan FS, Ali I, Afridi UK, Ishtiaq M and Mehmood R: Epigenetic mechanisms regulating the development of hepatocellular carcinoma and their promise for therapeutics. Hepatol Int. 11:45–53. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X and Du L: Epigenetic regulation and its therapeutic potential in pulmonary hypertension. Front Pharmacol. 9:2412018. View Article : Google Scholar : PubMed/NCBI

7 

Peng L and Zhong X: Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B. 5:106–112. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Liu KY, Wang LT and Hsu SH: Modification of epigenetic histone acetylation in hepatocellular Carcinoma. Cancers (Basel). 10(pii): E82018. View Article : Google Scholar : PubMed/NCBI

9 

Reddy D, Khade B, Pandya R and Gupta S: A novel method for isolation of histones from serum and its implications in therapeutics and prognosis of solid tumours. Clin Epigenetics. 9:302017. View Article : Google Scholar : PubMed/NCBI

10 

Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R and Hekmatdoost A: The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: A review. Gene. 562:8–15. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Schneider A, Chatterjee S, Bousiges O, Selvi BR, Swaminathan A, Cassel R, Blanc F, Kundu TK and Boutillier AL: Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics. 10:568–588. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Zhou Y, Peng J and Jiang S: Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. Eur J Cell Biol. 93:170–177. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Chrun ES, Modolo F and Daniel FI: Histone modifications: A review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract. 213:1329–1339. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Kanno K, Kanno S, Nitta H, Uesugi N, Sugai T, Masuda T, Wakabayashi G and Maesawa C: Overexpression of histone deacetylase 6 contributes to accelerated migration and invasion activity of hepatocellular carcinoma cells. Oncol Rep. 28:867–873. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Liu W, Xiao J, Lan J, et al: The effects of histone acetylation on the migration and invasion of hepatocellular carcinoma cells. J Guizhou Med Univ. 42:1365–1369. 2017.(In Chinese).

16 

Mrakovcic M, Kleinheinz J and Fröhlich LF: Histone deacetylase inhibitor-induced autophagy in tumor cells: Implications for p53. Int J Mol Sci. 18(pii): E18832017. View Article : Google Scholar : PubMed/NCBI

17 

Wu Z, Jing S, Li Y, Gao Y, Yu S, Li Z, Zhao Y, Piao J, Ma S and Chen X: The effects of SAHA on radiosensitivity in pancreatic cancer cells by inducing apoptosis and targeting RAD51. Biomed Pharmacother. 89:705–710. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Lu H, Yang XF, Tian XQ, Tang SL, Li LQ, Zhao S and Zheng HC: The in vitro and vivo anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) and MG132 on the aggressive phenotypes of gastric cancer cells. Oncotarget. 7:56508–56525. 2016.PubMed/NCBI

19 

Xue K, Gu JJ, Zhang Q, Mavis C, Hernandez-Ilizaliturri FJ, Czuczman MS and Guo Y: Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J Cancer Res Clin Oncol. 142:379–387. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Hanke NT, Garland LL and Baker AF: Carfilzomib combined with suberanilohydroxamic acid (SAHA) synergistically promotes endoplasmic reticulum stress in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol. 142:549–560. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Teng Z, Kuang X, Wang J and Zhang X: Real-time cell analysis-a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. J Virol Methods. 193:364–370. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Zandi K: A real-time cell analyzing assay for identification of novel antiviral compounds against chikungunya virus. Methods Mol Biol 1426. 255–262. 2016. View Article : Google Scholar

23 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D and Saldanha SC: Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 10:469–478. 2014.PubMed/NCBI

25 

Ahuja N, Sharma AR and Baylin SB: Epigenetic therapeutics: A new weapon in the war against cancer. Annu Rev Med. 67:73–89. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Hurwitz JL, Stasik I, Kerr EM, Holohan C, Redmond KM, McLaughlin KM, Busacca S, Barbone D, Broaddus VC, Gray SG, et al: Vorinostat/SAHA-induced apoptosis in malignant mesothelioma is FLIP/caspase 8-dependent and HR23B-independent. Eur J Cancer. 48:1096–1107. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Yamamoto S, Tanaka K, Sakimura R, Okada T, Nakamura T, Li Y, Takasaki M, Nakabeppu Y and Iwamoto Y: Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines. Anticancer Res. 28:1585–1591. 2008.PubMed/NCBI

28 

Hrabeta J, Stiborova M, Adam V, Kizek R and Eckschlager T: Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 158:161–169. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Arhoma A, Chantry AD, Haywood-Small SL and Cross NA: SAHA-induced TRAIL-sensitisation of multiple myeloma cells is enhanced in 3D cell culture. Exp Cell Res. 360:226–235. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Kim SM, Park KC, Jeon JY, Kim BW, Kim HK, Chang HJ, Choi SH, Park CS and Chang HS: Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer. BMC Cancer. 15:10032015. View Article : Google Scholar : PubMed/NCBI

31 

Li YL, Zhang NY, Hu X, Chen JL, Rao MJ, Wu LW, Li QY, Zhang B, Yan W and Zhang C: Evodiamine induces apoptosis and promotes hepatocellular carcinoma cell death induced by vorinostat via downregulating HIF-1α under hypoxia. Biochem Biophys Res Commun. 498:481–486. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Kunnimalaiyaan S, Sokolowski K, Gamblin TC and Kunnimalaiyaan M: Suberoylanilide hydroxamic Acid, a histone deacetylase inhibitor, alters multiple signaling pathways in hepatocellular carcinoma cell lines. Am J Surg. 213:645–651. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Matsuo K, Gray MJ, Yang DY, Srivastava SA, Tripathi PB, Sonoda LA, Yoo EJ, Dubeau L, Lee AS and Lin YG: The endoplasmic reticulum stress marker, glucose-regulated protein-78 (GRP78) in visceral adipocytes predicts endometrial cancer progression and patient survival. Gynecol Oncol. 128:552–559. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Shi-Chen Ou D, Lee SB, Chu CS, Chang LH, Chung BC and Juan LJ: Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res. 21:642–653. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Wang M, Law ME, Castellano RK and Law BK: The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol. 127:66–79. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Yoo YS, Han HG and Jeon YJ: Unfolded protein response of the endoplasmic reticulum in tumor progression and immunogenicity. Oxid Med Cell Longev 2017. 29692712017.

37 

Nakka VP, Prakash-Babu P and Vemuganti R: Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: Potential therapeutic targets for acute CNS injuries. Mol Neurobiol. 53:532–544. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Chen Y, Gui D, Chen J, He D, Luo Y and Wang N: Down-regulation of PERK-ATF4-CHOP pathway by Astragaloside IV is associated with the inhibition of endoplasmic reticulum stress-induced podocyte apoptosis in diabetic rats. Cell Physiol Biochem. 33:1975–1987. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Ketchum CC, Larsen CD, McNeil A, Meyer-Ficca ML and Meyer RG: Early histone H4 acetylation during chromatin remodeling in equine spermatogenesis. Biol Reprod. 98:115–129. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Lei YU, Han B, Tian T, Zheng L, Yang T, Liu X, Tang L, Luo X, Yang Q and Xie JR: Suberoylanilide hydroxamic acid induces apoptosis of HepG2 cells by endoplasmic reticulum stress apoptotic pathway. Chin J Pathophysiol. 33:2151–2156. 2017.

41 

Chen M, Liu Q, Chen L, Zhang L and Gu E: Remifentanil postconditioning ameliorates histone H3 acetylation modification in H9c2 cardiomyoblasts after hypoxia/reoxygenation via attenuating endoplasmic reticulum stress. Apoptosis. 22:662–671. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu L, Xie R, Tian T, Zheng L, Tang L, Cai S, Ma Z, Yang T, Han B, Yang Q, Yang Q, et al: Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells. Oncol Lett 18: 3537-3544, 2019.
APA
Yu, L., Xie, R., Tian, T., Zheng, L., Tang, L., Cai, S. ... Yang, Q. (2019). Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells. Oncology Letters, 18, 3537-3544. https://doi.org/10.3892/ol.2019.10705
MLA
Yu, L., Xie, R., Tian, T., Zheng, L., Tang, L., Cai, S., Ma, Z., Yang, T., Han, B., Yang, Q."Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells". Oncology Letters 18.4 (2019): 3537-3544.
Chicago
Yu, L., Xie, R., Tian, T., Zheng, L., Tang, L., Cai, S., Ma, Z., Yang, T., Han, B., Yang, Q."Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells". Oncology Letters 18, no. 4 (2019): 3537-3544. https://doi.org/10.3892/ol.2019.10705
Copy and paste a formatted citation
x
Spandidos Publications style
Yu L, Xie R, Tian T, Zheng L, Tang L, Cai S, Ma Z, Yang T, Han B, Yang Q, Yang Q, et al: Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells. Oncol Lett 18: 3537-3544, 2019.
APA
Yu, L., Xie, R., Tian, T., Zheng, L., Tang, L., Cai, S. ... Yang, Q. (2019). Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells. Oncology Letters, 18, 3537-3544. https://doi.org/10.3892/ol.2019.10705
MLA
Yu, L., Xie, R., Tian, T., Zheng, L., Tang, L., Cai, S., Ma, Z., Yang, T., Han, B., Yang, Q."Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells". Oncology Letters 18.4 (2019): 3537-3544.
Chicago
Yu, L., Xie, R., Tian, T., Zheng, L., Tang, L., Cai, S., Ma, Z., Yang, T., Han, B., Yang, Q."Suberoylanilide hydroxamic acid upregulates histone acetylation and activates endoplasmic reticulum stress to induce apoptosis in HepG2 liver cancer cells". Oncology Letters 18, no. 4 (2019): 3537-3544. https://doi.org/10.3892/ol.2019.10705
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team