Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

C‑type lectin family XIV members and angiogenesis (Review)

  • Authors:
    • Supriya Borah
    • Dileep Vasudevan
    • Rajeeb K. Swain
  • View Affiliations / Copyright

    Affiliations: Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
  • Pages: 3954-3962
    |
    Published online on: August 16, 2019
       https://doi.org/10.3892/ol.2019.10760
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The growth and metastasis of tumors is dependent on angiogenesis. C‑type lectins are carbohydrate‑binding proteins with a diverse range of functions. The C‑type lectin family XIV members are transmembrane glycoproteins, and all four members of this family have been reported to regulate angiogenesis, although the detailed mechanism of action has yet to be completely elucidated. They interact with extracellular matrix proteins and mediate cell‑cell adhesion by their lectin‑like domain. The aim of the present study was to summarize the available information on the function and mechanism of C‑type lectin family XIV in angiogenesis and discuss their potential as targets for cancer therapy.
View Figures

Figure 1

Figure 2

View References

1 

Risau W: Mechanisms of angiogenesis. Nature. 386:671–674. 1997. View Article : Google Scholar : PubMed/NCBI

2 

Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Klagsbrun M and D'Amore PA: Regulators of angiogenesis. Ann Review Physiol. 53:217–239. 1991. View Article : Google Scholar

4 

Folkman J: Fundamental concepts of the angiogenic process. Curr Mol Med. 3:643–651. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Patel-Hett S and D'Amore PA: Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol. 55:353–363. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Neve A, Cantatore FP, Maruotti N, Corrado A and Ribatti D: Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int. 2014:7560782014. View Article : Google Scholar : PubMed/NCBI

8 

Bischoff J: Cell adhesion and angiogenesis. J Clin Inves. 99:373–376. 1997. View Article : Google Scholar

9 

Ramjaun AR and Hodivala-Dilke K: The role of cell adhesion pathways in angiogenesis. Int J Biochem Cell Biol. 41:521–530. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Mignatti P and Rifkin DB: Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein. 49:117–137. 1996. View Article : Google Scholar : PubMed/NCBI

11 

Lamalice L, Le Boeuf F and Huot J: Endothelial cell migration during angiogenesis. Circ Res. 100:782–794. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Conway EM, Collen D and Carmeliet P: Molecular mechanisms of blood vessel growth. Cardiovasc Res. 49:507–521. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Papetti M and Herman IM: Mechanisms of normal and tumor-derived angiogenesis. American journal of physiology. Cell Physiol. 282:C947–C970. 2002. View Article : Google Scholar

14 

Dusse LM, Carvalho MG, Getliffe K, Voegeli D, Cooper AJ and Lwaleed BA: Increased circulating thrombomodulin levels in pre-eclampsia. Clin Chim Acta. 387:168–171. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Wada H, Minamikawa K, Wakita Y, Nakase T, Kaneko T, Ohiwa M, Tamaki S, Deguchi K, Shirakawa S, Hayashi T, et al: Increased vascular endothelial cell markers in patients with disseminated intravascular coagulation. Am J Hematol. 44:85–88. 1993. View Article : Google Scholar : PubMed/NCBI

16 

Mori Y, Wada H, Okugawa Y, Tamaki S, Nakasaki T, Watanabe R, Gabazza EC, Nishikawa M, Minami N and Shiku H: Increased plasma thrombomodulin as a vascular endothelial cell marker in patients with thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Clin Appl Thromb Hemost. 7:5–9. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Stratton RJ, Pompon L, Coghlan JG, Pearson JD and Black CM: Soluble thrombomodulin concentration is raised in scleroderma associated pulmonary hypertension. Ann Rheum Dis. 59:132–134. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Dohi Y, Ohashi M, Sugiyama M, Takase H, Sato K and Ueda R: Circulating thrombomodulin levels are related to latent progression of atherosclerosis in hypertensive patients. Hypertens Res. 26:479–483. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Papadopoulos DP, Thomopoulos C, Mourouzis I, Kotrotsou A, Sanidas E, Papazachou U, Daskalaki M and Makris TK: Masked hypertension unfavourably affects haemostasis parameters. Blood Press. 20:218–221. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ and Conway EM: CD248 and its cytoplasmic domain: A therapeutic target for arthritis. Arthritis Rheum. 62:3595–3606. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Lax S, Hou TZ, Jenkinson E, Salmon M, MacFadyen JR, Isacke CM, Anderson G, Cunningham AF and Buckley CD: CD248/Endosialin is dynamically expressed on a subset of stromal cells during lymphoid tissue development, splenic remodeling and repair. FEBS Lett. 581:3550–3556. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Jeon JW, Jung JG, Shin EC, Choi HI, Kim HY, Cho ML, Kim SW, Jang YS, Sohn MH, Moon JH, et al: Soluble CD93 induces differentiation of monocytes and enhances TLR responses. J Immunol. 185:4921–4927. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Moosig F, Fahndrich E, Knorr-Spahr A, Böttcher S, Ritgen M, Zeuner R, Kneba M and Schröder JO: C1qRP (CD93) expression on peripheral blood monocytes in patients with systemic lupus erythematosus. Rheumatol Int. 26:1109–1112. 2006. View Article : Google Scholar : PubMed/NCBI

24 

van der Net JB, Oosterveer DM, Versmissen J, Defesche JC, Yazdanpanah M, Aouizerat BE, Steyerberg EW, Malloy MJ, Pullinger CR, Kastelein JJ and Kane JP: Replication study of 10 genetic polymorphisms associated with coronary heart disease in a specific high-risk population with familial hypercholesterolemia. Eur Heart J. 29:2195–2201. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Drickamer K: Demonstration of carbohydrate-recognition activity in diverse proteins which share a common primary structure motif. Biochem Soci Trans. 17:13–15. 1989. View Article : Google Scholar

26 

Drickamer K: C-type lectin-like domains. Curr Opinion Struct Biol. 9:585–590. 1999. View Article : Google Scholar

27 

Drickamer K and Fadden AJ: Genomic analysis of C-type lectins. Biochem Soci Symp. 59–72. 2002. View Article : Google Scholar

28 

Zelensky AN and Gready JE: C-type lectin-like domains in Fugu rubripes. BMC Genomics. 5:512004. View Article : Google Scholar : PubMed/NCBI

29 

Drickamer K: Evolution of Ca(2+)-dependent animal lectins. Prog Nucleic Acid Res Mol Biol. 45:207–232. 1993. View Article : Google Scholar : PubMed/NCBI

30 

Zelensky AN and Gready JE: The C-type lectin-like domain superfamily. FEBS J. 272:6179–6217. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Rho SS, Choi HJ, Min JK, Lee HW, Park H, Park H, Kim YM and Kwon YG: Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion. Biochem Biophys Res Commun. 404:103–108. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Mura M, Swain RK, Zhuang X, Vorschmitt H, Reynolds G, Durant S, Beesley JF, Herbert JM, Sheldon H, Andre M, et al: Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene. 31:293–305. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Du J, Yang Q, Luo L and Yang D: C1qr and C1qrl redundantly regulate angiogenesis in zebrafish through controlling endothelial Cdh5. Biochem Biophys Res Commun. 483:482–487. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Masiero M, Simoes FC, Han HD, Snell C, Peterkin T, Bridges E, Mangala LS, Wu SY, Pradeep S, Li D, et al: A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell. 24:229–241. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Delcourt N, Quevedo C, Nonne C, Fons P, O'Brien D, Loyaux D, Diez M, Autelitano F, Guillemot JC, Ferrara P, et al: Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis. J Biol Chem. 290:3405–3417. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Ki MK, Jeoung MH, Choi JR, Rho SS, Kwon YG, Shim H, Chung J, Hong HJ, Song BD and Lee S: Human antibodies targeting the C-type lectin-like domain of the tumor endothelial cell marker clec14a regulate angiogenic properties in vitro. Oncogene. 32:5449–5457. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Kim TK, Park CS, Jang J, Kim MR, Na HJ, Lee K, Kim HJ, Heo K, Yoo BC, Kim YM, et al: Inhibition of VEGF-dependent angiogenesis and tumor angiogenesis by an optimized antibody targeting CLEC14a. Mol Oncol. 12:356–372. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Zanivan S, Maione F, Hein MY, Hernández-Fernaud JR, Ostasiewicz P, Giraudo E and Mann M: SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 12:3599–3611. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Dev KK: Making protein interactions druggable: Targeting PDZ domains. Nat Rev Drug Discov. 3:1047–1056. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Kim S, Bell K, Mousa SA and Varner JA: Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol. 156:1345–1362. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Huang X, Ji G, Wu Y, Wan B and Yu L: LAMA4, highly expressed in human hepatocellular carcinoma from Chinese patients, is a novel marker of tumor invasion and metastasis. J Cancer Res Clin Oncol. 134:705–714. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Lorenzon E, Colladel R, Andreuzzi E, Marastoni S, Todaro F, Schiappacassi M, Ligresti G, Colombatti A and Mongiat M: MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway. Oncogene. 31:3136–3147. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Lugano R, Vemuri K, Yu D, Bergqvist M, Smits A, Essand M, Johansson S, Dejana E and Dimberg A: CD93 promotes beta1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest. 128:3280–3297. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Khan KA, Naylor AJ, Khan A, Noy PJ, Mambretti M, Lodhia P, Athwal J, Korzystka A, Buckley CD, Willcox BE, et al: Multimerin-2 is a ligand for group 14 family C-type lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte interface. Oncogene. 36:6097–6108. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Noy PJ, Lodhia P, Khan K, Zhuang X, Ward DG, Verissimo AR, Bacon A and Bicknell R: Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene. 34:5821–5831. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Jang J, Kim MR, Kim TK, Lee WR, Kim JH, Heo K and Lee S: CLEC14a-HSP70-1A interaction regulates HSP70-1A-induced angiogenesis. Sci Re. 7:106662017.

47 

Noy PJ, Swain RK, Khan K, Lodhia P and Bicknell R: Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2). FASEB J. 30:2311–2323. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Lee S, Rho SS, Park H, Park JA, Kim J, Lee IK, Koh GY, Mochizuki N, Kim YM and Kwon YG: Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 127:457–471. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomäki A, Aranda E, et al: VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 13:1202–1213. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S and Horiguchi S: Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 6:1891–1897. 1987. View Article : Google Scholar : PubMed/NCBI

51 

Conway EM: Thrombomodulin and its role in inflammation. Semin Immunopathol. 34:107–125. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Maruyama I, Bell CE and Majerus PW: Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol. 101:363–371. 1985. View Article : Google Scholar : PubMed/NCBI

53 

Soff GA, Jackman RW and Rosenberg RD: Expression of thrombomodulin by smooth muscle cells in culture: Different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood. 77:515–518. 1991.PubMed/NCBI

54 

McCachren SS, Diggs J, Weinberg JB and Dittman WA: Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood. 78:3128–3132. 1991.PubMed/NCBI

55 

Calnek DS and Grinnell BW: Thrombomodulin-dependent anticoagulant activity is regulated by vascular endothelial growth factor. Exp Cell Res. 238:294–298. 1998. View Article : Google Scholar : PubMed/NCBI

56 

Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY and Wu HL: Thrombomodulin-mediated cell adhesion: Involvement of its lectin-like domain. J Biol Chem. 278:46750–46759. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K and Sugimachi K: Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology. 21:1285–1290. 1995. View Article : Google Scholar : PubMed/NCBI

58 

Tabata M, Sugihara K, Yonezawa S, Yamashita S and Maruyama I: An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J Oral Pathol Med. 26:258–264. 1997. View Article : Google Scholar : PubMed/NCBI

59 

Hsu YY, Shi GY, Wang KC, Ma CY, Cheng TL and Wu HL: Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget. 7:68122–68139. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Shen TL, Park AY, Alcaraz A, Peng X, Jang I, Koni P, Flavell RA, Gu H and Guan JL: Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol. 169:941–952. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Peng X, Ueda H, Zhou H, Stokol T, Shen TL, Alcaraz A, Nagy T, Vassalli JD and Guan JL: Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice. Cardiovasc Rese. 64:421–430. 2004. View Article : Google Scholar

62 

Kao YC, Wu LW, Shi CS, Chu CH, Huang CW, Kuo CP, Sheu HM, Shi GY and Wu HL: Downregulation of thrombomodulin, a novel target of Snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol. 30:4767–4785. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Kuo CH, Chen PK, Chang BI, Sung MC, Shi CS, Lee JS, Chang CF, Shi GY and Wu HL: The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen. Blood. 119:1302–1313. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Hosaka Y, Higuchi T, Tsumagari M and Ishii H: Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett. 161:231–240. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, et al: The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med. 196:565–577. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Hamatake M, Ishida T, Mitsudomi T, Akazawa K and Sugimachi K: Prognostic value and clinicopathological correlation of thrombomodulin in squamous cell carcinoma of the human lung. Clin Cancer Res. 2:763–766. 1996.PubMed/NCBI

67 

Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al: Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196–4200. 1995.PubMed/NCBI

68 

Hanly AM, Redmond M, Winter DC, Brophy S, Deasy JM, Bouchier-Hayes DJ and Kay EW: Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer. 94:1320–1325. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Böhrer H, et al: Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 101:1301–1309. 1998. View Article : Google Scholar : PubMed/NCBI

70 

Lindahl AK, Boffa MC and Abildgaard U: Increased plasma thrombomodulin in cancer patients. Thromb Haemost. 69:112–114. 1993. View Article : Google Scholar : PubMed/NCBI

71 

Salmaggi A, Eoli M, Frigerio S, Ciusani E, Silvani A and Boiardi A: Circulating intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and plasma thrombomodulin levels in glioblastoma patients. Cancer Lett. 146:169–172. 1999. View Article : Google Scholar : PubMed/NCBI

72 

Hsu YY, Shi GY, Kuo CH, Liu SL, Wu CM, Ma CY, Lin FY, Yang HY and Wu HL: Thrombomodulin is an ezrin-interacting protein that controls epithelial morphology and promotes collective cell migration. FASEB J. 26:3440–3452. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Zheng N, Huo Z, Zhang B, Meng M, Cao Z, Wang Z and Zhou Q: Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression. Biochem Biophys Res Commun. 476:252–259. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS and Wu HL: Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 111:1627–1636. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Wang X, Pan B, Honda G, Wang X, Hashimoto Y, Ohkawara H, Xu K, Zeng L and Ikezoe T: Cytoprotective and pro-angiogenic functions of thrombomodulin are preserved in the C loop of the fifth epidermal growth factor-like domain. Haematologica. 103:1730–1740. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Kuo CH, Sung MC, Chen PK, Chang BI, Lee FT, Cho CF, Hsieh TT, Huang YC, Li YH, Shi GY, et al: FGFR1 mediates recombinant thrombomodulin domain-induced angiogenesis. Cardiovasc Res. 105:107–117. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Nepomuceno RR, Henschen-Edman AH, Burgess WH and Tenner AJ: cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity. 6:119–129. 1997. View Article : Google Scholar : PubMed/NCBI

78 

Malarstig A, Silveira A, Wagsater D, Öhrvik J, Bäcklund A, Samnegård A, Khademi M, Hellenius ML, Leander K, Olsson T, et al: Plasma CD93 concentration is a potential novel biomarker for coronary artery disease. J Intern Med. 270:229–236. 2011. View Article : Google Scholar : PubMed/NCBI

79 

McGreal EP, Ikewaki N, Akatsu H, Morgan BP and Gasque P: Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol. 168:5222–5232. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Bohlson SS, Silva R, Fonseca MI and Tenner AJ: CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma. J Immunol. 175:1239–1247. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Nepomuceno RR and Tenner AJ: C1qRP, the C1q receptor that enhances phagocytosis, is detected specifically in human cells of myeloid lineage, endothelial cells, and platelets. J Immunol. 160:1929–1935. 1998.PubMed/NCBI

82 

Langenkamp E, Zhang L, Lugano R, Huang H, Elhassan TE, Georganaki M, Bazzar W, Lööf J, Trendelenburg G, Essand M, et al: Elevated expression of the C-type lectin CD93 in the glioblastoma vasculature regulates cytoskeletal rearrangements that enhance vessel function and reduce host survival. Cancer Res. 75:4504–4516. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Bao L, Tang M, Zhang Q, You B, Shan Y, Shi S, Li L, Hu S and You Y: Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma. Biochem Biophys Res Commun. 476:467–474. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Tosi GM, Caldi E, Parolini B, Toti P, Neri G, Nardi F, Traversi C, Cevenini G, Marigliani D, Nuti E, et al: CD93 as a potential target in neovascular age-related macular degeneration. J Cell Physiol. 232:1767–1773. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Dieterich LC, Mellberg S, Langenkamp E, Zhang L, Zieba A, Salomäki H, Teichert M, Huang H, Edqvist PH, Kraus T, et al: Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFbeta2 in vascular abnormalization. J Pathol. 228:378–390. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Greenlee MC, Sullivan SA and Bohlson SS: Detection and characterization of soluble CD93 released during inflammation. Inflamm Res. 58:909–919. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I and Lemischka IR: The molecular characterization of the fetal stem cell marker AA4. Immunity. 10:691–700. 1999. View Article : Google Scholar : PubMed/NCBI

88 

Zhang M, Bohlson SS, Dy M and Tenner AJ: Modulated interaction of the ERM protein, moesin, with CD93. Immunology. 115:63–73. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Galvagni F, Nardi F, Maida M, Bernardini G, Vannuccini S, Petraglia F, Santucci A and Orlandini M: CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration. Oncotarget. 7:10090–10103. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Galvagni F, Nardi F, Spiga O, Trezza A, Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P, Tosi GM, et al: Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol. 64:112–127. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Kao YC, Jiang SJ, Pan WA, Wang KC, Chen PK, Wei HJ, Chen WS, Chang BI, Shi GY and Wu HL: The epidermal growth factor-like domain of CD93 is a potent angiogenic factor. PLoS One. 7:e516472012. View Article : Google Scholar : PubMed/NCBI

92 

Orlandini M, Galvagni F, Bardelli M, Rocchigiani M, Lentucci C, Anselmi F, Zippo A, Bini L and Oliviero S: The characterization of a novel monoclonal antibody against CD93 unveils a new antiangiogenic target. Oncotarget. 5:2750–2760. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ and Lenter MC: Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem. 276:7408–7414. 2001. View Article : Google Scholar : PubMed/NCBI

94 

Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA and Old LJ: Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA. 89:10832–10836. 1992. View Article : Google Scholar : PubMed/NCBI

95 

Bagley RG, Weber W, Rouleau C, Yao M, Honma N, Kataoka S, Ishida I, Roberts BL and Teicher BA: Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers. Int J Oncol. 34:619–627. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D and Augustin HG: Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol. 172:486–494. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Becker R, Lenter MC, Vollkommer T, Boos AM, Pfaff D, Augustin HG and Christian S: Tumor stroma marker endosialin (Tem1) is a binding partner of metastasis-related protein Mac-2 BP/90K. FASEB J. 22:3059–3067. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Tomkowicz B, Rybinski K, Foley B, Ebel W, Kline B, Routhier E, Sass P, Nicolaides NC, Grasso L and Zhou Y: Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proc Natl Acad Sci USA. 104:17965–17970. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, Vogelstein B, St Croix B, Kinzler KW and Huso DL: Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA. 103:3351–3356. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Maia M, DeVriese A, Janssens T, Moons M, Lories RJ, Tavernier J and Conway EM: CD248 facilitates tumor growth via its cytoplasmic domain. BMC Cancer. 11:1622011. View Article : Google Scholar : PubMed/NCBI

101 

Yeo M, Park HJ, Kim DK, Kim YB, Cheong JY, Lee KJ and Cho SW: Loss of SM22 is a characteristic signature of colon carcinogenesis and its restoration suppresses colon tumorigenicity in vivo and in vitro. Cancer. 116:2581–2589. 2010.PubMed/NCBI

102 

Nowell CS and Radtke F: Notch as a tumour suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Ohradanova A, Gradin K, Barathova M, Zatovicova M, Holotnakova T, Kopacek J, Parkkila S, Poellinger L, Pastorekova S and Pastorek J: Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. Br J Cancer. 99:1348–1356. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Zhao Y and Adjei AA: Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Borah S, Vasudevan D and Swain RK: C‑type lectin family XIV members and angiogenesis (Review). Oncol Lett 18: 3954-3962, 2019.
APA
Borah, S., Vasudevan, D., & Swain, R.K. (2019). C‑type lectin family XIV members and angiogenesis (Review). Oncology Letters, 18, 3954-3962. https://doi.org/10.3892/ol.2019.10760
MLA
Borah, S., Vasudevan, D., Swain, R. K."C‑type lectin family XIV members and angiogenesis (Review)". Oncology Letters 18.4 (2019): 3954-3962.
Chicago
Borah, S., Vasudevan, D., Swain, R. K."C‑type lectin family XIV members and angiogenesis (Review)". Oncology Letters 18, no. 4 (2019): 3954-3962. https://doi.org/10.3892/ol.2019.10760
Copy and paste a formatted citation
x
Spandidos Publications style
Borah S, Vasudevan D and Swain RK: C‑type lectin family XIV members and angiogenesis (Review). Oncol Lett 18: 3954-3962, 2019.
APA
Borah, S., Vasudevan, D., & Swain, R.K. (2019). C‑type lectin family XIV members and angiogenesis (Review). Oncology Letters, 18, 3954-3962. https://doi.org/10.3892/ol.2019.10760
MLA
Borah, S., Vasudevan, D., Swain, R. K."C‑type lectin family XIV members and angiogenesis (Review)". Oncology Letters 18.4 (2019): 3954-3962.
Chicago
Borah, S., Vasudevan, D., Swain, R. K."C‑type lectin family XIV members and angiogenesis (Review)". Oncology Letters 18, no. 4 (2019): 3954-3962. https://doi.org/10.3892/ol.2019.10760
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team