|
1
|
Risau W: Mechanisms of angiogenesis.
Nature. 386:671–674. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Folkman J: Angiogenesis in cancer,
vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Klagsbrun M and D'Amore PA: Regulators of
angiogenesis. Ann Review Physiol. 53:217–239. 1991. View Article : Google Scholar
|
|
4
|
Folkman J: Fundamental concepts of the
angiogenic process. Curr Mol Med. 3:643–651. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Patel-Hett S and D'Amore PA: Signal
transduction in vasculogenesis and developmental angiogenesis. Int
J Dev Biol. 55:353–363. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Neve A, Cantatore FP, Maruotti N, Corrado
A and Ribatti D: Extracellular matrix modulates angiogenesis in
physiological and pathological conditions. Biomed Res Int.
2014:7560782014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bischoff J: Cell adhesion and
angiogenesis. J Clin Inves. 99:373–376. 1997. View Article : Google Scholar
|
|
9
|
Ramjaun AR and Hodivala-Dilke K: The role
of cell adhesion pathways in angiogenesis. Int J Biochem Cell Biol.
41:521–530. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mignatti P and Rifkin DB: Plasminogen
activators and matrix metalloproteinases in angiogenesis. Enzyme
Protein. 49:117–137. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lamalice L, Le Boeuf F and Huot J:
Endothelial cell migration during angiogenesis. Circ Res.
100:782–794. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Conway EM, Collen D and Carmeliet P:
Molecular mechanisms of blood vessel growth. Cardiovasc Res.
49:507–521. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Papetti M and Herman IM: Mechanisms of
normal and tumor-derived angiogenesis. American journal of
physiology. Cell Physiol. 282:C947–C970. 2002. View Article : Google Scholar
|
|
14
|
Dusse LM, Carvalho MG, Getliffe K, Voegeli
D, Cooper AJ and Lwaleed BA: Increased circulating thrombomodulin
levels in pre-eclampsia. Clin Chim Acta. 387:168–171. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wada H, Minamikawa K, Wakita Y, Nakase T,
Kaneko T, Ohiwa M, Tamaki S, Deguchi K, Shirakawa S, Hayashi T, et
al: Increased vascular endothelial cell markers in patients with
disseminated intravascular coagulation. Am J Hematol. 44:85–88.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mori Y, Wada H, Okugawa Y, Tamaki S,
Nakasaki T, Watanabe R, Gabazza EC, Nishikawa M, Minami N and Shiku
H: Increased plasma thrombomodulin as a vascular endothelial cell
marker in patients with thrombotic thrombocytopenic purpura and
hemolytic uremic syndrome. Clin Appl Thromb Hemost. 7:5–9. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Stratton RJ, Pompon L, Coghlan JG, Pearson
JD and Black CM: Soluble thrombomodulin concentration is raised in
scleroderma associated pulmonary hypertension. Ann Rheum Dis.
59:132–134. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dohi Y, Ohashi M, Sugiyama M, Takase H,
Sato K and Ueda R: Circulating thrombomodulin levels are related to
latent progression of atherosclerosis in hypertensive patients.
Hypertens Res. 26:479–483. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Papadopoulos DP, Thomopoulos C, Mourouzis
I, Kotrotsou A, Sanidas E, Papazachou U, Daskalaki M and Makris TK:
Masked hypertension unfavourably affects haemostasis parameters.
Blood Press. 20:218–221. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Maia M, de Vriese A, Janssens T, Moons M,
van Landuyt K, Tavernier J, Lories RJ and Conway EM: CD248 and its
cytoplasmic domain: A therapeutic target for arthritis. Arthritis
Rheum. 62:3595–3606. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lax S, Hou TZ, Jenkinson E, Salmon M,
MacFadyen JR, Isacke CM, Anderson G, Cunningham AF and Buckley CD:
CD248/Endosialin is dynamically expressed on a subset of stromal
cells during lymphoid tissue development, splenic remodeling and
repair. FEBS Lett. 581:3550–3556. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jeon JW, Jung JG, Shin EC, Choi HI, Kim
HY, Cho ML, Kim SW, Jang YS, Sohn MH, Moon JH, et al: Soluble CD93
induces differentiation of monocytes and enhances TLR responses. J
Immunol. 185:4921–4927. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Moosig F, Fahndrich E, Knorr-Spahr A,
Böttcher S, Ritgen M, Zeuner R, Kneba M and Schröder JO: C1qRP
(CD93) expression on peripheral blood monocytes in patients with
systemic lupus erythematosus. Rheumatol Int. 26:1109–1112. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
van der Net JB, Oosterveer DM, Versmissen
J, Defesche JC, Yazdanpanah M, Aouizerat BE, Steyerberg EW, Malloy
MJ, Pullinger CR, Kastelein JJ and Kane JP: Replication study of 10
genetic polymorphisms associated with coronary heart disease in a
specific high-risk population with familial hypercholesterolemia.
Eur Heart J. 29:2195–2201. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Drickamer K: Demonstration of
carbohydrate-recognition activity in diverse proteins which share a
common primary structure motif. Biochem Soci Trans. 17:13–15. 1989.
View Article : Google Scholar
|
|
26
|
Drickamer K: C-type lectin-like domains.
Curr Opinion Struct Biol. 9:585–590. 1999. View Article : Google Scholar
|
|
27
|
Drickamer K and Fadden AJ: Genomic
analysis of C-type lectins. Biochem Soci Symp. 59–72. 2002.
View Article : Google Scholar
|
|
28
|
Zelensky AN and Gready JE: C-type
lectin-like domains in Fugu rubripes. BMC Genomics. 5:512004.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Drickamer K: Evolution of Ca(2+)-dependent
animal lectins. Prog Nucleic Acid Res Mol Biol. 45:207–232. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zelensky AN and Gready JE: The C-type
lectin-like domain superfamily. FEBS J. 272:6179–6217. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rho SS, Choi HJ, Min JK, Lee HW, Park H,
Park H, Kim YM and Kwon YG: Clec14a is specifically expressed in
endothelial cells and mediates cell to cell adhesion. Biochem
Biophys Res Commun. 404:103–108. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mura M, Swain RK, Zhuang X, Vorschmitt H,
Reynolds G, Durant S, Beesley JF, Herbert JM, Sheldon H, Andre M,
et al: Identification and angiogenic role of the novel tumor
endothelial marker CLEC14A. Oncogene. 31:293–305. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Du J, Yang Q, Luo L and Yang D: C1qr and
C1qrl redundantly regulate angiogenesis in zebrafish through
controlling endothelial Cdh5. Biochem Biophys Res Commun.
483:482–487. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Masiero M, Simoes FC, Han HD, Snell C,
Peterkin T, Bridges E, Mangala LS, Wu SY, Pradeep S, Li D, et al: A
core human primary tumor angiogenesis signature identifies the
endothelial orphan receptor ELTD1 as a key regulator of
angiogenesis. Cancer Cell. 24:229–241. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Delcourt N, Quevedo C, Nonne C, Fons P,
O'Brien D, Loyaux D, Diez M, Autelitano F, Guillemot JC, Ferrara P,
et al: Targeted identification of sialoglycoproteins in hypoxic
endothelial cells and validation in zebrafish reveal roles for
proteins in angiogenesis. J Biol Chem. 290:3405–3417. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ki MK, Jeoung MH, Choi JR, Rho SS, Kwon
YG, Shim H, Chung J, Hong HJ, Song BD and Lee S: Human antibodies
targeting the C-type lectin-like domain of the tumor endothelial
cell marker clec14a regulate angiogenic properties in vitro.
Oncogene. 32:5449–5457. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kim TK, Park CS, Jang J, Kim MR, Na HJ,
Lee K, Kim HJ, Heo K, Yoo BC, Kim YM, et al: Inhibition of
VEGF-dependent angiogenesis and tumor angiogenesis by an optimized
antibody targeting CLEC14a. Mol Oncol. 12:356–372. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zanivan S, Maione F, Hein MY,
Hernández-Fernaud JR, Ostasiewicz P, Giraudo E and Mann M:
SILAC-based proteomics of human primary endothelial cell
morphogenesis unveils tumor angiogenic markers. Mol Cell
Proteomics. 12:3599–3611. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Dev KK: Making protein interactions
druggable: Targeting PDZ domains. Nat Rev Drug Discov. 3:1047–1056.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim S, Bell K, Mousa SA and Varner JA:
Regulation of angiogenesis in vivo by ligation of integrin
alpha5beta1 with the central cell-binding domain of fibronectin. Am
J Pathol. 156:1345–1362. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huang X, Ji G, Wu Y, Wan B and Yu L:
LAMA4, highly expressed in human hepatocellular carcinoma from
Chinese patients, is a novel marker of tumor invasion and
metastasis. J Cancer Res Clin Oncol. 134:705–714. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lorenzon E, Colladel R, Andreuzzi E,
Marastoni S, Todaro F, Schiappacassi M, Ligresti G, Colombatti A
and Mongiat M: MULTIMERIN2 impairs tumor angiogenesis and growth by
interfering with VEGF-A/VEGFR2 pathway. Oncogene. 31:3136–3147.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lugano R, Vemuri K, Yu D, Bergqvist M,
Smits A, Essand M, Johansson S, Dejana E and Dimberg A: CD93
promotes beta1 integrin activation and fibronectin fibrillogenesis
during tumor angiogenesis. J Clin Invest. 128:3280–3297. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Khan KA, Naylor AJ, Khan A, Noy PJ,
Mambretti M, Lodhia P, Athwal J, Korzystka A, Buckley CD, Willcox
BE, et al: Multimerin-2 is a ligand for group 14 family C-type
lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte
interface. Oncogene. 36:6097–6108. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Noy PJ, Lodhia P, Khan K, Zhuang X, Ward
DG, Verissimo AR, Bacon A and Bicknell R: Blocking CLEC14A-MMRN2
binding inhibits sprouting angiogenesis and tumour growth.
Oncogene. 34:5821–5831. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jang J, Kim MR, Kim TK, Lee WR, Kim JH,
Heo K and Lee S: CLEC14a-HSP70-1A interaction regulates
HSP70-1A-induced angiogenesis. Sci Re. 7:106662017.
|
|
47
|
Noy PJ, Swain RK, Khan K, Lodhia P and
Bicknell R: Sprouting angiogenesis is regulated by shedding of the
C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed
by rhomboid-like 2 protein (RHBDL2). FASEB J. 30:2311–2323. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee S, Rho SS, Park H, Park JA, Kim J, Lee
IK, Koh GY, Mochizuki N, Kim YM and Kwon YG: Carbohydrate-binding
protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals
during angiogenesis and lymphangiogenesis. J Clin Invest.
127:457–471. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tammela T, Zarkada G, Nurmi H, Jakobsson
L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomäki A,
Aranda E, et al: VEGFR-3 controls tip to stalk conversion at vessel
fusion sites by reinforcing Notch signalling. Nat Cell Biol.
13:1202–1213. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Suzuki K, Kusumoto H, Deyashiki Y,
Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S
and Horiguchi S: Structure and expression of human thrombomodulin,
a thrombin receptor on endothelium acting as a cofactor for protein
C activation. EMBO J. 6:1891–1897. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Conway EM: Thrombomodulin and its role in
inflammation. Semin Immunopathol. 34:107–125. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Maruyama I, Bell CE and Majerus PW:
Thrombomodulin is found on endothelium of arteries, veins,
capillaries, and lymphatics, and on syncytiotrophoblast of human
placenta. J Cell Biol. 101:363–371. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Soff GA, Jackman RW and Rosenberg RD:
Expression of thrombomodulin by smooth muscle cells in culture:
Different effects of tumor necrosis factor and cyclic adenosine
monophosphate on thrombomodulin expression by endothelial cells and
smooth muscle cells in culture. Blood. 77:515–518. 1991.PubMed/NCBI
|
|
54
|
McCachren SS, Diggs J, Weinberg JB and
Dittman WA: Thrombomodulin expression by human blood monocytes and
by human synovial tissue lining macrophages. Blood. 78:3128–3132.
1991.PubMed/NCBI
|
|
55
|
Calnek DS and Grinnell BW:
Thrombomodulin-dependent anticoagulant activity is regulated by
vascular endothelial growth factor. Exp Cell Res. 238:294–298.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM,
Yang HY and Wu HL: Thrombomodulin-mediated cell adhesion:
Involvement of its lectin-like domain. J Biol Chem.
278:46750–46759. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Suehiro T, Shimada M, Matsumata T,
Taketomi A, Yamamoto K and Sugimachi K: Thrombomodulin inhibits
intrahepatic spread in human hepatocellular carcinoma. Hepatology.
21:1285–1290. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tabata M, Sugihara K, Yonezawa S,
Yamashita S and Maruyama I: An immunohistochemical study of
thrombomodulin in oral squamous cell carcinoma and its association
with invasive and metastatic potential. J Oral Pathol Med.
26:258–264. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hsu YY, Shi GY, Wang KC, Ma CY, Cheng TL
and Wu HL: Thrombomodulin promotes focal adhesion kinase activation
and contributes to angiogenesis by binding to fibronectin.
Oncotarget. 7:68122–68139. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shen TL, Park AY, Alcaraz A, Peng X, Jang
I, Koni P, Flavell RA, Gu H and Guan JL: Conditional knockout of
focal adhesion kinase in endothelial cells reveals its role in
angiogenesis and vascular development in late embryogenesis. J Cell
Biol. 169:941–952. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Peng X, Ueda H, Zhou H, Stokol T, Shen TL,
Alcaraz A, Nagy T, Vassalli JD and Guan JL: Overexpression of focal
adhesion kinase in vascular endothelial cells promotes angiogenesis
in transgenic mice. Cardiovasc Rese. 64:421–430. 2004. View Article : Google Scholar
|
|
62
|
Kao YC, Wu LW, Shi CS, Chu CH, Huang CW,
Kuo CP, Sheu HM, Shi GY and Wu HL: Downregulation of
thrombomodulin, a novel target of Snail, induces tumorigenesis
through epithelial-mesenchymal transition. Mol Cell Biol.
30:4767–4785. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kuo CH, Chen PK, Chang BI, Sung MC, Shi
CS, Lee JS, Chang CF, Shi GY and Wu HL: The recombinant lectin-like
domain of thrombomodulin inhibits angiogenesis through interaction
with Lewis Y antigen. Blood. 119:1302–1313. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hosaka Y, Higuchi T, Tsumagari M and Ishii
H: Inhibition of invasion and experimental metastasis of murine
melanoma cells by human soluble thrombomodulin. Cancer Lett.
161:231–240. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Conway EM, Van de Wouwer M, Pollefeyt S,
Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW,
Schaeffer P, et al: The lectin-like domain of thrombomodulin
confers protection from neutrophil-mediated tissue damage by
suppressing adhesion molecule expression via nuclear factor kappaB
and mitogen-activated protein kinase pathways. J Exp Med.
196:565–577. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hamatake M, Ishida T, Mitsudomi T, Akazawa
K and Sugimachi K: Prognostic value and clinicopathological
correlation of thrombomodulin in squamous cell carcinoma of the
human lung. Clin Cancer Res. 2:763–766. 1996.PubMed/NCBI
|
|
67
|
Tezuka Y, Yonezawa S, Maruyama I,
Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C,
Natsugoe S, et al: Expression of thrombomodulin in esophageal
squamous cell carcinoma and its relationship to lymph node
metastasis. Cancer Res. 55:4196–4200. 1995.PubMed/NCBI
|
|
68
|
Hanly AM, Redmond M, Winter DC, Brophy S,
Deasy JM, Bouchier-Hayes DJ and Kay EW: Thrombomodulin expression
in colorectal carcinoma is protective and correlates with survival.
Br J Cancer. 94:1320–1325. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Y, Weiler-Guettler H, Chen J,
Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S,
Böhrer H, et al: Thrombomodulin modulates growth of tumor cells
independent of its anticoagulant activity. J Clin Invest.
101:1301–1309. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lindahl AK, Boffa MC and Abildgaard U:
Increased plasma thrombomodulin in cancer patients. Thromb Haemost.
69:112–114. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Salmaggi A, Eoli M, Frigerio S, Ciusani E,
Silvani A and Boiardi A: Circulating intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and
plasma thrombomodulin levels in glioblastoma patients. Cancer Lett.
146:169–172. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hsu YY, Shi GY, Kuo CH, Liu SL, Wu CM, Ma
CY, Lin FY, Yang HY and Wu HL: Thrombomodulin is an
ezrin-interacting protein that controls epithelial morphology and
promotes collective cell migration. FASEB J. 26:3440–3452. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zheng N, Huo Z, Zhang B, Meng M, Cao Z,
Wang Z and Zhou Q: Thrombomodulin reduces tumorigenic and
metastatic potential of lung cancer cells by up-regulation of
E-cadherin and down-regulation of N-cadherin expression. Biochem
Biophys Res Commun. 476:252–259. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shi CS, Shi GY, Chang YS, Han HS, Kuo CH,
Liu C, Huang HC, Chang YJ, Chen PS and Wu HL: Evidence of human
thrombomodulin domain as a novel angiogenic factor. Circulation.
111:1627–1636. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang X, Pan B, Honda G, Wang X, Hashimoto
Y, Ohkawara H, Xu K, Zeng L and Ikezoe T: Cytoprotective and
pro-angiogenic functions of thrombomodulin are preserved in the C
loop of the fifth epidermal growth factor-like domain.
Haematologica. 103:1730–1740. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kuo CH, Sung MC, Chen PK, Chang BI, Lee
FT, Cho CF, Hsieh TT, Huang YC, Li YH, Shi GY, et al: FGFR1
mediates recombinant thrombomodulin domain-induced angiogenesis.
Cardiovasc Res. 105:107–117. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Nepomuceno RR, Henschen-Edman AH, Burgess
WH and Tenner AJ: cDNA cloning and primary structure analysis of
C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced
phagocytosis in vitro. Immunity. 6:119–129. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Malarstig A, Silveira A, Wagsater D,
Öhrvik J, Bäcklund A, Samnegård A, Khademi M, Hellenius ML, Leander
K, Olsson T, et al: Plasma CD93 concentration is a potential novel
biomarker for coronary artery disease. J Intern Med. 270:229–236.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
McGreal EP, Ikewaki N, Akatsu H, Morgan BP
and Gasque P: Human C1qRp is identical with CD93 and the mNI-11
antigen but does not bind C1q. J Immunol. 168:5222–5232. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Bohlson SS, Silva R, Fonseca MI and Tenner
AJ: CD93 is rapidly shed from the surface of human myeloid cells
and the soluble form is detected in human plasma. J Immunol.
175:1239–1247. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nepomuceno RR and Tenner AJ: C1qRP, the
C1q receptor that enhances phagocytosis, is detected specifically
in human cells of myeloid lineage, endothelial cells, and
platelets. J Immunol. 160:1929–1935. 1998.PubMed/NCBI
|
|
82
|
Langenkamp E, Zhang L, Lugano R, Huang H,
Elhassan TE, Georganaki M, Bazzar W, Lööf J, Trendelenburg G,
Essand M, et al: Elevated expression of the C-type lectin CD93 in
the glioblastoma vasculature regulates cytoskeletal rearrangements
that enhance vessel function and reduce host survival. Cancer Res.
75:4504–4516. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bao L, Tang M, Zhang Q, You B, Shan Y, Shi
S, Li L, Hu S and You Y: Elevated expression of CD93 promotes
angiogenesis and tumor growth in nasopharyngeal carcinoma. Biochem
Biophys Res Commun. 476:467–474. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tosi GM, Caldi E, Parolini B, Toti P, Neri
G, Nardi F, Traversi C, Cevenini G, Marigliani D, Nuti E, et al:
CD93 as a potential target in neovascular age-related macular
degeneration. J Cell Physiol. 232:1767–1773. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dieterich LC, Mellberg S, Langenkamp E,
Zhang L, Zieba A, Salomäki H, Teichert M, Huang H, Edqvist PH,
Kraus T, et al: Transcriptional profiling of human glioblastoma
vessels indicates a key role of VEGF-A and TGFbeta2 in vascular
abnormalization. J Pathol. 228:378–390. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Greenlee MC, Sullivan SA and Bohlson SS:
Detection and characterization of soluble CD93 released during
inflammation. Inflamm Res. 58:909–919. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Petrenko O, Beavis A, Klaine M, Kittappa
R, Godin I and Lemischka IR: The molecular characterization of the
fetal stem cell marker AA4. Immunity. 10:691–700. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang M, Bohlson SS, Dy M and Tenner AJ:
Modulated interaction of the ERM protein, moesin, with CD93.
Immunology. 115:63–73. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Galvagni F, Nardi F, Maida M, Bernardini
G, Vannuccini S, Petraglia F, Santucci A and Orlandini M: CD93 and
dystroglycan cooperation in human endothelial cell adhesion and
migration adhesion and migration. Oncotarget. 7:10090–10103. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Galvagni F, Nardi F, Spiga O, Trezza A,
Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P, Tosi GM,
et al: Dissecting the CD93-Multimerin 2 interaction involved in
cell adhesion and migration of the activated endothelium. Matrix
Biol. 64:112–127. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kao YC, Jiang SJ, Pan WA, Wang KC, Chen
PK, Wei HJ, Chen WS, Chang BI, Shi GY and Wu HL: The epidermal
growth factor-like domain of CD93 is a potent angiogenic factor.
PLoS One. 7:e516472012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Orlandini M, Galvagni F, Bardelli M,
Rocchigiani M, Lentucci C, Anselmi F, Zippo A, Bini L and Oliviero
S: The characterization of a novel monoclonal antibody against CD93
unveils a new antiangiogenic target. Oncotarget. 5:2750–2760. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Christian S, Ahorn H, Koehler A,
Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ and Lenter
MC: Molecular cloning and characterization of endosialin, a C-type
lectin-like cell surface receptor of tumor endothelium. J Biol
Chem. 276:7408–7414. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Rettig WJ, Garin-Chesa P, Healey JH, Su
SL, Jaffe EA and Old LJ: Identification of endosialin, a cell
surface glycoprotein of vascular endothelial cells in human cancer.
Proc Natl Acad Sci USA. 89:10832–10836. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Bagley RG, Weber W, Rouleau C, Yao M,
Honma N, Kataoka S, Ishida I, Roberts BL and Teicher BA: Human
mesenchymal stem cells from bone marrow express tumor endothelial
and stromal markers. Int J Oncol. 34:619–627. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Christian S, Winkler R, Helfrich I, Boos
AM, Besemfelder E, Schadendorf D and Augustin HG: Endosialin (Tem1)
is a marker of tumor-associated myofibroblasts and tumor
vessel-associated mural cells. Am J Pathol. 172:486–494. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Becker R, Lenter MC, Vollkommer T, Boos
AM, Pfaff D, Augustin HG and Christian S: Tumor stroma marker
endosialin (Tem1) is a binding partner of metastasis-related
protein Mac-2 BP/90K. FASEB J. 22:3059–3067. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tomkowicz B, Rybinski K, Foley B, Ebel W,
Kline B, Routhier E, Sass P, Nicolaides NC, Grasso L and Zhou Y:
Interaction of endosialin/TEM1 with extracellular matrix proteins
mediates cell adhesion and migration. Proc Natl Acad Sci USA.
104:17965–17970. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Nanda A, Karim B, Peng Z, Liu G, Qiu W,
Gan C, Vogelstein B, St Croix B, Kinzler KW and Huso DL: Tumor
endothelial marker 1 (Tem1) functions in the growth and progression
of abdominal tumors. Proc Natl Acad Sci USA. 103:3351–3356. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Maia M, DeVriese A, Janssens T, Moons M,
Lories RJ, Tavernier J and Conway EM: CD248 facilitates tumor
growth via its cytoplasmic domain. BMC Cancer. 11:1622011.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yeo M, Park HJ, Kim DK, Kim YB, Cheong JY,
Lee KJ and Cho SW: Loss of SM22 is a characteristic signature of
colon carcinogenesis and its restoration suppresses colon
tumorigenicity in vivo and in vitro. Cancer. 116:2581–2589.
2010.PubMed/NCBI
|
|
102
|
Nowell CS and Radtke F: Notch as a tumour
suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ohradanova A, Gradin K, Barathova M,
Zatovicova M, Holotnakova T, Kopacek J, Parkkila S, Poellinger L,
Pastorekova S and Pastorek J: Hypoxia upregulates expression of
human endosialin gene via hypoxia-inducible factor 2. Br J Cancer.
99:1348–1356. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhao Y and Adjei AA: Targeting
angiogenesis in cancer therapy: Moving beyond vascular endothelial
growth factor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI
|