|
1
|
Boga JA, Caballero B, Potes Y,
Perez-Martinez Z, Reiter RJ, Vega-Naredo I and Coto-Montes A:
Therapeutic potential of melatonin related to its role as an
autophagy regulator: A review. J Pineal Res. 66:e125342018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Guillaume JD, Celano SL, Martin KR and
MacKeigan JP: Determining the impact of metabolic nutrients on
autophagy. Methods Mol Biol. 1862:151–162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liang ZG, Lin GX, Yu BB, Su F, Li L, Qu S
and Zhu XD: The role of autophagy in the radiosensitivity of the
radioresistant human nasopharyngeal carcinoma cell line CNE-2R.
Cancer Manag Res. 10:4125–4134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhao Y, Onda K, Sugiyama K, Yuan B, Tanaka
S, Takagi N and Hirano T: Antitumor effects of arsenic disulfide on
the viability, migratory ability, apoptosis and autophagy of breast
cancer cells. Oncol Rep. 41:27–42. 2019.PubMed/NCBI
|
|
5
|
Jiao YN, Wu LN, Xue D, Liu XJ, Tian ZH,
Jiang ST, Han SY and Li PP: Marsdenia tenacissima extract
induces apoptosis and suppresses autophagy through ERK activation
in lung cancer cells. Cancer Cell Int. 18:1492018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sun T, Liu H and Ming L: Multiple roles of
autophagy in the sorafenib resistance of hepatocellular carcinoma.
Cell Physiol Biochem. 44:716–727. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu JS, Li L, Wang SS, Pang X, Wu JB, Sheng
SR, Tang YJ, Tang YL, Zheng M and Liang XH: Autophagy is positively
associated with the accumulation of myeloid-derived suppressor
cells in 4-nitroquinoline-1-oxide-induced oral cancer. Oncol Rep.
40:3381–3391. 2018.PubMed/NCBI
|
|
8
|
Wu Y, Liu X, Qin Z, Hu L and Wang X:
Low-frequency ultrasound enhances chemotherapy sensitivity and
induces autophagy in PTX-resistant PC-3 cells via the endoplasmic
reticulum stress-mediated PI3K/Akt/mTOR signaling pathway. Onco
Targets Ther. 11:5621–5630. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhu J, Zhao B, Xiong P, Wang C, Zhang J,
Tian X and Huang Y: Curcumin induces autophagy via inhibition of
yes-associated protein (YAP) in human colon cancer cells. Med Sci
Monit. 24:7035–7042. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang
Z, Wen Y, Miao X, Li Q, Xiong L and He J: Ready player one?
Autophagy shapes resistance to photodynamic therapy in cancers.
Apoptosis. 23:587–606. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y,
Mao J and Li L: Role of autophagy in breast cancer and breast
cancer stem cells (Review). Int J Oncol. 52:1057–1070.
2018.PubMed/NCBI
|
|
12
|
Ianniciello A, Rattigan KM and Helgason
GV: The Ins and outs of autophagy and metabolism in hematopoietic
and leukemic stem cells: Food for thought. Front Cell Dev Biol.
6:1202018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jacomin AC, Taillebourg E and Fauvarque
MO: Deubiquitinating enzymes related to autophagy: New therapeutic
opportunities? Cells. 7(pii): E1122018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jin S, Wei J, You L, Liu H and Qian W:
Autophagy regulation and its dual role in blood cancers: A novel
target for therapeutic development (Review). Oncol Rep.
39:2473–2481. 2018.PubMed/NCBI
|
|
15
|
Feldmann A, Bekbulat F, Huesmann H,
Ulbrich S, Tatzelt J, Behl C and Kern A: The RAB GTPase RAB18
modulates macroautophagy and proteostasis. Biochem Biophys Res
Commun. 486:738–743. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Han Q, Deng Y, Chen S, Chen R, Yang M,
Zhang Z, Sun X, Wang W, He Y, Wang F, et al: Downregulation of
ATG5-dependent macroautophagy by chaperone-mediated autophagy
promotes breast cancer cell metastasis. Sci Rep. 7:47592017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pajares M, Jimenez-Moreno N, Garcia-Yague
AJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M,
Rojo AI and Cuadrado A: Transcription factor NFE2L2/NRF2 is a
regulator of macroautophagy genes. Autophagy. 12:1902–1916. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang C, Wang H, Zhang D, Luo W, Liu R, Xu
D, Diao L, Liao L and Liu Z: Phosphorylation of ULK1 affects
autophagosome fusion and links chaperone-mediated autophagy to
macroautophagy. Nat Commun. 9:34922018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bednarczyk M, Muc-Wierzgon M, Waniczek D,
Fatyga E, Klakla K, Mazurek U and Wierzgoń J: Autophagy-related
gene expression in colorectal cancer patients. J Biol Regul Homeost
Agents. 31:923–927. 2017.PubMed/NCBI
|
|
20
|
Cao QH, Liu F, Yang ZL, Fu XH, Yang ZH,
Liu Q, Wang L, Wan XB and Fan XJ: Prognostic value of autophagy
related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10,
ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res.
8:3831–3847. 2016.PubMed/NCBI
|
|
21
|
Chen D, Chen J, Guo Y and Li Y:
Cinobufacini promotes apoptosis of bladder cancer cells by
influencing the expression of autophagy-related genes. Oncol Lett.
15:7104–7110. 2018.PubMed/NCBI
|
|
22
|
Li WL, Xiong LX, Shi XY, Xiao L, Qi GY and
Meng C: IKKβ/NFκBp65 activated by interleukin-13 targets the
autophagy-related genes LC3B and beclin 1 in fibroblasts
co-cultured with breast cancer cells. Exp Ther Med. 11:1259–1264.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lin P, He RQ, Dang YW, Wen DY, Ma J, He Y,
Chen G and Yang H: An autophagy-related gene expression signature
for survival prediction in multiple cohorts of hepatocellular
carcinoma patients. Oncotarget. 9:17368–17395. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lin P, He Y, Wen DY, Li XJ, Zeng JJ, Mo
WJ, Li Q, Peng JB, Wu YQ, Pan DH, et al: Comprehensive analysis of
the clinical significance and prospective molecular mechanisms of
differentially expressed autophagy-related genes in thyroid cancer.
Int J Oncol. 53:603–619. 2018.PubMed/NCBI
|
|
25
|
Ma Y, Zhang Y, Zhao Y, Wang X, Lin Y and
Ma A: Expression of autophagy-related genes in cerebrospinal fluid
of patients with tuberculous meningitis. Exp Ther Med.
15:4671–4676. 2018.PubMed/NCBI
|
|
26
|
Zheng LQ, Li SY and Li CX: Expression
profiling analysis of autophagy-related genes in perineural
invasion of cutaneous squamous cell carcinoma. Oncol Lett.
15:4837–4848. 2018.PubMed/NCBI
|
|
27
|
Moussay E, Kaoma T, Baginska J, Muller A,
Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G and
Janji B: The acquisition of resistance to TNFα in breast cancer
cells is associated with constitutive activation of autophagy as
revealed by a transcriptome analysis using a custom microarray.
Autophagy. 7:760–770. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang H, Lu X, Wang N, Wang J, Cao Y, Wang
T, Zhou X, Jiao Y, Yang L, Wang X, et al: Autophagy-related gene
expression is an independent prognostic indicator of glioma.
Oncotarget. 8:60987–61000. 2017.PubMed/NCBI
|
|
29
|
Gandolfi S, Prada CP and Richardson PG:
How I treat the young patient with multiple myeloma. Blood.
132:1114–1124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Raje NS, Bhatta S and Terpos E: Role of
the RANK/RANKL pathway in multiple myeloma. Clin Cancer Res.
25:12–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X
and Cong H: The potential function of microRNAs as biomarkers and
therapeutic targets in multiple myeloma. Oncol Lett. 15:6094–6106.
2018.PubMed/NCBI
|
|
32
|
Lu D, Yang C, Zhang Z, Cong Y and Xiao M:
Knockdown of Linc00515 inhibits multiple myeloma autophagy and
chemoresistance by upregulating miR-140-5p and downregulating
ATG14. Cell Physiol Biochem. 48:2517–2527. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ma R, Zhang Y, Wang W, Wu J, Yang Q, Xu W,
Jiang S, Han Y, Yu K and Zhang S: Inhibition of autophagy enhances
the antitumour activity of tigecycline in multiple myeloma. J Cell
Mol Med. 22:5955–5963. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mei H, Xiang Y, Mei H, Fang B, Wang Q, Cao
D, Hu Y and Guo T: Pterostilbene inhibits nutrient metabolism and
induces apoptosis through AMPK activation in multiple myeloma
cells. Int J Mol Med. 42:2676–2688. 2018.PubMed/NCBI
|
|
35
|
Su N, Wang P and Li Y: Role of
Wnt/β-catenin pathway in inducing autophagy and apoptosis in
multiple myeloma cells. Oncol Lett. 12:4623–4629. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zheng Z, Liu T, Zheng J and Hu J:
Clarifying the molecular mechanism associated with carfilzomib
resistance in human multiple myeloma using microarray gene
expression profile and genetic interaction network. Onco Targets
Ther. 10:1327–1334. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Desantis V, Saltarella I, Lamanuzzi A,
Mariggiò MA, Racanelli V, Vacca A and Frassanito MA: Autophagy: A
new mechanism of prosurvival and drug resistance in multiple
myeloma. Transl Oncol. 11:1350–1357. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yun Z, Zhichao J, Hao Y, Ou J, Ran Y, Wen
D and Qun S: Targeting autophagy in multiple myeloma. Leuk Res.
59:97–104. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shi L, Campbell G, Jones WD, Campagne F,
Wen Z, Walker SJ, Su Z, Chu TM, Goodsaid FM, Pusztai L, et al: The
MicroArray quality control (MAQC)-II study of common practices for
the development and validation of microarray-based predictive
models. Nat Biotechnol. 28:827–838. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ioannidis JPA: The proposal to lower P
value thresholds to .005. JAMA. 319:1429–1430. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ostaszewski M, Kieffer E, Danoy G,
Schneider R and Bouvry P: Clustering approaches for visual
knowledge exploration in molecular interaction networks. BMC
Bioinformatics. 19:3082018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
He RQ, Zhou XG, Yi QY, Deng CW, Gao JM,
Chen G and Wang QY: Prognostic signature of alternative splicing
events in bladder urothelial carcinoma based on spliceseq data from
317 cases. Cell Physiol Biochem. 48:1355–1368. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liang L, Zeng JH, Qin XG, Chen JQ, Luo DZ
and Chen G: Distinguishable prognostic signatures of left- and
right-sided colon cancer: A study based on sequencing data. Cell
Physiol Biochem. 48:475–490. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lin P, He RQ, Ma FC, Liang L, He Y, Yang
H, Dang YW and Chen G: Systematic analysis of survival-associated
alternative splicing signatures in gastrointestinal
pan-adenocarcinomas. EBioMedicine. 34:46–60. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin P, Wen DY, Li Q, He Y, Yang H and Chen
G: Genome-wide analysis of prognostic lncRNAs, miRNAs, and mRNAs
forming a competing endogenous RNA network in hepatocellular
carcinoma. Cell Physiol Biochem. 48:1953–1967. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang H, Lin P, Wu HY, Li HY, He Y, Dang YW
and Chen G: Genomic analysis of small nucleolar RNAs identifies
distinct molecular and prognostic signature in hepatocellular
carcinoma. Oncol Rep. 40:3346–3358. 2018.PubMed/NCBI
|
|
48
|
Zhang R, Lin P, Yang X, He RQ, Wu HY, Dang
YW, Gu YY, Peng ZG, Feng ZB and Chen G: Survival associated
alternative splicing events in diffuse large B-cell lymphoma. Am J
Transl Res. 10:2636–2647. 2018.PubMed/NCBI
|
|
49
|
Lu X, Sun W, Tang Y, Zhu L, Li Y, Ou C,
Yang C, Su J, Luo C, Hu Y and Cao J: Identification of key genes in
hepatocellular carcinoma and validation of the candidate gene,
cdc25a, using gene set enrichment analysis, meta-analysis and
cross-species comparison. Mol Med Rep. 13:1172–1178. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ni Y, Song C, Jin S, Chen Z, Ni M, Han L,
Wu J and Jin Y: Gene set enrichment analysis: A genome-wide
expression profile-based strategy for discovering functional
microRNA-disease relationships. J Int Med Res. 46:596–611. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang J, Vasaikar S, Shi Z, Greer M and
Zhang B: WebGestalt 2017: A more comprehensive, powerful, flexible
and interactive gene set enrichment analysis toolkit. Nucleic Acids
Res. 45:W130–W137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zyla J, Marczyk M, Weiner J and Polanska
J: Ranking metrics in gene set enrichment analysis: Do they matter?
BMC Bioinformatics. 18:2562017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Han X, Zhong Z, Kou J, Zheng Y, Liu Z,
Jiang Y, Zhang Z, Gao Z, Cong L, Tian Y and Yang L: ROS Generated
by upconversion nanoparticle-mediated photodynamic therapy induces
autophagy via PI3K/AKT/mTOR signaling pathway in M1 peritoneal
macrophage. Cell Physiol Biochem. 48:1616–1627. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li X, Huang Q, Wang M, Yan X, Song X, Ma
R, Jiang R, Zhao D and Sun L: Compound K inhibits
autophagy-mediated apoptosis through activation of the PI3K-Akt
signaling pathway thus protecting against Ischemia/reperfusion
injury. Cell Physiol Biochem. 47:2589–2601. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Liu M, Zhao G, Zhang D, An W, Lai H, Li X,
Cao S and Lin X: Active fraction of clove induces apoptosis via
PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116
cells. Int J Oncol. 53:1363–1373. 2018.PubMed/NCBI
|
|
56
|
Luo X, Ye S, Jiang Q, Gong Y, Yuan Y, Hu
X, Su X and Zhu W: Wnt inhibitory factor-1-mediated autophagy
inhibits Wnt/β-catenin signaling by downregulating dishevelled-2
expression in non-small cell lung cancer cells. Int J Oncol.
53:904–914. 2018.PubMed/NCBI
|
|
57
|
Wang J, Sun P, Chen Y, Yao H and Wang S:
Novel 2-phenyloxypyrimidine derivative induces apoptosis and
autophagy via inhibiting PI3K pathway and activating MAPK/ERK
signaling in hepatocellular carcinoma cells. Sci Rep. 8:109232018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yin S, Yang S, Pan X, Ma A, Ma J, Pei H,
Dong Y, Li S, Li W and Bi X: MicroRNA155 promotes ox-LDL-induced
autophagy in human umbilical vein endothelial cells by targeting
the PI3K/Akt/mTOR pathway. Mol Med Rep. 18:2798–2806.
2018.PubMed/NCBI
|
|
59
|
Daskalaki I, Gkikas I and Tavernarakis N:
Hypoxia and selective autophagy in cancer development and therapy.
Front Cell Dev Biol. 6:1042018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Du L, Shen T, Liu B, Zhang Y, Zhao C, Jia
N, Wang Q and He Q: Shock wave therapy promotes cardiomyocyte
autophagy and survival during hypoxia. Cell Physiol Biochem.
42:673–684. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liang Y, Chen X and Liang Z: MicroRNA-320
regulates autophagy in retinoblastoma by targeting hypoxia
inducible factor-1alpha. Exp Ther Med. 14:2367–2372. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Niu G, Zhu D, Zhang X, Wang J, Zhao Y and
Wang X: Role of hypoxia-inducible factors 1a (HIF1a) in SH-SY5Y
cell autophagy induced by oxygen-glucose deprivation. Med Sci
Monit. 24:2758–2766. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang H, Zhang D, Jia S, Huang S, Xiao L,
Ma L, Liu G, Gong K and Xu L: Effect of sustained hypoxia on
autophagy of genioglossus Muscle-derived stem cells. Med Sci Monit.
24:2218–2224. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang Z, Deng M, Liu Z and Wu S:
Hypoxia-induced miR-210 promoter demethylation enhances
proliferation, autophagy and angiogenesis of schwannoma cells.
Oncol Rep. 37:3010–3018. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bosseler M, Marani V, Broukou A, Lequeux
A, Kaoma T, Schlesser V, François JH, Palissot V, Berchem GJ,
Aouali N and Janji B: Inhibition of HIF1a-dependent upregulation of
Phospho-l-Plastin resensitizes multiple myeloma cells to frontline
therapy. Int J Mol Sci. 19(pii): E15512018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Coudre C, Alani J, Ritchie W, Marsaud V,
Sola B and Cahu J: HIF-1a and rapamycin act as gerosuppressant in
multiple myeloma cells upon genotoxic stress. Cell Cycle.
15:2174–2182. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Filippi I, Saltarella I, Aldinucci C,
Carraro F, Ria R, Vacca A and Naldini A: Different adaptive
responses to hypoxia in normal and multiple myeloma endothelial
cells. Cell Physiol Biochem. 46:203–212. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Muz B, Kusdono HD, Azab F, de la Puente P,
Federico C, Fiala M, Vij R, Salama NN and Azab AK: Tariquidar
sensitizes multiple myeloma cells to proteasome inhibitors via
reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk
Lymphoma. 58:2916–2925. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Viziteu E, Grandmougin C, Goldschmidt H,
Seckinger A, Hose D, Klein B and Moreaux J: Chetomin, targeting
HIF-1a/p300 complex, exhibits antitumour activity in multiple
myeloma. Br J Cancer. 114:519–523. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang P, Long M, Zhang S, Cheng Z, Zhao X,
He F, Liu H and Ming L: Hypoxia inducible factor-1a regulates
autophagy via the p27-E2F1 signaling pathway. Mol Med Rep.
16:2107–2112. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang X, Wu TT, Jiang L, Rong D and Zhu YQ:
Deferoxamine-induced migration and odontoblast differentiation via
ROS-dependent autophagy in dental pulp stem cells. Cell Physiol
Biochem. 43:2535–2547. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang W and Zhang J: Dexmedetomidine
preconditioning protects against lung injury induced by
ischemia-reperfusion through inhibition of autophagy. Exp Ther Med.
14:973–980. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhu SM, Rao T, Yang X, Ning JZ, Yu WM,
Ruan Y, Yuan R, Li CL, Jiang K, Hu W, et al: Autophagy may play an
important role in varicocele. Mol Med Rep. 16:5471–5479. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Seegmiller AC, Wang HY, Hladik C and Chen
W: Uniform expression of Notch1, suppressor of B-cell-specific gene
expression, in plasmablastic lymphoma. Arch Pathol Lab Med.
135:770–775. 2011.PubMed/NCBI
|
|
75
|
Pourdehnad M, Truitt ML, Siddiqi IN,
Ducker GS, Shokat KM and Ruggero D: Myc and mTOR converge on a
common node in protein synthesis control that confers synthetic
lethality in Myc-driven cancers. Proc Natl Acad Sci USA.
110:11988–11993. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu X, Zhang Y, Wang Z, Wang X, Zhu G, Han
G, Chen G, Hou C, Wang T, Shen B, et al: Metabotropic glutamate
receptor 3 is involved in B-cell-related tumor apoptosis. Int J
Oncol. 49:1469–1478. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kinoshita S, Ri M, Kanamori T, Aoki S,
Yoshida T, Narita T, Totani H, Ito A, Kusumoto S, Ishida T, et al:
Potent antitumor effect of combination therapy with sub-optimal
doses of Akt inhibitors and pomalidomide plus dexamethasone in
multiple myeloma. Oncol Lett. 15:9450–9456. 2018.PubMed/NCBI
|
|
78
|
Kishino A, Hayashi K, Hidai C, Masuda T,
Nomura Y and Oshima T: XBP1-FoxO1 interaction regulates ER
stress-induced autophagy in auditory cells. Sci Rep. 7:44422017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Miki Y, Tanji K, Mori F, Utsumi J, Sasaki
H, Kakita A, Takahashi H and Wakabayashi K: Autophagy mediators
(FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci
Lett. 684:35–41. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shen M, Cao Y, Jiang Y, Wei Y and Liu H:
Melatonin protects mouse granulosa cells against oxidative damage
by inhibiting FOXO1-mediated autophagy: Implication of an
antioxidation-independent mechanism. Redox Biol. 18:138–157. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
De Bruyne E, Bos TJ, Schuit F, Van
Valckenborgh E, Menu E, Thorrez L, Atadja P, Jernberg-Wiklund H and
Vanderkerken K: IGF-1 suppresses Bim expression in multiple myeloma
via epigenetic and posttranslational mechanisms. Blood.
115:2430–2440. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhou Y, Uddin S, Zimmerman T, Kang JA,
Ulaszek J and Wickrema A: Growth control of multiple myeloma cells
through inhibition of glycogen synthase kinase-3. Leuk Lymphoma.
49:1945–1953. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shen JK, Du HP, Ma Q, Yang M, Wang YG and
Jin J: 4-Chlorobenzoyl berbamine, a novel berbamine derivative,
induces apoptosis in multiple myeloma cells through the IL-6 signal
transduction pathway and increases FOXO3a-Bim expression. Oncol
Rep. 30:425–432. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu XF, Zhou Q, Hassan R and Pastan I:
Panbinostat decreases cFLIP and enhances killing of cancer cells by
immunotoxin LMB-100 by stimulating the extrinsic apoptotic pathway.
Oncotarget. 8:87307–87316. 2017.PubMed/NCBI
|