|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Arnold M, Soerjomataram I, Ferlay J and
Forman D: Global incidence of esophageal cancer by histological
subtype in 2012. Gut. 64:381–387. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Edgren G, Adami HO, Weiderpass E and Nyrén
O: A global assessment of the oesophageal adenocarcinoma epidemic.
Gut. 62:1406–1414. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kitagawa Y, Uno T, Oyama T, Kato K, Kato
H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, et al:
Esophageal cancer practice guidelines 2017 edited by the Japan
Esophageal Society: Part 1. Esophagus. 16:1–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lin DC, Wang MR and Koef HP: Genomic and
epigenomic aberrations in esophageal squamous cell carcinoma and
implications for patients. Gastroenterology. 154:374–389. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sawada G, Niida A, Uchi R, Hirata H,
Shimamura T, Suzuki Y, Shiraishi Y, Chiba K, Imoto S, Takahishi Y,
et al: Genomic landscape of esophageal squamous cell carcinoma in a
Japanese population. Gastroenterology. 150:1171–1182. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Talukdar FR, di Pietro M, Secricer M,
Moehler M, Goepgert K, Lima SSC, Pinto LFR, Hendricks D, Parker MI
and Herceg Z: Molecular landscape of esophageal cancer:
Implications for early detection and personalized therapy. Ann NY
Acad Sci. 1434:342–359. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pakkala S and Ramalingam SS: Personalized
therapy for lung cancer: Striking a moving target. JCI Insight.
3:1208582018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ducreux M, Chamseddine A, Laurent-Puig P,
Smolenschi C, Hollebecque A, Dartigues P, Samallin E, Boige V,
Malka D and Gelli M: Molecular targeted therapy of BRAF-mutant
colorectal cancer. Ther Adv Med Oncol. 11:17588359198564942019.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lam KO and Kwong DLW: Target therapy for
esophageal adenocarcinoma. Methods Mol Biol. 1756:51–65. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Thuss-Patience PC, Shah MA, Ohtsu A, Van
Cutsem E, Ajani JA, Castro H, Mansoor W, Chung HC, Bodoky G,
Shitara K, et al: Trastuzumab emtansine versus taxane use for
previously treated HER2-positive locally advanced or metastatic
gastric or gastro-esophageal junction adenocarcinoma (GATSBY): An
international randomised, open-label, adaptive, phase 2/3 study.
Lancet Oncol. 18:640–653. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cunningham D, Tebbutt NC and Davidenko I:
Phase III, randomized, double-blind, multicenter, placebo
(P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin
and capecitabine (ECX) as first-line therapy in patients (pts) with
advanced MET-positive (pos) gastric or gastresophageal junction
(G/GEJ) cancer: RILOMET-1 study. J Clin Oncol. 33 (Suppl
15):40002017. View Article : Google Scholar
|
|
14
|
Hecht JR, Bang YJ, Qin SK, Chung HC, Xu
JM, Park JO, Jeziorski K, Shparyk Y, Hoff PM, Sobrero A, et al:
Lapatinib in combination with capecitabine plus oxaliplatin in
Human Epidermal Growth Factor Receptor 2-positive advanced or
metastatic gastric, esophageal, or gastresophageal adenocarcinoma:
TRIO-013/LOGiC-A randomized phase III trial. J Clin Oncol.
34:443–451. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Karlsson AK and Saleh SN: Checkpoint
inhibitors for malignant melanoma: A systematic review and
meta-analysis. Clin Cosmet Investig Dermatol. 10:325–339. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Herzberg B, Campo MJ and Gainor JF: Immune
checkpoint inhibitors in non-small cell lung cancer. Oncologist.
22:81–88. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Raufi AG and Klempner SJ: Immunotherapy
for advanced gastric and esophageal cancer: Preclinical rationale
and ongoing clinical investigations. J Gastrointest Oncol.
6:561–569. 2015.PubMed/NCBI
|
|
18
|
Kudo T, Hamamoto Y, Kato K, Ura T, Kojima
T, Tsushima T, Hironaka S, Hara H, Satoh T, Iwasa S, et al:
Nivolumab treatment for oesophageal squamous-cell carcinoma: An
open-label, multicentre, phase 2 trial. Lancet Oncol. 18:631–639.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kojima T and Doi T: Immunotherapy for
esophageal squamous cell carcinoma. Curr Oncol Rep. 19:332017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kang J, Demaria S and Formenti S: Current
clinical trials testing the combination of immunotherapy with
radiotherapy. J Immunother Cancer. 4:512016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Weichselbaum RR, Liang H, Deng L and Fu
YX: Radiotherapy and immunotherapy: A beneficial liaison? Nat Rev
Clin Oncol. 14:365–379. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Prasad NR, Karthigeyan M, Vikram K,
Parthasarathy R and Reddy KS: Palliative radiotherapy in esophageal
cancer. Indian J Surg. 77:34–38. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Matuschek C, Bölke E, Zahra T, Knoefel WT,
Peiper M, Budach W, Erhardt A, Scherer A, Baldus SE, Gerber PA, et
al: Gattermann N, Orth K. Trimodal therapy in squamous cell
carcinoma of the esophagus. Eur J Med Res. 16:437–444. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Baskar R, Dai J, Wenlong N, Yeo R and Yeoh
KW: Biological response of cancer cells to radiation treatment.
Front Mol Biosci. 1:242014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gong J, Le TQ, Massarelli E, Hendifar AE
and Tuli R: Radiation therapy and PD-1/PD-L1 blockade: The clinical
development of an evolving anticancer combination. J Immunother
Cancer. 6:462018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wan S, Pestka S, Jubin RG, Lyu YL, Tsai YC
and Liu LF: Chemotherapeutics and radiation stimulate MHC class I
expression through elevated interferon-beta signaling in breast
cancer cells. PLoS One. 7:e325422012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang Y, Deng W, Li N, Neri S, Sharma A,
Jiang W and Lin SH: Combining immunotherapy and radiotherapy for
cancer treatment: Current challenges and future directions. Front
Pharmacol. 9:1852018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Persa E, Balogh A, Sáfrány G and Lumniczky
K: The effect of ionizing radiation on regulatory T cells in health
and disease. Cancer Lett. 368:252–261. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Facciabene A, Motz GT and Coukos G:
T-regulatory cells: Key players in tumor immune escape and
angiogenesis. Cancer Res. 72:2162–2171. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu S and Sun X, Luo J, Zhu H, Yang X, Guo
Q, Song Y and Sun X: Effects of radiation on T regulatory cells in
normal states and cancer: Mechanisms and clinical implications. Am
J Cancer Res. 5:3276–3285. 2015.PubMed/NCBI
|
|
31
|
Tang J, Shalabi A and Hubbard-Lucey VM:
Comprehensive analysis of the clinical immune-oncology landscape.
Ann Oncol. 29:84–91. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Riaz N, Havel JJ, Makarov V, Desrichard A,
Urba WJ, Sims JS, Hodi FS, Marin-Algarra S, Mandal R, Sharfman WH,
et al: Tumor and microenvironment evoluation during immunotherapy
with nivolumab. Cell. 171:934–949.e16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kono K, Mimura K, Yamada R, Ujiie D,
Hayase S, Tada T, Hanayama H, Min AKT, Shibata M, Momma T, et al:
Current status of cancer immunotherapy for esophageal squamous cell
carcinoma. Esophagus. 15:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Memarnejadian A, Meilleur CE, Shaler CR,
Khazaie K, Bennink JR, Schell TD and Haeryfar SMM: PD-1 blockade
promotes epitope spreading in anticancer CD8+ T cell
responses by preventing fratricidal death of subdominant clones to
relieve immunodomination. J Immunol. 199:3348–3359. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tanaka K, Miyata H, Sugimura K, Kanemura
T, Hamada-Uematsu M, Mizote Y, Yamasaki M, Wada H, Nakajima K,
Takiguchi S, et al: Negative influence of programmed
death-1-ligands on the survival of esophageal cancer patients
treated with chemotherapy. Cancer Sci. 107:726–733. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen L, Deng H, Lu M, Xu B, Wang Q, Jiang
J and Wu C: B7-H1 expression associates with tumor invasion and
predicts patient's survival in human esophageal cancer. Int J Clin
Exp Pathol. 7:6015–6023. 2014.PubMed/NCBI
|
|
38
|
Wang X, Teng F, Kong L and Yu J: PD-L1
expression in human cancers and its association with clinical
outcomes. Onco Targets Ther. 9:5023–5039. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C,
Peng J, Gao L, Liang X and Ma C: Increased expression of programmed
cell death protein 1 on NK cells inhibits NK-cell-mediated
anti-tumor function and indicates poor prognosis in digestive
cancers. Oncogene. 36:6143–6153. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Leng C, Li Y, Qin J, Ma J, Liu X, Cui Y,
Sun H, Wang Z, Hua X, Yu Y, et al: Relationship between expression
of PD-L1 and PD-L2 on esophageal squamous cell carcinoma and the
antitumor effects of CD8+ T cells. Oncol Rep.
35:699–708. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hatogai K, Kitano S, Fujii S, Kojima T,
Daiko H, Nomura S, Yoshino T, Ohtsu A, Takiguchi Y, Doi T and
Ochiai A: Comprehensive immunohistochemical analysis of tumor
microenvironment immune status in esophageal squamous cell
carcinoma. Oncogarget. 7:47252–47264. 2016.
|
|
42
|
Jiang D, Song Q, Wang H, Huang J, Wang H,
Hou J, Li X, Xu Y, Sujie A, Zeng H, et al: Independent prognostic
role of PD-L1expression in patients with esophageal squamous cell
carcinoma. Oncogarget. 8:8315–8329. 2017.
|
|
43
|
Borghaei H, Paz-Ares L, Horn L, Spigel DR,
Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al:
Nivolumab versus docetaxel in advanced non-squamous non-small cell
lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Katsuya Y, Fujita Y, Horinouchi H, Ohe Y,
Watanabe S and Tsuta K: Immunohistochemical status of PD-L1 in
thymoma and thymic carci-noma. Lung Cancer. 88:154–159. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fay AP, Signoretti S, Callea M, Telό GH,
McKay RR, Song J, Carvo I, Lampron ME, Kaymakcalan MD,
Poli-de-Figueiredo CE, et al: Programmed death ligand-1 expression
in adrenocortical carcinoma: An exploratory biomarker study. J
Immunother Cancer. 3:32015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mansfield AS, Roden AC, Peikert T, Sheinin
YM, Harrington SM, Krco CJ, Dong H and Kwon ED: B7-H1 expression in
malig-nant pleural mesothelioma is associated with sarcomatoid
histology and poor prognosis. J Thorac Oncol. 9:1036–1040. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lipson EJ, Vincent JG, Loyo M, Kagohara
LT, Luber BS, Wang H, Xu H, Nayar SK, Wang TS, Sidransky D, et al:
PD-L1 expression in the Merkel cell carcinoma microenvironment:
Association with in ammation, Merkel cell polyomavirus and overall
survival. Cancer Immunol Res. 1:54–63. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Conway JR, Kofman E, Mo SS, Elmarakeby H
and Van Allen E: Genomics of response to immune checkpoint
therapies for cancer: Implications for precision medicine. Genome
Med. 10:932018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Doi T, Piha-Paul SA, Jalal SI, Mai-Dang H,
Yuan S, Koshiji M, Csiki I and Bennouna J: Pembrolizumab (MK-3475)
for patients (pts) with advanced esophageal carcinoma: Preliminary
results from KEYNOTE-028. J Clin Oncol. 33 (15 Suppl):S40102015.
View Article : Google Scholar
|
|
50
|
Doi T, Piha-Paul SA, Jalal SI, Mai-Dang H,
Saraf S, Koshiji M, Csiki I and Bennouna J: Updated results for the
advanced esophageal carcinoma cohort of the phase Ib KEYNOTE-028
study of pembrolizumab. J Clin Oncol. 34 (15 Suppl):S40462016.
View Article : Google Scholar
|
|
51
|
Stenger M: Immunotherapy in Advanced
Esophageal Carcinoma. The ASCO Post. 2017, https://www.ascopost.com/News/58296November
29–2017
|
|
52
|
Doi T, Bennouna J, Shen L, Enzinger PC,
Wang R, Csiki I, Koshiji M and Shah MA: KEYNOTE-181: Phase 3,
open-label study of second-line pembrolizumab vs single-agent
chemotherapy in patients with advanced/metastatic esophageal
adenocarcinoma. J Clin Oncol. 34 (15 Suppl):2017.
|
|
53
|
Shah MA, Kojima T, Enzinger PC, Hochhauser
D, Raimbourg J, Hollebecque A, Lordick F, Kim SB, Tajika M, Kim HT,
et al: Pembrolizumab for patients with previously treated
metastatic adenocarcinoma or squamous cell carcinoma of the
esophagus: Phase 2 KEYNOTE-180 study. J Clin Oncol. 36 (15
Suppl):S40492018. View Article : Google Scholar
|
|
54
|
Kitagawa Y, Doki Y, Kato K and Ura T: Two
year survival and safety update for esophageal squamous cell
carcinoma treated with nivolumab (ATTRACTION-01/ONO-4538-07). Anna
Oncol. 28 (Suppl 5):v209–v268. 2017.
|
|
55
|
Yuriy Y, Alexander PO, Calvo E, Joseph W,
Kim, Antonio PA, Sharma P and Johanna KP: Nivolumab ± ipilimumab in
pts with advanced (adv)/metastatic chemotherapy-refractory (CTx-R)
gastric (G), esophageal (E), or gastroesophageal junction (GEJ)
cancer: CheckMate 032 study. J Clin Oncol. 35 (Suppl 15):40142017.
View Article : Google Scholar
|
|
56
|
Greally M, Molena D, Sihag S, Wu Abraham
JC, Shah PM, Fein Carly, Capanu M, Kelsen DP, Janjigian YY, Ilson
DH, et al: Phase Ib/II trial of durvalumab and chemoradiation (CRT)
with carboplatin/paclitaxel for esophageal and gastroesophageal
junction (GEJ) adenocarcinoma. J Clin Oncol. 4:1722018. View Article : Google Scholar
|
|
57
|
Chung HC, Arkenau HT, Wyrwicz L, Oh DY,
Lee KW, Infante JR, Chin KM, Heydebreck AV, Kang YK and Safran H:
Safety, PD-L1 expression, and clinical activity of avelumab
(MSB0010718C), an anti-PD-L1 antibody, in patients with advanced
gastric or gastroesophageal junction cancer. J Clin Oncol. 34 (4
Suppl):S1672016. View Article : Google Scholar
|
|
58
|
Smyth E and Thuss-Patience PC: Immune
checkpoint inhibition in gastro-oesophageal cancer. Oncol Res
Treat. 41:272–280. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bang Y, Golan T, Lin CC, Kang YK, Wainberg
ZA, Wasserstrom H, Jin J, Mi G, McNeely SC, Laing N, et al: Interim
safety and clinical activity in patients (pts) with locally
advanced and unresectable or metastatic gastric or gastroesophageal
junction (G/GEJ) adenocarcinoma from a multicohort phase I study of
ramucirumab (R) plus durvalumab (D). J Clin Oncol. 36 (4
Suppl):S922018. View Article : Google Scholar
|
|
60
|
Taieb J, Moehler M, Boku N, Ajani JA,
Yañez Ruiz E, Ryu MH, Guenther S, Chand V and Bang YJ: Evolution of
checkpoint inhibitors for the treatment of metastatic gastric
cancers: Current status and future perspectives. Cancer Treat Rev.
66:104–113. 2016. View Article : Google Scholar
|
|
61
|
Mole RH: Whole body
irradiation-radiobiology or medicine? Br J Radiol. 26:234–241.
1953. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Abuodeh Y, Venkat P and Kim S: Systematic
review of case reports on the abscopal effect. Curr Probl Cancer.
40:25–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Siva S, MacManus MP, Martin RF and Martin
OA: A Abscopal effects of radiation therapy: A clinical review for
the radiobiologist. Cancer Lett. 356:82–90. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Van Limbergen EJ, De Ruysscher DK, Olive
Pimentel V, Marcus D, Berbee M, Hoeben A, Rekers N, Theys J,
Yaromina A, Dubois LJ and Lambin P: Combining radiotherapy with
immunotherapy: The past, the present and the future. Br J Radiol.
90:201701572017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jing W, Gershan JA, Weber J, Tlomak D,
Mcolash L, Sabatos-Peyton C and Johnson BD: Combined immune
checkpoint protein blockade and low dose whole body irradiation as
immunotherapy for myeloma. J Immunother Cancer. 3:22015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Salama AK, Postow MA and Salama JK:
Irradiation and immunotherapy: From concept to the clinic. Cancer.
122:1659–1671. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Reynders K, Illidge T, Siva S, Chang JY
and De Ruysscher D: The abscopal effect of local radiotherapy:
Using immunotherapy to make a rare event clinically relevant.
Cancer Treat Rev. 41:503–510. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Twyman-Saint Victor C, Rech AJ, Maity A,
Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi
PM, et al: Radiation and dual checkpoint blockade activates
non-redundant immune mechanisms in cancer. Nature. 520:373–377.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Schoenhals JE, Seyedin SN, Tang C, Cortez
MA, Niknam S, Tsouka E, Chang JY, Hahn SM and Welsh JW: Preclinical
rationale and clinical considerations for radiotherapy plus
immunotherapy: Going beyond local control. Cancer J. 22:130–137.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Son CH, Fleming GF and Moroney JW:
Potential role of radiation therapy in augmenting the activity of
immunotherapy for gynecologic cancers. Cancer Manag Res. 9:553–563.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Frey B, Rückert M, Deloch L, Rühle PF,
Derer A, Fietkau R and Gaipl US: Immunomodulation by ionizing
radiation-impact for design of radio- immunotherapies and for
treatment of inflammatory diseases. Immunol Rev. 280:231–248. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lhuillier C, Rudqvist NP, Elemento O,
Formenti SC and Demaria S: Radiation therapy and anti-tumor
immunity: Exposing immunogenic mutations to the immune system.
Genome Med. 11:402019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kim KJ, Kim JH, Lee SJ, Lee EJ, Shin EC
and Seong J: Radiation improves antitumor effect of immune
checkpoint inhibitor in murine hepatocellular carcinoma model.
Oncotarget. 8:41242–41255. 2017.PubMed/NCBI
|
|
74
|
Oweida A, Lennon S, Calame D, Korpela S,
Bhatia S, Sharma J, Graham C, Binder D, Serkova N, Raben D, et al:
Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint
blockade in orthotopic murine head and neck squamous cell
carcinoma. Oncoimmunology. 6:e13561532017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Aguilera T, Rafat M, Kariolis M, Eyben RV,
Graves E and Giaccia A: Tumor immunologic heterogeneity influences
response to radiation and combination immunotherapy. J Immunother
Cancer. 3:P3452015. View Article : Google Scholar
|
|
76
|
Sharabi AB, Nirschl CJ, Kochel CM, Nirschl
TR, Francica BJ, Velarde E, Deweese TL and Drake CG: Stereotactic
radiation therapy augments antigen-specific PD-1-mediated antitumor
immune responses via cross-presentation of tumor antigen. Cancer
Immunol Res. 3:345–355. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Deng L, Liang H, Burnette B, Beckett M,
Darga T, Weichselbaum RR and Fu YX: Irradiation and anti-PD-L1
treatment synergistically promote antitumor immunity in mice. J
Clin Invest. 124:687–695. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Asna N, Livoff A, Batash R, Debbi R,
Schaffer P, Rivkind T and Schaffer M: Radiation therapy and
immunotherapy-a potential combination in cancer treatment. Curr
Oncol. 25:e454–e460. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lazzari C, Karachaliou N, Bulotta A,
Viganó M, Mirabile A, Brioschi E, Santarpia M, Gianni L, Rosell R
and Gregorc V: Combination of immunotherapy with chemotherapy and
radiotherapy in lung cancer: Is this the beginning of the end for
cancer? Ther Adv Med Oncol. 10:17588359187620942018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ahmed KA, Stallworth DG, Kim Y, Johnstone
PA, Harrison LB, Caudell JJ, Yu HH, Etame AB, Weber JS and Gibney
GT: Clinical outcomes of melanoma brain metastases treated with
stereotactic radiation and anti-PD-1 therapy. Ann Oncol.
27:434–441. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Qian JM, Yu JB, Kluger HM and Chiang VL:
Timing and type of immune checkpoint therapy affect the early
radiographic response of melanoma brain metastases to stereotactic
radiosurgery. Cancer. 122:3051–3058. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pike LRG, Bang A, Ott P, Balboni T, Taylor
A, Catalano P, Rawal B, Spektor A, Krishnan M, Cagney D, et al:
Radiation and PD-1 inhibition: Favorable outcomes after
brain-directed radiation. Radiother Oncol. 124:98–103. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen MF, Chen PT, Chen WC, Lu MS, Lin PY
and Lee KD: The role of PD-L1 in the radiation response and
prognosis for esophageal squamous cell carcinoma related to IL-6
and T-cell immunosuppression. Oncotarget. 7:7913–7924.
2016.PubMed/NCBI
|
|
84
|
Stahl M and Budach W: Definitive
chemoradiotherapy. J Thorac Dis. 9 (Suppl 8):S792–S798. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Matzenauer M, Vrána D, Vlachová Z, Aujesky
R, Vrba R, Neoral C and Melichar B: Stereotactic radiotherapy in
the treatment of local recurrences of esophageal cancer. Oncol
Lett. 13:1807–1810. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Luke JJ, Lemons JM, Karrison TG, Pitroda
SP, Melotek JM, Zha Y, Al-Hallaq HA, Arina A, Khodarev NN, Janisch
L, et al: Safety and clinical activity of pembrolizumab and
multisite stereotactic body radiotherapy in patients with advanced
solid tumors. J Clin Oncol. 36:1611–1618. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wu P, Wu D, Li L, Chai Y and Huang J:
PD-L1 and survival in solid tumors: A meta-analysis. PLoS One.
10:e01314032015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Alsaab HO, Sau S, Alzhrani R, Tatiparti K,
Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling
inhibition for cancer immunotherapy: Mechanism, combinations, and
clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mazel M, Jacot W, Pantel K, Bartkowiak K,
Topart D, Cayrefourcq L, Rossille D, Maudelonde T, Fest T and
Alix-Panabières C: Frequent expression of PD-L1 on circulating
breast cancer cells. Mol Oncol. 9:1773–1782. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ilié M, Szafer-Glusman E, Hofman V,
Chamorey E, Lalvee S, Selva E, Leroy S, Marquette CH, Kowanetz M,
Hedge P, et al: Detection of PD-L1 in circulating tumor cells and
white blood cells from patients with advanced non-small-cell lung
cancer. Ann Oncol. 29:193–199. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nicolazzo C, Raimondi C, Mancini M,
Caponnetto S, Gradilone A, Gandini O, Mastromartino M, Del Bene G,
Prete A, Longo F, et al: Monitoring PD-L1 positive circulating
tumor cells in non-small cell lung cancer patients treated with the
PD-1 inhibitor nivolumab. Sci Rep. 6:317262016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Guibert N, Delaunay M, Lusque A, Boubekeur
N, Rouquette I, Clermont E, Mourlanette J, Gouin S, Dormoy I, Favre
G, et al: PD-L1 expression in circulating tumor cells of advanced
non-small cell lung cancer patients treated with nivolumab. Lung
Cancer. 120:108–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yue C, Jiang Y, Li P, Wang Y, Xue J, Li N,
Li D, Wang R, Dang Y, Hu Z, et al: Dynamic change of PD-L1
expression on circulating tumor cells in advanced solid tumor
patients undergoing PD-1 blockade therapy. Oncoimmunology.
7:e14381112918. View Article : Google Scholar
|
|
94
|
Zhu X and Lang J: Soluble PD-1 and PD-L1:
Predictive and prognostic significance in cancer. Oncotarget.
8:97671–97682. 2017.PubMed/NCBI
|
|
95
|
Cohen EEW, Bell RB, Bifulco CB, Burtness
B, Gillison ML, Harrington KJ, Le QT, Lee NY, Leidner R, Lewis RL,
et al: The Society for Immunotherapy of Cancer consensus statement
on immunotherapy for the treatment of squamous cell carcinoma of
the head and neck (HNSCC). J Immunother Cancer. 7:1842019.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Califano J, Leong PL, Koch WM, Eisenberger
CF, Sidransky D and Westra WH: Second esophageal tumors in patients
with head and neck squamous cell carcinoma: An assessment of clonal
relationships. Clin Cancer Res. 5:1862–1867. 1999.PubMed/NCBI
|
|
97
|
The Cancer Genome Atlas Research Network,
. Integrated genomic characterization of oesophageal carcinoma.
Nature. 541:169–175. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Predina JD, Judy B, Aliperti LA,
Fridlender ZG, Blouin A, Kapoor V, Laguna B, Nakagawa H, Rustgi AK,
Aguilar L, et al: Neoadjuvant in situ gene-mediated cytotoxic
immunotherapy improves postoperative outcomes in novel syngeneic
esophageal carcinoma models. Cancer Gene Ther. 18:871–883. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sharabi AB, Lim M, DeWeese TL and Drake
CG: Radiation and checkpoint blockade immunotherapy:
Radiosensitisation and potential mechanisms of synergy. Lancet
Oncol. 16:e498–509. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Marciscano AE, Walker JM, McGee HM, Kim
MM, Kunos CA, Monjazeb AM, Shiao SL, Tran PT and Ahmed MM:
Incorporating radiation oncology into immunotherapy: Proceedings
from the ASTRO-SITC-NCI immunotherapy workshop. J Immunother
Cancer. 6:62018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pitt JM, Marabelle A, Eggermont A, Soria
JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment:
Removing obstruction to anticancer immune responses and
immunotherapy. Anna Oncol. 27:1482–1492. 2016. View Article : Google Scholar
|
|
102
|
Tang H, Qiao J and Fu YX: Immunotherapy
and tumor microenvironment. Cancer Lett. 370:85–90. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Schaaf MB, Garg AD and Agostinis P:
Defining the role of the tumor vasculature in antitumor immunity
and immunotherapy. Cell Death Dis. 9:1152018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hendry SA, Farnsworth RH, Solomon B, Achen
MG, Stacker SA and Fox SB: The role of the tumor vasculature in the
host immune response: Implications for therapeutic strategies
targeting the tumor microenvironment. Front Immunol. 7:6212016.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kallman RF and Dorie MJ: Tumor oxygenation
and reoxygenation during radiation therapy: Their importance in
predicting tumor response. Int J Radiat Oncol Biol Phys.
12:681–685. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Jiang W, Chan CK, Weissman IL, Kim BYS and
Hahn SM: Immune priming of the tumor microenvironment by radiation.
Trends Cancer. 2:638–645. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wolchok JD, Hoos A, O'Day S, Weber JS,
Hamid O, Lebbé C, Maio M, Binder M, Bohnsack O, Nichol G, et al:
Guidelines for the evaluation of immune therapy activity in solid
tumors: Immune-related response criteria. Clin Cancer Res.
15:7412–7420. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Somarouthu B, Lee SI, Urban T, Sadow CA,
Harris GJ and Kambadakone A: Immune-related tumour response
assessment criteria: A comprehensive review. Br J Radiol.
91:201704572018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hoos A, Wolchok JD, Humphrey RW and Hodi
FS: CCR 20th anniversary commentary: Immune-related response
criteria-capturing clinical activity in immuno-oncology. Clin
Cancer Res. 21:4989–4991. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud
A, Hamid O, Patnaik A, Ribas A, Robert C, Gangadhar TC, et al:
Evaluation of immune-related response criteria and RECIST v1.1 in
patients with advanced melanoma treated with pembrolizumab. J Clin
Oncol. 34:1510–1517. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Postow MA, Sidlow R and Hellmann MD:
Immune-related adverse events associated with immune checkpoint
blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yovino S and Grossman SA: Severity,
etiology and possible consequences of treatment-related lymphopenia
in patients with newly diagnosed high-grade gliomas. CNS Oncol.
1:149–154. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Davuluri R, Jiang W, Fang P, Xu C, Komaki
R, Gomez DR, Welsh J, Cox JD, Crane CH, Hsu CC and Lin SH:
Lymphocyte nadir and esophageal cancer survival outcomes after
chemoradiation therapy. Int J Radiat Oncol Biol Phys. 99:128–135.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yamashita H, Haga A, Takenaka R, Kiritoshi
T, Okuma K, Ohtomo K and Nakagawa K: Efficacy and feasibility of
ambulatory treatment-based monthly nedaplatin plus S-1 in
definitive or salvage concurrent chemoradiotherapy for early,
advanced, and relapsed esophageal cancer. Radiat Oncol. 11:42016.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chen HY, Ma XM, Ye M, Hou YL, Xie HY and
Bai YR: Esophageal perforation during or after conformal
radiotherapy for esophageal carcinoma. J Radiat Res. 55:940–947.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Roeder F, Nicolay NH, Nguyen T,
Saleh-Ebrahimi L, Askoxylakis V, Bostel T, Zwicker F, Debus J,
Timke C and Huber PE: Intensity modulated radiotherapy (IMRT) with
concurrent chemotherapy as definitive treatment of locally advanced
esophageal cancer. Radiat Oncol. 9:1912014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hong MH, Kim H, Park SY, Kim DJ, Lee CG,
Cho J, Kim JH, Kim HR, Kim YH, Park SR and Cho BC: A phase II trial
of preoperative chemoradiotherapy and pembrolizumab for locally
advanced esophageal squamous cell carcinoma (ESCC). J Clin Oncol.
37 (15 Suppl):S40272019. View Article : Google Scholar
|
|
118
|
Katz M, Bauer TW, Varadhachary G,
Acquavella N, Petroni G, Bullock T, Slingluff CL and Rahma OE: A
randomized multicenter phase Ib/II study to assess the safety and
the immunological effect of chemoradiation therapy (CRT) in
combination with pembrolizumab (anti-PD1) to CRT alone in patients
with resectable or borderline resectable pancreatic cancer. J Clin
Oncol. 3 (Suppl 2):P1672015.
|
|
119
|
Van Hagen P, Hulshof MC, Van Lanschot JJ,
Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richel DJ,
Nieuwenhuijzen GA, Hospers GA, Bonenkamp JJ, et al: Preoperative
chemora-diotherapy for esophageal or junctional cancer. N Engl J
Med. 366:2074–2084. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
U.S. Department of Health and Human
Services, . Common Terminology Criteria for Adverse Events (CTCAE)
v5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5×7.pdfNovember
27–2017
|