|
1
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Reinhart BJ, Slack FJ, Basson M,
Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Remsburg C, Konrad K, Sampilo NF and Song
JL: Analysis of microRNA functions. Methods Cell Biol. 151:323–334.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Suzuki H, Gabrielson E, Chen W, Anbazhagan
R, van England M, Herman JG, Baylin SB and Weijenberg MP: A genomic
screen for genes upregulated by demethylation and histone
deacetylase inhibition in human colorectal cancer. Nat Genet.
31:141–149. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vishnoi A and Rani S: MiRNA biogenesis and
regulation of diseases: An overview. Methods Mol Biol. 1509:1–10.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lintner NG and Cate JHD: Regulating the
ribosome: A spotlight on RNA dark matter. Mol Cell. 54:1–2. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brannan CI, Dees EC, Ingram RS and
Tilghman SM: The product of the H19 gene may function as an RNA.
Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Spizzo R, Almeida MI, Colombatti A and
Calin GA: Long non-coding RNAs and cancer: A new frontier of
translational research? Oncogene. 31:4577–4587. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Arriaga-Canon C, Fonseca-Guzmán Y,
Valdes-Quezada C, Arzate-Mejía R, Guerrero G and Recillas-Targa F:
A long non-coding RNA promotes full activation of adult gene
expression in the chicken α-globin domain. Epigenetics. 9:173–181.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bergmann JH and Spector DL: Long
non-coding RNAs: Modulators of nuclear structure and function. Curr
Opin Cell Boil. 26:10–18. 2014. View Article : Google Scholar
|
|
11
|
Majoros WH and Ohler U: Spatial
preferences of microRNA targets in 3′untranslated regions. BMC
Genomics. 8:1522007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cabili MN, Trapnell C, Goff L, Koziol M,
Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human
large intergenic noncoding RNAs reveals global properties and
specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Du Z, Fei T, Verhaak RG, Su Z, Zhang Y,
Brown M, Chen Y and Liu XS: Integrative genomic analyses reveal
clinically relevant long noncoding RNAs in human cancer. Nat Struct
Mol Biol. 20:908–913. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhou Q, Yu Q, Gong Y, Liu Z, Xu H, Wang Y
and Shi Y: Construction of a lncRNA-miRNA-mRNA network to determine
the regulatory roles of lncRNAs in psoriasis. Exp Ther Med.
18:4011–4021. 2019.PubMed/NCBI
|
|
15
|
Dong Z, Zhang A, Liu S, Lu F, Guo Y, Zhang
G, Xu F, Shi Y, Shen S, Liang J and Guo W: Aberrant
methylation-mediated silencing of lncRNA MEG3 functions as aceRNA
in esophageal cancer. Mol Cancer Res. 15:800–810. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang KC and Chang HY: Molecular mechanisms
of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Seitz H: Redefining microRNA targets. Curr
Biol. 19:870–873. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guo G, Kang Q, Zhu X, Chen Q, Wang X, Chen
Y, Ouyang J, Zhang L, Tan H, Chen R, et al: A long noncoding RNA
critically regulates Bcr-Abl-mediated cellular transformation by
acting as a competitive endogenous RNA. Oncogene. 34:1768–1779.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ergun S and Oztuzcu S: Oncocers:
CeRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways.
Tumour Biol. 36:3129–3136. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jalali S, Bhartiya D, Lalwani MK,
Sivasubbu S and Scaria V: Systematic transcriptome wide analysis of
lncRNA-miRNA interactions. PLoS One. 8:e538232013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lü MH, Tang B, Zeng S, Hu CJ, Xie R, Wu
YY, Wang SM, He FT and Yang SM: Long noncoding RNA BC032469, a
novel competing endogenous RNA, upregulates hTERT expression by
sponging miR-1207-5p and promotes proliferation in gastric cancer.
Oncogene. 35:3524–3534. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Karreth FA and Pandolfi PP: ceRNA
cross-talk in cancer: When ce-bling rivalries go awry. Cancer
Discov. 3:1113–1121. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Guo LL, Song CH, Wang P, Dai LP, Zhang JY
and Wang KJ: Competing endogenous RNA networks and gastric cancer.
World J Gastroenterol. 21:11680–11687. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao
L, Wu M, Xiong J, Guo X and Liu H: Endogenous miRNA sponge
lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem
cell self-renewal. Dev Cell. 25:69–80. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ørom UA and Shiekhattar R: Long non-coding
RNAs and enhancers. Curr Opin Genet Dev. 21:194–198. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Keniry A, Oxley D, Monnier P, Kyba M,
Dandolo L, Smits G and Reik W: The H19 lincRNA is a developmental
reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell
Biol. 14:659–665. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Da Sacco L and Masotti A: Recent insights
and novel bioinformatics tools to understand the role of microRNAs
binding to 5′untranslated region. Int J Mol Sci. 14:480–495. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
López-Urrutia E, Bustamante Montes LP,
Ladrón de Guevara Cervantes D, Pérez-Plasencia C and Campos-Parra
AD: Crosstalk between long non-coding RNAs, Micro-RNAs and mRNAs:
Deciphering molecular mechanisms of master regulators in cancer.
Front Oncol. 9:6692019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Guo L, Zhao Y, Yang S, Zhang H, Wu Q and
Chen F: An integrated evolutionary analysis of miRNA-lncRNA in
mammals. Mol Biol Rep. 41:201–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang Z, Sun L, Zhang Y, Lu G, Li Y and
Wei Z: Long non-coding RNA FEZF1-AS1 promotes breast cancer
stemness and tumorigenesis via targeting miR-30a/Nanog axis. J Cell
Physiol. 233:8630–8638. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang L, Yang F, Yuan JH, Yuan SX, Zhou
WP, Huo XS, Xu D, Bi HS, Wang F and Sun SH: Epigenetic activation
of the MiR-200 family contributes to H19-mediated metastasis
suppression in hepatocellular carcinoma. Carcinogenesis.
34:577–586. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sun M and Kraus W: From discovery to
function: The expanding roles of long non-coding RNAs in physiology
and disease. Endocr Rev. 7:er000099992015.(Epub ahead of print).
View Article : Google Scholar
|
|
35
|
Yuan JH, Yang F, Chen BF, Lu Z, Huo XS,
Zhou WP, Wang F and Sun SH: The histone deacetylase
4/SP1/microrna-200a regulatory network contributes to aberrant
histone acetylation in hepatocellular carcinoma. Hepatology.
54:2025–2035. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cao P, Deng Z, Wan M, Huang W, Cramer SD,
Xu J, Lei M and Sui G: MicroRNA-101 negatively regulates Ezh2 and
its expression is modulated by androgen receptor and
HIF-1alpha/HIF-1beta. Mol Cancer. 9:1082010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sander S, Bullinger L, Klapproth K,
Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack
JR and Wirth T: MYC stimulates EZH2 expression by repression of its
negative regulator miR-26a. Blood. 112:4202–4212. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Benetatos L, Voulgaris E, Vartholomatos G
and Hatzimichael E: Non-coding RNAs and EZH2 interactions in
cancer: Long and short tales from the transcriptome. Int J Cancer.
133:267–274. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R,
Cao Z, Singh B, Franklin JL, Wang J, Hu H, et al: lncRNA
MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance
via Wnt/β-catenin signaling. Nat Med. 23:1331–1341. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Erdmann VA, Szymanski M, Hochberg A, Groot
N and Barciszewski J: Non-coding, mRNA-like RNAs database Y2K.
Nucleic Acids Res. 28:197–200. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mituyama T, Yamada K, Hattori E, Okida H,
Ono Y, Terai G, Yoshizawa A, Komori T and Asai K: The Functional
RNA Database 3.0: Databases to support mining and annotation of
functional RNAs. Nucleic Acids Res. 37:D89–D92. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dinger ME, Pang KC, Mercer TR, Crowe ML,
Grimmond SM and Mattick JS: NRED: A database of long noncoding RNA
expression. Nucleic Acids Res. 37:D122–D126. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Amaral PP, Clark MB, Gascoigne DK, Dinger
ME and Mattick JS: lncRNAdb: A reference database for long
noncoding RNAs. Nucleic Acids Res. 39:D146–D151. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang JH, Li JH, Jiang S, Zhou H and Qu LH:
ChIPBase: A database for decoding the transcriptional regulation of
long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic
Acids Res. 41:D177–D187. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Volders PJ, Helsens K, Wang X, Menten B,
Martens L, Gevaert K, Vandesompele J and Mestdagh P: LNCipedia: A
database for annotated human lncRNA transcript sequences and
structures. Nucleic Acids Res. 41:D246–D251. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Paraskevopoulou MD, Georgakilas G,
Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM and Hatzigeorgiou
AG: DIANA-LncBase: Experimentally verified and computationally
predicted microRNA targets on long non-coding RNAs. Nucleic Acids
Res. 41:D239–D245. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cook KB, Kazan H, Zuberi K, Morris Q and
Hughes TR: RBPDB: A database of RNA-binding specificities. Nucleic
Acids Res. 39:D301–D308. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42:D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP,
Tseng CP, Stadler PF, Washietl S and Hofacker IL: miRNAMap: Genomic
maps of microRNA genes and their target genes in mammalian genomes.
Nucleic Acids Res. 34:D135–D139. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cui T, Zhang L, Huang Y, Yi Y, Tan P, Zhao
Y, Hu Y, Xu L, Li E and Wang D: MNDR v2.0: An updated resource of
ncRNA-disease associations in mammals. Nucleic Acids Res.
46:D371–D374. 2018.PubMed/NCBI
|
|
51
|
Yan B, Wang ZH and Guo JT: The research
strategies for probing the function of long noncoding RNAs.
Genomics. 99:76–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ørom UA, Derrien T, Beringer M, Gumireddy
K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q,
et al: Long noncoding RNAs with enhancer-like function in human
cells. Cell. 143:46–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin M, Pedrosa E, Shah A, Hrabovsky A,
Maqbool S, Zheng D and Lachman HM: RNA-Seq of human neurons derived
from iPS cells reveals candidate long non-coding RNAs involved in
neurogenesis and neuropsychiatric disorders. PLoS One.
6:e233562011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Alwine JC, Kemp DJ and Stark GR: Method
for detection of specific RNAs in agarose gels by transfer to
diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc
Natl Acad Sci USA. 74:5350–5354. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Heid CA, Stevens J, Livak KJ and Williams
PM: Real time quantitative PCR. Genome Res. 6:986–994. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chakraborty D, Kappei D, Theis M, Nitzsche
A, Ding L, Paszkowski-Rogacz M, Surendranath V, Berger N, Schulz H,
Saar K, et al: Combined RNAi and localization for functionally
dissecting long noncoding RNAs. Nat Methods. 9:360–362. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Alberts B, Johnson A and Lewis J:
Fractionation of Cells. Molecular Biology of the Cell. 4th. New
York: Garland Science; 2002
|
|
58
|
Koshkin AA, Singh SK, Nielsen P, Rajwanshi
VK, Kumar R, Meldgaard M, Olsen CE and Wengel J: LNA (Locked
Nucleic Acids): Synthesis of the adenine, cytosine, guanine,
5-methylcytosine, thymine and uracil bicyclonucleoside monomers,
oligomerisation, and unprecedented nucleic acid recognition.
Tetrahedron. 54:3607–3630. 1998. View Article : Google Scholar
|
|
59
|
Zhang F, Wen Y and Guo X: CRISPR/Cas9 for
genome editing: Progress, implications and challenges. Hum Mol
Genet. 23:R40–R46. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fire A, Xu S, Montgomery MK, Kostas SA,
Driver SE and Mello CC: Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Keene JD, Komisarow JM and Friedersdorf
MB: RIP-Chip: The isolation and identification of mRNAs, microRNAs
and protein components of ribonucleoprotein complexes from cell
extracts. Nat Protoc. 1:302–307. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau
DJ, Sarma K, Song JJ, Kingston RE, Borowsky M and Lee JT:
Genome-wide identification of polycomb-associated RNAs by RIP-seq.
Mol Cell. 40:939–953. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bellucci M, Agostini F, Masin M and
Tartaglia GG: Predicting protein associations with long noncoding
RNAs. Nat Methods. 8:444–445. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lagarde J, Uszczynska-Ratajczak B,
Carbonell S, Pérez-Lluch S, Abad A, Davis C, Gingeras TR, Frankish
A, Harrow J, Guigo R and Johnson R: High-throughput annotation of
full-length long noncoding RNAs with capture long-read sequencing.
Nat Genet. 49:1731–1740. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tanizawa H and Noma K: Unravelling global
genome organization by 3C-seq. Semin Cell Dev Biol. 23:213–221.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Splinter E, de Wit E, van de Werken HJ,
Klous P and de Laat W: Determining long-range chromatin
interactions for selected genomic sites using 4C-seq technology:
From fixation to computation. Methods. 58:221–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dostie J and Dekker J: Mapping networks of
physical interactions between genomic elements using 5C technology.
Nat Protoc. 2:988–1002. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Belton JM, McCord RP, Gibcus JH, Naumova
N, Zhan Y and Dekker J: Hi-C: A comprehensive technique to capture
the conformation of genomes. Methods. 58:268–276. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Severs NJ: Freeze-fracture electron
microscopy. Nat Protoc. 2:547–576. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Olivarius S, Plessy C and Carninci P:
High-throughput verification of transcriptional starting sites by
Deep-RACE. BioTechniques. 46:130–132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cossu AM, Mosca L, Zappavigna S, Misso G,
Bocchetti M, De Micco F, Quagliuolo L, Porcelli M, Caraglia M and
Boccellino M: Long non-coding RNAs as important biomarkers in
laryngeal cancer and other head and neck tumours. Int J Mol Sci.
20:E34442019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nappi L and Nichols C: MicroRNAs as
biomarkers for germ cell tumors. Urol Clin North Am. 46:449–457.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jiang YF, Zhang HY, Ke J, Shen H, Ou HB
and Liu Y: Overexpression of LncRNA GHET1 predicts an unfavourable
survival and clinical parameters of patients in various cancers. J
Cell Mol Med. 23:4891–4899. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Moody L, Dvoretskiy S, An R, Mantha S and
Pan YX: The efficacy of miR-20a as a diagnostic and prognostic
biomarker for colorectal cancer: A systematic review and
meta-analysis. Cancers (Basel). 11:E11112019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Permuth JB, Chen DT, Yoder SJ, Li J, Smith
AT, Choi JW, Kim J, Balagurunathan Y, Jiang K, Coppola D, et al:
Linc-ing Circulating Long Non-coding RNAs to the Diagnosis and
Malignant Prediction of Intraductal Papillary Mucinous Neoplasms of
the Pancreas. Sci Rep. 7:104842017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li A, Yu J, Kim H, Wolfgang CL, Canto MI,
Hruban RH and Goggins M: Serum miR-1290 as a marker of pancreatic
cancer-response. Clin Cancer Res. 19:5252–5253. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yang Q, Tang Y, Tang C, Cong H, Wang X,
Shen X and Ju S: Diminished LINC00173 expression induced miR-182-5p
accumulation promotes cell proliferation, migration and apoptosis
inhibition via AGER/NF-κB pathway in non-small-cell lung cancer. Am
J Transl Res. 11:4248–4262. 2019.PubMed/NCBI
|
|
78
|
Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu
GY, Feng C, Zhao JY, Zhang YY and Li X: The long noncoding RNA
MIR210HG promotes tumor metastasis by acting as a ceRNA of
miR-1226-3p to regulate mucin-1c expression in invasive breast
cancer. Aging (Albany NY). 11:5646–5665. 2019.PubMed/NCBI
|
|
79
|
Zhang Y, Zhu Z, Huang S, Zhao Q, Huang C,
Tang Y, Sun C, Zhang Z, Wang L, Chen H, et al: lncRNA XIST
regulates proliferation and migration of hepatocellular carcinoma
cells by acting as miR-497-5p molecular sponge and targeting PDCD4.
Cancer Cell Int. 19:1982019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hu L, Ye H, Huang G, Luo F, Liu Y, Liu Y,
Yang X, Shen J, Liu Q and Zhang J: Long noncoding RNA GAS5
suppresses the migration and invasion of hepatocellular carcinoma
cells via miR-21. Tumour Biol. 37:2691–2702. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wu H, Zheng J, Deng J, Zhang L, Li N, Li
W, Li F, Lu J and Zhou Y: LincRNAuc002yug.2 involves in alternative
splicing of RUNX1 and serves as a predictor for esophageal cancer
and prognosis. Oncogene. 34:4723–4734. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen D, Zhang Z, Mao C, Zhou Y, Yu L, Yin
Y, Wu S, Mou X and Zhu Y: ANRIL inhibits p15(INK4b) through the
TGFβ1 signaling pathway in human esophageal squamous cell
carcinoma. Cell Immunol. 289:91–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kang M, Sang Y, Gu H, Zheng L, Wang L, Liu
C, Shi Y, Shao A, Ding G, Chen G, et al: Long noncoding RNAs POLR2E
rs3787016 C/T and HULC rs7763881 A/C polymorphisms are associated
with decreased risk of esophageal cancer. Tumour Biol.
36:6401–6408. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang E, Han L, Yin D, He X, Hong L, Si X,
Qiu M, Xu T, De W, Xu L, et al: H3K27 acetylation activated-long
non-coding RNA CCAT1 affects cell proliferation and migration by
regulating SPRY4 and HOXB13 expression in esophageal squamous cell
carcinoma. Nucleic Acids Res. 45:3086–3101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mazzu YZ, Yoshikawa Y, Nandakumar S,
Chakraborty G, Armenia J, Jehane LE, Lee GM and Kantoff PW:
Methylation-associated miR-193b silencing activates master drivers
of aggressive prostate cancer. Mol Oncol. 13:1944–1958. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chen G, Feng Y, Li X, Jiang Z, Bei B,
Zhang L, Han Y, Li Y and Li N: Post-transcriptional gene regulation
in colitis associated cancer. Front Genet. 10:5852019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Qadir MI, Bukhat S, Rasul S, Manzoor H and
Manzoor M: RNA therapeutics: Identification of novel targets
leading to drug discovery. J Cell Biochem. 2019:(Epub ahead of
print).
|
|
88
|
Meng X, Li X, Zhang P, Wang J, Zhou Y and
Chen M: Circular RNA: An emerging key player in RNA world. Brief
Bioinform. 18:547–557. 2017.PubMed/NCBI
|
|
89
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sato K and Siomi MC: Piwi-interacting
RNAs: Biological functions and biogenesis. Essays Biochem.
54:39–52. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Busch J, Ralla B, Jung M, Wotschofsky Z,
Trujillo-Arribas E, Schwabe P, Kilic E, Fendler A and Jung K:
Piwi-interacting RNAs as novel prognostic markers in clear cell
renal cell carcinomas. J Exp Clin Cancer Res. 34:612015. View Article : Google Scholar : PubMed/NCBI
|