|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Han C, Jiang Y, Wang Z and Wang H: Natural
killer cells involved in tumour immune escape of hepatocellular
carcinomar. Int Immunopharmacol. 73:10–16. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xie Y, Xiang Y, Sheng J, Zhang D, Yao X,
Yang Y and Zhang X: Immunotherapy for hepatocellular carcinoma:
Current advances and future expectations. J Immunol Res.
2018:87409762018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Harding JJ, El Dika I and Abou-Alfa GK:
Immunotherapy in hepatocellular carcinoma: Primed to make a
difference? Cancer. 122:367–377. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Najafi M, Farhood B and Mortezaee K:
Contribution of regulatory T cells to cancer: A review. J Cell
Physiol. 234:7983–7993. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Herbst RS, Soria JC, Kowanetz M, Fine GD,
Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger
SN, et al: Predictive correlates of response to the anti-PD-L1
antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shergold AL, Millar R and Nibbs RJB:
Understanding and overcoming the resistance of cancer to PD-1/PD-L1
blockade. Pharmacol Res. 145:1042582019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pio R, Ajona D, Ortiz-Espinosa S,
Mantovani A and Lambris JD: Complementing the cancer-immunity
cycle. Front Immunol. 10:7742019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Prestipino A and Zeiser R: Clinical
implications of tumor-intrinsic mechanisms regulating PD-L1. Sci
Transl Med. 11(pii): eaav48102019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Iñarrairaegui M, Melero I and Sangro B:
Immunotherapy of hepatocellular carcinoma: Facts and hopes. Clin
Cancer Res. 24:1518–1524. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hamanishi J, Mandai M, Matsumura N, Abiko
K, Baba T and Konishi I: PD-1/PD-L1 blockade in cancer treatment:
Perspectives and issues. Int J Clin Oncol. 21:462–473. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mocan T, Sparchez Z, Craciun R, Bora CN
and Leucuta DC: Programmed cell death protein-1 (PD-1)/programmed
death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: Prognostic
and therapeutic perspectives. Clin Transl Oncol. 21:702–712. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ho CM, Chen HL, Hu RH and Lee PH:
Harnessing immunotherapy for liver recipients with hepatocellular
carcinoma: A review from a transplant oncology perspective. Ther
Adv Med Oncol. 11:17588359198434632019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Barsoum IB, Smallwood CA, Siemens DR and
Graham CH: A mechanism of hypoxia-mediated escape from adaptive
immunity in cancer cells. Cancer Res. 74:665–674. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen J, Jiang CC, Jin L and Zhang XD:
Regulation of PD-L1: A novel role of pro-survival signalling in
cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Guo R, Li Y, Wang Z, Bai H, Duan J, Wang
S, Wang L and Wang J: Hypoxia-inducible factor-1α and nuclear
factor-κB play important roles in regulating programmed cell death
ligand 1 expression by epidermal growth factor receptor mutants in
non-small-cell lung cancer cells. Cancer Sci. 110:1665–1675. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Facciabene A, Peng X, Hagemann IS, Balint
K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L and
Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via
CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Terry S, Buart S and Chouaib S: Hypoxic
stress-induced tumor and immune plasticity, suppression, and impact
on tumor heterogeneity. Front Immunol. 8:16252017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Laoui D, Van Overmeire E, Di Conza G,
Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe
E, Elkrim Y, et al: Tumor hypoxia does not drive differentiation of
tumor-associated macrophages but rather fine-tunes the M2-like
macrophage population. Cancer Res. 74:24–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Labiano S, Palazon A and Melero I: Immune
response regulation in the tumor microenvironment by hypoxia. Semin
Oncol. 42:378–386. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Noman MZ, Desantis G, Janji B, Hasmim M,
Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct
target of HIF-1α, and its blockade under hypoxia enhanced
MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Reig M, Boix L, Mariño Z, Torres F, Forns
X and Bruix J: Liver cancer emergence associated with antiviral
treatment: An immune surveillance failure? Semin Liver Dis.
37:109–118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Flecken T, Schmidt N, Hild S, Gostick E,
Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, et
al: Immunodominance and functional alterations of tumor-associated
antigen-specific CD8+ T-cell responses in hepatocellular
carcinoma. Hepatology. 59:1415–1426. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Schreiber RD, Old LJ and Smyth MJ: Cancer
immunoediting: Integrating immunity's roles in cancer suppression
and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Owusu Sekyere S, Schlevogt B, Mettke F,
Kabbani M, Deterding K, Wirth TC, Vogel A, Manns MP, Falk CS,
Cornberg M, et al: HCC Immune surveillance and antiviral therapy of
hepatitis C virus infection. Liver Cancer. 8:41–65. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kudo M: Systemic therapy for
hepatocellular carcinoma: Latest advances. Cancers (Basel).
10(pii): E4122018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sahin B: Enlighting the shadow for
advanced hepatocellular carcinoma: Immunotherapy with immune
checkpoint inhibitors. J Gastrointest Cancer. 48:288–290. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Waidmann O: Recent developments with
immunotherapy for hepatocellular carcinoma. Expert Opin Biol Ther.
18:905–910. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Farhood B, Najafi M and Mortezaee K:
CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A
review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kosti P, Maher J and Arnold JN:
Perspectives on chimeric antigen receptor T-cell immunotherapy for
solid tumors. Front Immunol. 9:11042018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Topalian SL, Drake CG and Pardoll DM:
Immune checkpoint blockade: A common denominator approach to cancer
therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen Y, Wang Q, Shi B, Xu P, Hu Z, Bai L
and Zhang X: Development of a sandwich ELISA for evaluating soluble
PD-L1 (CD274) in human sera of different ages as well as
supernatants of PD-L1+ cell lines. Cytokine. 56:231–238.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M,
Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, et al: Overexpression
of PD-L1 significantly associates with tumor aggressiveness and
postoperative recurrence in human hepatocellular carcinoma. Clin
Cancer Res. 15:971–979. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lian S, Xie R, Ye Y, Xie X, Li S, Lu Y, Li
B, Cheng Y, Katanaev VL and Jia L: Simultaneous blocking of CD47
and PD-L1 increases innate and adaptive cancer immune responses and
cytokine release. EBioMedicine. 42:281–295. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sun C, Mezzadra R and Schumacher TN:
Regulation and function of the PD-L1 checkpoint. Immunity.
48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Barry M, Heibein JA, Pinkoski MJ, Lee SF,
Moyer RW, Green DR and Bleackley RC: Granzyme B short-circuits the
need for caspase 8 activity during granule-mediated cytotoxic
T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol.
20:3781–3794. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sanmamed MF and Chen L: Inducible
expression of B7-H1 (PD-L1) and its selective role in tumor site
immune modulation. Cancer J. 20:256–261. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou
J and Kuang DM: Interleukin-17-educated monocytes suppress
cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma
patients. Eur J Immunol. 41:2314–2322. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Andersen MH: The balance players of the
adaptive immune system. Cancer Res. 78:1379–1382. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Galdiero MR, Garlanda C, Jaillon S, Marone
G and Mantovani A: Tumor associated macrophages and neutrophils in
tumor progression. J Cell Physiol. 228:1404–1412. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Campbell DJ and Koch MA: Phenotypical and
functional specialization of FOXP3+ regulatory T cells.
Nat Rev Immunol. 11:119–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu H, Bakthavatsalam R, Meng Z, Li Z, Li
W, Perkins JD and Reyes J: PD-L1 signal on liver dendritic cells is
critical for Foxp3(+)CD4(+)CD25(+) Treg and liver tolerance
induction in mice. Transplant Proc. 45:1853–1855. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Beswick EJ, Pinchuk IV, Das S, Powell DW
and Reyes VE: Expression of the programmed death ligand 1, B7-H1,
on gastric epithelial cells after Helicobacter pylori exposure
promotes development of CD4+ CD25+
FoxP3+ regulatory T cells. Infect Immun. 75:4334–4341.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ding Q, Lu L, Zhou X, Zhou Y and Chou KY:
Human PD-L1-overexpressing porcine vascular endothelial cells
induce functionally suppressive human
CD4+CD25hiFoxp3+ Treg cells. J Leukoc Biol.
90:77–86. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Geng L, Deng J, Jiang G, Song P, Wang Z,
Jiang Z, Zhang M and Zheng S: B7-H1 up-regulated expression in
human hepatocellular carcinoma tissue: Correlation with tumor
interleukin-10 levels. Hepatogastroenterology. 58:960–964.
2011.PubMed/NCBI
|
|
47
|
Sormendi S and Wielockx B: Hypoxia pathway
proteins as central mediators of metabolism in the tumor cells and
their microenvironment. Front Immunol. 9:402018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Deng J, Li J, Sarde A, Lines JL, Lee YC,
Qian DC, Pechenick DA, Manivanh R, Le Mercier I, Lowrey CH, et al:
Hypoxia-induced VISTA promotes the suppressive function of
myeloid-derived suppressor cells in the tumor microenvironment.
Cancer Immunol Res. 7:1079–1090. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hayashi Y, Yokota A, Harada H and Huang G:
Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible
factor-1α in cancer. Cancer Sci. 110:1510–1517. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chouaib S, Umansky V and Kieda C: The role
of hypoxia in shaping the recruitment of proangiogenic and
immunosuppressive cells in the tumor microenvironment. Contemp
Oncol (Pozn). 22:7–13. 2018.PubMed/NCBI
|
|
51
|
Guo X, Xue H, Shao Q, Wang J, Guo X, Chen
X, Zhang J, Xu S, Li T, Zhang P, et al: Hypoxia promotes
glioma-associated macrophage infiltration via periostin and
subsequent M2 polarization by upregulating TGF-beta and M-CSFR.
Oncotarget. 7:80521–80542. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vaupel P and Multhoff G:
Hypoxia-/HIF-1α-driven factors of the tumor microenvironment
impeding antitumor immune responses and promoting malignant
progression. Adv Exp Med Biol. 1072:171–175. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kumar V and Gabrilovich DI:
Hypoxia-inducible factors in regulation of immune responses in
tumour microenvironment. Immunology. 143:512–519. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gabrilovich DI and Nagaraj S:
Myeloid-derived suppressor cells as regulators of the immune
system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rodriguez PC, Ochoa AC and Al-Khami AA:
Arginine metabolism in myeloid cells shapes innate and adaptive
immunity. Front Immunol. 8:932017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Munder M, Choi BS, Rogers M and Kropf P:
L-arginine deprivation impairs Leishmania major-specific T-cell
responses. Eur J Immunol. 39:2161–2172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bronte V and Zanovello P: Regulation of
immune responses by L-arginine metabolism. Nat Rev Immunol.
5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hu CE, Gan J, Zhang RD, Cheng YR and Huang
GJ: Up-regulated myeloid-derived suppressor cell contributes to
hepatocellular carcinoma development by impairing dendritic cell
function. Scand J Gastroenterol. 46:156–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hoechst B, Voigtlaender T, Ormandy L,
Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten
TF and Korangy F: Myeloid derived suppressor cells inhibit natural
killer cells in patients with hepatocellular carcinoma via the
NKp30 receptor. Hepatology. 50:799–807. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hoechst B, Ormandy LA, Ballmaier M, Lehner
F, Krüger C, Manns MP, Greten TF and Korangy F: A new population of
myeloid-derived suppressor cells in hepatocellular carcinoma
patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology.
135:234–243. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Amann T, Bataille F, Spruss T, Mühlbauer
M, Gäbele E, Schölmerich J, Kiefer P, Bosserhoff AK and Hellerbrand
C: Activated hepatic stellate cells promote tumorigenicity of
hepatocellular carcinoma. Cancer Sci. 100:646–653. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ju MJ, Qiu SJ, Fan J, Xiao YS, Gao Q, Zhou
J, Li YW and Tang ZY: Peritumoral activated hepatic stellate cells
predict poor clinical outcome in hepatocellular carcinoma after
curative resection. Am J Clin Pathol. 131:498–510. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Soni S and Padwad YS: HIF-1 in cancer
therapy: Two decade long story of a transcription factor. Acta
Oncol. 56:503–515. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia Y, Jiang L and Zhong T: The role of
HIF-1α in chemo-/radioresistant tumors. Onco Targets Ther.
11:3003–3011. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Petrova V, Annicchiarico-Petruzzelli M,
Melino G and Amelio I: The hypoxic tumour microenvironment.
Oncogenesis. 7:102018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Günter J, Ruiz-Serrano A, Pickel C, Wenger
RH and Scholz CC: The functional interplay between the HIF pathway
and the ubiquitin system-more than a one-way road. Exp Cell Res.
356:152–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rabinovich GA, Gabrilovich D and Sotomayor
EM: Immunosuppressive strategies that are mediated by tumor cells.
Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S
and Wang J: Microvesicles and chemokines in tumor microenvironment:
Mediators of intercellular communications in tumor progression. Mol
Cancer. 18:502019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gun SY, Lee SWL, Sieow JL and Wong SC:
Targeting immune cells for cancer therapy. Redox Biol.
25:1011742019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang Y, Shen Y, Wang S, Shen Q and Zhou X:
The role of STAT3 in leading the crosstalk between human cancers
and the immune system. Cancer Lett. 415:117–128. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Huynh J, Chand A, Gough D and Ernst M:
Therapeutically exploiting STAT3 activity in cancer-using tissue
repair as a road map. Nat Rev Cancer. 19:82–96. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Loh CY, Arya A, Naema AF, Wong WF, Sethi G
and Looi CY: Signal transducer and activator of transcription
(STATs) proteins in cancer and inflammation: Functions and
therapeutic implication. Front Oncol. 9:482019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Capece D, Verzella D, Tessitore A, Alesse
E, Capalbo C and Zazzeroni F: Cancer secretome and inflammation:
The bright and the dark sides of NF-κB. Semin Cell Dev Biol.
78:51–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yu H, Kortylewski M and Pardoll D:
Crosstalk between cancer and immune cells: Role of STAT3 in the
tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kitamura H, Ohno Y, Toyoshima Y, Ohtake J,
Homma S, Kawamura H, Takahashi N and Taketomi A:
Interleukin-6/STAT3 signaling as a promising target to improve the
efficacy of cancer immunotherapy. Cancer Sci. 108:1947–1952. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha
C, Prasad S, Gupta SC, Bharti AC and Aggarwal BB: Chronic diseases,
inflammation, and spices: How are they linked? J Transl Med.
16:142018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: A leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fan Y, Mao R and Yang J: NF-κB and STAT3
signaling pathways collaboratively link inflammation to cancer.
Protein Cell. 4:176–185. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gao P, Niu N, Wei T, Tozawa H, Chen X,
Zhang C, Zhang J, Wada Y, Kapron CM and Liu J: The roles of signal
transducer and activator of transcription factor 3 in tumor
angiogenesis. Oncotarget. 8:69139–69161. 2017.PubMed/NCBI
|
|
80
|
Cascio S, D'Andrea A, Ferla R, Surmacz E,
Gulotta E, Amodeo V, Bazan V, Gebbia N and Russo A: miR-20b
modulates VEGF expression by targeting HIF-1 alpha and STAT3 in
MCF-7 breast cancer cells. J Cell Physiol. 224:242–249.
2010.PubMed/NCBI
|
|
81
|
Van Welden S, Selfridge AC and Hindryckx
P: Intestinal hypoxia and hypoxia-induced signalling as therapeutic
targets for IBD. Nat Rev Gastroenterol Hepatol. 14:596–611. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Belaiba RS, Bonello S, Zahringer C,
Schmidt S, Hess J, Kietzmann T and Gorlach A: Hypoxia up-regulates
hypoxia-inducible factor-1alpha transcription by involving
phosphatidylinositol 3-kinase and nuclear factor kappaB in
pulmonary artery smooth muscle cells. Mol Biol Cell. 18:4691–4697.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen J, Li G, Meng H, Fan Y, Song Y, Wang
S, Zhu F, Guo C, Zhang L and Shi Y: Upregulation of B7-H1
expression is associated with macrophage infiltration in
hepatocellular carcinomas. Cancer Immunol Immunother. 61:101–108.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fang W, Zhang J, Hong S, Zhan J, Chen N,
Qin T, Tang Y, Zhang Y, Kang S, Zhou T, et al: EBV-driven LMP1 and
IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications
for oncotargeted therapy. Oncotarget. 5:12189–12202. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wölfle SJ, Strebovsky J, Bartz H, Sähr A,
Arnold C, Kaiser C, Dalpke AH and Heeg K: PD-L1 expression on
tolerogenic APCs is controlled by STAT-3. Eur J Immunol.
41:413–424. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Huang G, Wen Q, Zhao Y, Gao Q and Bai Y:
NF-κB plays a key role in inducing CD274 expression in human
monocytes after lipopolysaccharide treatment. PLoS One.
8:e616022013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kudo M: Immuno-oncology in hepatocellular
carcinoma: 2017 update. Oncology. 93 (Suppl 1):S147–S159. 2017.
View Article : Google Scholar
|
|
88
|
Lin D and Wu J: Hypoxia inducible factor
in hepatocellular carcinoma: A therapeutic target. World J
Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z
and Li S: HIF-1α and HIF-2α: Siblings in promoting angiogenesis of
residual hepatocellular carcinoma after high-intensity focused
ultrasound ablation. PLoS One. 9:e889132014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liang Y, Zheng T, Song R, Wang J, Yin D,
Wang L, Liu H, Tian L, Fang X, Meng X, et al: Hypoxia-mediated
sorafenib resistance can be overcome by EF24 through Von
Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in
hepatocellular carcinoma. Hepatology. 57:1847–1857. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu F, Wang P, Jiang X, Tan G, Qiao H,
Jiang H, Krissansen GW and Sun X: Antisense hypoxia-inducible
factor 1alpha gene therapy enhances the therapeutic efficacy of
doxorubicin to combat hepatocellular carcinoma. Cancer Sci.
99:2055–2061. 2008.PubMed/NCBI
|
|
92
|
Brambilla L, Genini D, Laurini E, Merulla
J, Perez L, Fermeglia M, Carbone GM, Pricl S and Catapano CV:
Hitting the right spot: Mechanism of action of OPB-31121, a novel
and potent inhibitor of the signal transducer and activator of
transcription 3 (STAT3). Mol Oncol. 9:1194–1206. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ciombor KK, Feng Y, Benson AB III, Su Y,
Horton L, Short SP, Kauh JS, Staley C, Mulcahy M, Powell M, et al:
Phase II trial of bortezomib plus doxorubicin in hepatocellular
carcinoma (E6202): A trial of the Eastern Cooperative Oncology
Group. Invest New Drugs. 32:1017–1027. 2014. View Article : Google Scholar : PubMed/NCBI
|