Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2020 Volume 19 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2020 Volume 19 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review)

  • Authors:
    • Qingxian Wen
    • Tao Han
    • Zijian Wang
    • Shulong Jiang
  • View Affiliations / Copyright

    Affiliations: Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining Medical University, Jining, Shandong 272000, P.R. China, Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA, Department of Radiation Oncology, Shandong Cancer Hospital, Shandong First Medical University, Jinan, Shandong 250000, P.R. China
    Copyright: © Wen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2595-2601
    |
    Published online on: February 5, 2020
       https://doi.org/10.3892/ol.2020.11369
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immune escape plays a vital role in the development of liver cancer. The interaction between programmed death‑ligand 1 (PD‑L1) and programmed cell death‑1 is a key mediator of cancer immune escape, which leads to the suppression of anticancer immunity and promotion of tumor progression. Hypoxia is a common phenomenon in the tumor microenvironment. Under hypoxic conditions, suppressive immune cells, such as regulatory T cells, myeloid‑derived suppressor cells and M2 macrophages, are frequently recruited to tumor tissues to form the immunosuppressive microenvironment in liver cancer. These cells secrete cancer‑promoting inflammatory cytokines, which activate the STAT3 and NF‑κB signaling pathways. Recent studies have shown that STAT3 is associated with NF‑κB and that these transcription factors are often co‑activated to regulate tumor proliferation, survival, angiogenesis and invasion. The activation of STAT3 and NF‑κB signaling pathways can directly and indirectly induce PD‑L1 expression. Therefore, further understanding of the association between hypoxia and PD‑L1 may help in the future treatment of liver cancer. The present review summarizes the recent progresses on PD‑L1‑mediated regulation and facilitation of liver cancer cell immune escape in response to hypoxia.
View Figures

Figure 1

Figure 2

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Han C, Jiang Y, Wang Z and Wang H: Natural killer cells involved in tumour immune escape of hepatocellular carcinomar. Int Immunopharmacol. 73:10–16. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Xie Y, Xiang Y, Sheng J, Zhang D, Yao X, Yang Y and Zhang X: Immunotherapy for hepatocellular carcinoma: Current advances and future expectations. J Immunol Res. 2018:87409762018. View Article : Google Scholar : PubMed/NCBI

4 

Harding JJ, El Dika I and Abou-Alfa GK: Immunotherapy in hepatocellular carcinoma: Primed to make a difference? Cancer. 122:367–377. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Najafi M, Farhood B and Mortezaee K: Contribution of regulatory T cells to cancer: A review. J Cell Physiol. 234:7983–7993. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Shergold AL, Millar R and Nibbs RJB: Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res. 145:1042582019. View Article : Google Scholar : PubMed/NCBI

9 

Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A and Lambris JD: Complementing the cancer-immunity cycle. Front Immunol. 10:7742019. View Article : Google Scholar : PubMed/NCBI

10 

Prestipino A and Zeiser R: Clinical implications of tumor-intrinsic mechanisms regulating PD-L1. Sci Transl Med. 11(pii): eaav48102019. View Article : Google Scholar : PubMed/NCBI

11 

Iñarrairaegui M, Melero I and Sangro B: Immunotherapy of hepatocellular carcinoma: Facts and hopes. Clin Cancer Res. 24:1518–1524. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T and Konishi I: PD-1/PD-L1 blockade in cancer treatment: Perspectives and issues. Int J Clin Oncol. 21:462–473. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Mocan T, Sparchez Z, Craciun R, Bora CN and Leucuta DC: Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: Prognostic and therapeutic perspectives. Clin Transl Oncol. 21:702–712. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Ho CM, Chen HL, Hu RH and Lee PH: Harnessing immunotherapy for liver recipients with hepatocellular carcinoma: A review from a transplant oncology perspective. Ther Adv Med Oncol. 11:17588359198434632019. View Article : Google Scholar : PubMed/NCBI

15 

Barsoum IB, Smallwood CA, Siemens DR and Graham CH: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74:665–674. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Guo R, Li Y, Wang Z, Bai H, Duan J, Wang S, Wang L and Wang J: Hypoxia-inducible factor-1α and nuclear factor-κB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci. 110:1665–1675. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L and Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Terry S, Buart S and Chouaib S: Hypoxic stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity. Front Immunol. 8:16252017. View Article : Google Scholar : PubMed/NCBI

20 

Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, et al: Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res. 74:24–30. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Labiano S, Palazon A and Melero I: Immune response regulation in the tumor microenvironment by hypoxia. Semin Oncol. 42:378–386. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Reig M, Boix L, Mariño Z, Torres F, Forns X and Bruix J: Liver cancer emergence associated with antiviral treatment: An immune surveillance failure? Semin Liver Dis. 37:109–118. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, et al: Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 59:1415–1426. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Owusu Sekyere S, Schlevogt B, Mettke F, Kabbani M, Deterding K, Wirth TC, Vogel A, Manns MP, Falk CS, Cornberg M, et al: HCC Immune surveillance and antiviral therapy of hepatitis C virus infection. Liver Cancer. 8:41–65. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Kudo M: Systemic therapy for hepatocellular carcinoma: Latest advances. Cancers (Basel). 10(pii): E4122018. View Article : Google Scholar : PubMed/NCBI

28 

Sahin B: Enlighting the shadow for advanced hepatocellular carcinoma: Immunotherapy with immune checkpoint inhibitors. J Gastrointest Cancer. 48:288–290. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Waidmann O: Recent developments with immunotherapy for hepatocellular carcinoma. Expert Opin Biol Ther. 18:905–910. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Kosti P, Maher J and Arnold JN: Perspectives on chimeric antigen receptor T-cell immunotherapy for solid tumors. Front Immunol. 9:11042018. View Article : Google Scholar : PubMed/NCBI

32 

Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Chen Y, Wang Q, Shi B, Xu P, Hu Z, Bai L and Zhang X: Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine. 56:231–238. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, et al: Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 15:971–979. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Lian S, Xie R, Ye Y, Xie X, Li S, Lu Y, Li B, Cheng Y, Katanaev VL and Jia L: Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine. 42:281–295. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Sun C, Mezzadra R and Schumacher TN: Regulation and function of the PD-L1 checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR and Bleackley RC: Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol. 20:3781–3794. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Sanmamed MF and Chen L: Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J. 20:256–261. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou J and Kuang DM: Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol. 41:2314–2322. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Andersen MH: The balance players of the adaptive immune system. Cancer Res. 78:1379–1382. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Galdiero MR, Garlanda C, Jaillon S, Marone G and Mantovani A: Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 228:1404–1412. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Campbell DJ and Koch MA: Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 11:119–130. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Liu H, Bakthavatsalam R, Meng Z, Li Z, Li W, Perkins JD and Reyes J: PD-L1 signal on liver dendritic cells is critical for Foxp3(+)CD4(+)CD25(+) Treg and liver tolerance induction in mice. Transplant Proc. 45:1853–1855. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Beswick EJ, Pinchuk IV, Das S, Powell DW and Reyes VE: Expression of the programmed death ligand 1, B7-H1, on gastric epithelial cells after Helicobacter pylori exposure promotes development of CD4+ CD25+ FoxP3+ regulatory T cells. Infect Immun. 75:4334–4341. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Ding Q, Lu L, Zhou X, Zhou Y and Chou KY: Human PD-L1-overexpressing porcine vascular endothelial cells induce functionally suppressive human CD4+CD25hiFoxp3+ Treg cells. J Leukoc Biol. 90:77–86. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Geng L, Deng J, Jiang G, Song P, Wang Z, Jiang Z, Zhang M and Zheng S: B7-H1 up-regulated expression in human hepatocellular carcinoma tissue: Correlation with tumor interleukin-10 levels. Hepatogastroenterology. 58:960–964. 2011.PubMed/NCBI

47 

Sormendi S and Wielockx B: Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol. 9:402018. View Article : Google Scholar : PubMed/NCBI

48 

Deng J, Li J, Sarde A, Lines JL, Lee YC, Qian DC, Pechenick DA, Manivanh R, Le Mercier I, Lowrey CH, et al: Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol Res. 7:1079–1090. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Hayashi Y, Yokota A, Harada H and Huang G: Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer. Cancer Sci. 110:1510–1517. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Chouaib S, Umansky V and Kieda C: The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol (Pozn). 22:7–13. 2018.PubMed/NCBI

51 

Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X, Zhang J, Xu S, Li T, Zhang P, et al: Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget. 7:80521–80542. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Vaupel P and Multhoff G: Hypoxia-/HIF-1α-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. Adv Exp Med Biol. 1072:171–175. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Kumar V and Gabrilovich DI: Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology. 143:512–519. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Gabrilovich DI and Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Rodriguez PC, Ochoa AC and Al-Khami AA: Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol. 8:932017. View Article : Google Scholar : PubMed/NCBI

56 

Munder M, Choi BS, Rogers M and Kropf P: L-arginine deprivation impairs Leishmania major-specific T-cell responses. Eur J Immunol. 39:2161–2172. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Hu CE, Gan J, Zhang RD, Cheng YR and Huang GJ: Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol. 46:156–164. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF and Korangy F: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 50:799–807. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF and Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 135:234–243. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, Kiefer P, Bosserhoff AK and Hellerbrand C: Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci. 100:646–653. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Ju MJ, Qiu SJ, Fan J, Xiao YS, Gao Q, Zhou J, Li YW and Tang ZY: Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol. 131:498–510. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Soni S and Padwad YS: HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol. 56:503–515. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Xia Y, Jiang L and Zhong T: The role of HIF-1α in chemo-/radioresistant tumors. Onco Targets Ther. 11:3003–3011. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Petrova V, Annicchiarico-Petruzzelli M, Melino G and Amelio I: The hypoxic tumour microenvironment. Oncogenesis. 7:102018. View Article : Google Scholar : PubMed/NCBI

66 

Günter J, Ruiz-Serrano A, Pickel C, Wenger RH and Scholz CC: The functional interplay between the HIF pathway and the ubiquitin system-more than a one-way road. Exp Cell Res. 356:152–159. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Rabinovich GA, Gabrilovich D and Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S and Wang J: Microvesicles and chemokines in tumor microenvironment: Mediators of intercellular communications in tumor progression. Mol Cancer. 18:502019. View Article : Google Scholar : PubMed/NCBI

69 

Gun SY, Lee SWL, Sieow JL and Wong SC: Targeting immune cells for cancer therapy. Redox Biol. 25:1011742019. View Article : Google Scholar : PubMed/NCBI

70 

Wang Y, Shen Y, Wang S, Shen Q and Zhou X: The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett. 415:117–128. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Huynh J, Chand A, Gough D and Ernst M: Therapeutically exploiting STAT3 activity in cancer-using tissue repair as a road map. Nat Rev Cancer. 19:82–96. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Loh CY, Arya A, Naema AF, Wong WF, Sethi G and Looi CY: Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: Functions and therapeutic implication. Front Oncol. 9:482019. View Article : Google Scholar : PubMed/NCBI

73 

Capece D, Verzella D, Tessitore A, Alesse E, Capalbo C and Zazzeroni F: Cancer secretome and inflammation: The bright and the dark sides of NF-κB. Semin Cell Dev Biol. 78:51–61. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Yu H, Kortylewski M and Pardoll D: Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N and Taketomi A: Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 108:1947–1952. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC and Aggarwal BB: Chronic diseases, inflammation, and spices: How are they linked? J Transl Med. 16:142018. View Article : Google Scholar : PubMed/NCBI

77 

Yu H, Pardoll D and Jove R: STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Fan Y, Mao R and Yang J: NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 4:176–185. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Gao P, Niu N, Wei T, Tozawa H, Chen X, Zhang C, Zhang J, Wada Y, Kapron CM and Liu J: The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget. 8:69139–69161. 2017.PubMed/NCBI

80 

Cascio S, D'Andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N and Russo A: miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J Cell Physiol. 224:242–249. 2010.PubMed/NCBI

81 

Van Welden S, Selfridge AC and Hindryckx P: Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 14:596–611. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T and Gorlach A: Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. 18:4691–4697. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Chen J, Li G, Meng H, Fan Y, Song Y, Wang S, Zhu F, Guo C, Zhang L and Shi Y: Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunol Immunother. 61:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, Tang Y, Zhang Y, Kang S, Zhou T, et al: EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget. 5:12189–12202. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Wölfle SJ, Strebovsky J, Bartz H, Sähr A, Arnold C, Kaiser C, Dalpke AH and Heeg K: PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol. 41:413–424. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Huang G, Wen Q, Zhao Y, Gao Q and Bai Y: NF-κB plays a key role in inducing CD274 expression in human monocytes after lipopolysaccharide treatment. PLoS One. 8:e616022013. View Article : Google Scholar : PubMed/NCBI

87 

Kudo M: Immuno-oncology in hepatocellular carcinoma: 2017 update. Oncology. 93 (Suppl 1):S147–S159. 2017. View Article : Google Scholar

88 

Lin D and Wu J: Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target. World J Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z and Li S: HIF-1α and HIF-2α: Siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation. PLoS One. 9:e889132014. View Article : Google Scholar : PubMed/NCBI

90 

Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, Liu H, Tian L, Fang X, Meng X, et al: Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology. 57:1847–1857. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Liu F, Wang P, Jiang X, Tan G, Qiao H, Jiang H, Krissansen GW and Sun X: Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci. 99:2055–2061. 2008.PubMed/NCBI

92 

Brambilla L, Genini D, Laurini E, Merulla J, Perez L, Fermeglia M, Carbone GM, Pricl S and Catapano CV: Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3 (STAT3). Mol Oncol. 9:1194–1206. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Ciombor KK, Feng Y, Benson AB III, Su Y, Horton L, Short SP, Kauh JS, Staley C, Mulcahy M, Powell M, et al: Phase II trial of bortezomib plus doxorubicin in hepatocellular carcinoma (E6202): A trial of the Eastern Cooperative Oncology Group. Invest New Drugs. 32:1017–1027. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wen Q, Han T, Wang Z and Jiang S: Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review). Oncol Lett 19: 2595-2601, 2020.
APA
Wen, Q., Han, T., Wang, Z., & Jiang, S. (2020). Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review). Oncology Letters, 19, 2595-2601. https://doi.org/10.3892/ol.2020.11369
MLA
Wen, Q., Han, T., Wang, Z., Jiang, S."Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review)". Oncology Letters 19.4 (2020): 2595-2601.
Chicago
Wen, Q., Han, T., Wang, Z., Jiang, S."Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review)". Oncology Letters 19, no. 4 (2020): 2595-2601. https://doi.org/10.3892/ol.2020.11369
Copy and paste a formatted citation
x
Spandidos Publications style
Wen Q, Han T, Wang Z and Jiang S: Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review). Oncol Lett 19: 2595-2601, 2020.
APA
Wen, Q., Han, T., Wang, Z., & Jiang, S. (2020). Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review). Oncology Letters, 19, 2595-2601. https://doi.org/10.3892/ol.2020.11369
MLA
Wen, Q., Han, T., Wang, Z., Jiang, S."Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review)". Oncology Letters 19.4 (2020): 2595-2601.
Chicago
Wen, Q., Han, T., Wang, Z., Jiang, S."Role and mechanism of programmed death‑ligand 1 in hypoxia‑induced liver cancer immune escape (Review)". Oncology Letters 19, no. 4 (2020): 2595-2601. https://doi.org/10.3892/ol.2020.11369
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team