|
1
|
Levy DE and Darnell JE Jr: Stats:
Transcriptional control and biological impact. Nat Rev Mol Cell
Biol. 3:651–662. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schindler C, Levy DE and Decker T:
JAK-STAT signaling: From interferons to cytokines. J Biol Chem.
282:20059–20063. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Reich NC and Liu L: Tracking STAT nuclear
traffic. Nat Rev Immunol. 6:602–612. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Stark GR and Darnell JE Jr: The JAK-STAT
pathway at twenty. Immunity. 36:503–514. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: A leading role for STAT-3. Nat
Rev Cancer. 9:798–809. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bromberg J and Darnell JE Jr: The role of
STATs in transcriptional control and their impact on cellular
function. Oncogene. 19:2468–2473. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Darnell JE Jr: STATs and gene regulation.
Science. 277:1630–1635. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Buettner R, Mora LB and Jove R: Activated
STAT signaling in human tumors provides novel molecular targets for
therapeutic intervention. Clin Cancer Res. 8:945–954.
2002.PubMed/NCBI
|
|
9
|
Yu H and Jove R: The STATs of cancer-new
molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Haura EB, Turkson J and Jove R: Mechanisms
of disease: Insights into the emerging role of signal transducers
and activators of transcription in cancer. Nat Clin Pract Oncol.
2:315–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Herrmann A, Kortylewski M, Kujawski M,
Zhang C, Reckamp K, Armstrong B, Wang L, Kowolik C, Deng J, Figlin
R and Yu H: Targeting STAT3 in the myeloid compartment drastically
improves the in vivo antitumor functions of adoptively transferred
T cells. Cancer Res. 70:7455–7464. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kortylewski M and Yu H: Role of STAT-3 in
suppressing anti-tumor immunity. Curr Opin Immunol. 20:228–233.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kujawski M, Kortylewski M, Lee H, Herrmann
A, Kay H and Yu H: STAT-3 mediates myeloid cell-dependent tumor
angiogenesis in mice. J Clin Invest. 118:3367–3377. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang L, Yi T, Kortylewski M, Pardoll DM,
Zeng D and Yu H: IL-17 can promote tumor growth through an
IL-6-STAT-3 signaling pathway. J Exp Med. 206:1457–1464. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kortylewski M, Kujawski M, Wang T, Wei S,
Zhang S, Pilon-Thomas S, Niu G, Kay H, Mulé J, Kerr WG, et al:
Inhibiting STAT3 signaling in the hematopoietic system elicits
multicomponent antitumor immunity. Nat Med. 11:1314–1321. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yu H, Kortylewski M and Pardoll D:
Crosstalk between cancer and immune cells: Role of STAT-3 in the
tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nowak EM, Poczęta M, Bieg D and Bednarek
I: DNA methyltransferase inhibitors influence on the DIRAS3 and
STAT3 expression and in vitro migration of ovarian and breast
cancer cells. Ginekol Pol. 88:543–551. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu H, Lee H, Herrmann A, Buettner R and
Jove R: Revisiting STAT3 signalling in cancer: New and unexpected
biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mali SB: Review of STAT3 (Signal
Transducers and Activators of Transcription) in head and neck
cancer. Oral Oncol. 51:565–569. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Benekli M, Baer MR, Baumann H and Wetzler
M: Signal transducer and activator of transcription proteins in
leukemias. Blood. 101:2940–2954. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Calò V, Migliavacca M, Bazan V, Macaluso
M, Buscemi M, Gebbia N and Russo A: STAT proteins: From normal
control of cellular events to tumorigenesis. J Cell Physiol.
197:157–168. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sternberg DW and Gilliland DG: The role of
signal transducer and activator of transcription factors in
leukemogenesis. J Clin Oncol. 22:361–371. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Abroun S, Saki N, Ahmadvand M, Asghari F,
Salari F and Rahim F: STATs: An old story, yet mesmerizing. Cell J.
17:395–411. 2015.PubMed/NCBI
|
|
24
|
Yang E, Henriksen MA, Schaefer O,
Zakharova N and Darnell JE Jr: Dissociation time from DNA
determines transcriptional function in a STAT1 linker mutant. J
Biol Chem. 277:13455–13462. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wake MS and Watson CJ: STAT3 the
oncogene-still eluding therapy? FEBS J. 282:2600–2611. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huang Y, Qiu J, Dong S, Redell MS, Poli V,
Mancini MA and Tweardy DJ: Stat3 isoforms, alpha and beta,
demonstrate distinct intracellular dynamics with prolonged nuclear
retention of Stat3beta mapping to its unique C-terminal end. J Biol
Chem. 282:34958–34967. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chakraborty A, Dyer KF, Cascio M, Mietzner
TA and Tweardy DJ: Identification of a novel STAT-3 recruitment and
activation motif within the granulocyte colony-stimulating factor
receptor. Blood. 93:15–24. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chakraborty A and Tweardy DJ: STAT-3 and
G-CSF-induced myeloid differentiation. Leuk Lymphoma. 30:433–442.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ilaria RL Jr: STAT isoforms: Mediators of
STAT specificity or leukemogenesis? Leuk Res. 25:483–484. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Huynh J, Chand A, Gough D and Ernst M:
Therapeutically exploiting STAT3 activity in cancer-using tissue
repair as a road map. Nat Rev Cancer. 19:82–96. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chai EZ, Shanmugam MK, Arfuso F,
Dharmarajan A, Wang C, Kumar AP, Samy RP, Lim LH, Wang L, Goh BC,
et al: Targeting transcription factor STAT3 for cancer prevention
and therapy. Pharmacol Ther. 162:86–97. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu
Y, Zhu W, Tremblay M, David M and Shuai K: Identification of a
nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol.
22:5662–5668. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shuai K and Liu B: Regulation of
gene-activation pathways by PIAS proteins in the immune system. Nat
Rev Immunol. 5:593–605. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chung CD, Liao J, Liu B, Rao X, Jay P,
Berta P and Shuai K: Specific inhibition of STAT-3 signal
transduction by PIAS3. Science. 278:1803–1805. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu B, Gross M, ten Hoeve J and Shuai K: A
transcriptional corepressor of Stat1 with an essential LXXLL
signature motif. Proc Natl Acad Sci USA. 98:3203–3207. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu B, Liao J, Rao X, Kushner SA, Chung
CD, Chang DD and Shuai K: Inhibition of Stat1-mediated gene
activation by PIAS1. Proc Natl Acad Sci USA. 95:10626–10631. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Verhoeven Y, Tilborghs S, Jacobs J, De
Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB,
Wouters A, et al: The potential and controversy of targeting STAT
family members in cancer. Semin Cancer Biol. Oct 9–2019.doi:
10.1016/j.semcancer.2019.10.002 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Catlett-Falcone R, Landowski TH, Oshiro
MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L,
Fernández-Luna JL, Nuñez G, et al: Constitutive activation of STAT3
signaling confers resistance to apoptosis in human U266 myeloma
cells. Immunity. 10:105–115. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huynh J, Etemadi N, Hollande F, Ernst M
and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for
solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Park EJ, Lee JH, Yu GY, He G, Ali SR,
Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and
genetic obesity promote liver inflammation and tumorigenesis by
enhancing IL-6 and TNF expression. Cell. 140:197–208. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jones SA, Scheller J and Rose-John S:
Therapeutic strategies for the clinical blockade of IL-6/gp130
signaling. J Clin Invest. 121:3375–3383. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Grivennikov S, Karin E, Terzic J, Mucida
D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H,
Eckmann L and Karin M: IL-6 and STAT3 are required for survival of
intestinal epithelial cells and development of colitis-associated
cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bollrath J, Phesse TJ, von Burstin VA,
Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T,
Canli O, Schwitalla S, et al: Gp130-mediated STAT3 activation in
enterocytes regulates cell survival and cell-cycle progression
during colitis-associated tumorigenesis. Cancer Cell. 15:91–102.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Schiechl G, Bauer B, Fuss I, Lang SA,
Moser C, Ruemmele P, Rose-John S, Neurath MF, Geissler EK, Schlitt
HJ, et al: Tumor development in murine ulcerative colitis depends
on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low)
macrophages. J Clin Invest. 121:1692–1708. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang L, Yang J, Qian J, Li H, Romaguera
JE, Kwak LW, Wang M and Yi Q: Role of the microenvironment in
mantle cell lymphoma: IL-6 is an important survival factor for the
tumor cells. Blood. 120:3783–3792. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schafer ZT and Brugge JS: IL-6 involvement
in epithelial cancers. J Clin Invest. 117:3660–3663. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sansone P, Storci G, Tavolari S, Guarnieri
T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P,
Marcu KB, et al: IL-6 triggers malignant features in mammospheres
from human ductal breast carcinoma and normal mammary gland. J Clin
Invest. 117:3988–4002. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pine SR, Mechanic LE, Enewold L,
Chaturvedi AK, Katki HA, Zheng YL, Bowman ED, Engels EA, Caporaso
NE and Harris CC: Increased levels of circulating interleukin 6,
interleukin 8, C-reactive protein, and risk of lung cancer. J Natl
Cancer Inst. 103:1112–1122. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nakashima J, Tachibana M, Horiguchi Y, Oya
M, Ohigashi T, Asakura H and Murai M: Serum interleukin 6 as a
prognostic factor in patients with prostate cancer. Clin Cancer
Res. 6:2702–2706. 2000.PubMed/NCBI
|
|
51
|
Reynaud D, Pietras E, Barry-Holson K, Mir
A, Binnewies M, Jeanne M, Sala-Torra O, Radich JP and Passegué E:
IL-6 controls leukemic multipotent progenitor cell fate and
contributes to chronic myelogenous leukemia development. Cancer
Cell. 20:661–673. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ancrile B, Lim KH and Counter CM:
Oncogenic Ras-induced secretion of IL6 is required for
tumorigenesis. Genes Dev. 21:1714–1719. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gyamfi J, Lee YH, Eom M and Choi J:
Interleukin-6/STAT3 signalling regulates adipocyte induced
epithelial-mesenchymal transition in breast cancer cells. Sci Rep.
8:88592018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X,
Hu H and Wang H: PIM1 is responsible for IL-6-induced breast cancer
cell EMT and stemness via c-myc activation. Breast Cancer.
26:663–671. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim MS, Lee WS, Jeong J, Kim SJ and Jin W:
Induction of metastatic potential by TrkB via activation of
IL6/JAK2/STAT3 and PI3K/AKT signaling in breast cancer. Oncotarget.
6:40158–40171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xin H, Lu R, Lee H, Zhang W, Zhang C, Deng
J, Liu Y, Shen S, Wagner KU, Forman S, et al: G-protein-coupled
receptor agonist BV8/prokineticin-2 and STAT3 protein form a
feed-forward loop in both normal and malignant myeloid cells. J
Biol Chem. 288:13842–13849. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lee H, Deng J, Kujawski M, Yang C, Liu Y,
Herrmann A, Kortylewski M, Horne D, Somlo G, Forman S, et al:
STAT-3-induced S1PR1 expression is crucial for persistent STAT-3
activation in tumors. Nat Med. 16:1421–1428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Visentin B, Vekich JA, Sibbald BJ, Cavalli
AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS, et al:
Validation of an anti-sphingosine-1-phosphate antibody as a
potential therapeutic in reducing growth, invasion, and
angiogenesis in multiple tumor lineages. Cancer Cell. 9:225–238.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kawamori T, Kaneshiro T, Okumura M,
Maalouf S, Uflacker A, Bielawski J, Hannun YA and Obeid LM: Role
for sphingosine kinase 1 in colon carcinogenesis. FASEB J.
23:405–414. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sarkar S, Maceyka M, Hait NC, Paugh SW,
Sankala H, Milstien S and Spiegel S: Sphingosine kinase 1 is
required for migration, proliferation and survival of MCF-7 human
breast cancer cells. FEBS Lett. 579:5313–5317. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu Y, Deng J, Wang L, Lee H, Armstrong B,
Scuto A, Kowolik C, Weiss LM, Forman S and Yu H: S1PR1 is an
effective target to block STAT-3 signaling in activated B cell-like
diffuse large B-cell lymphoma. Blood. 120:1458–1465. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ponnusamy S, Meyers-Needham M, Senkal CE,
Saddoughi SA, Sentelle D, Selvam SP, Salas A and Ogretmen B:
Sphingolipids and cancer: Ceramide and sphingosine-1-phosphate in
the regulation of cell death and drug resistance. Future Oncol.
6:1603–1624. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Priceman SJ, Shen S, Wang L, Deng J, Yue
C, Kujawski M and Yu H: S1PR1 is crucial for accumulation of
regulatory T cells in tumors via STAT3. Cell Rep. 6:992–999. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Eyking A, Ey B, Rünzi M, Roig AI, Reis H,
Schmid KW, Gerken G, Podolsky DK and Cario E: Toll-like receptor 4
variant D299G induces features of neoplastic progression in Caco-2
intestinal cells and is associated with advanced human colon
cancer. Gastroenterology. 141:2154–2165. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tye H, Kennedy CL, Najdovska M, McLeod L,
McCormack W, Hughes N, Dev A, Sievert W, Ooi CH, Ishikawa TO, et
al: STAT-3-driven upregulation of TLR2 promotes gastric
tumorigenesis independent of tumor inflammation. Cancer Cell.
22:466–478. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ochi A, Graffeo CS, Zambirinis CP, Rehman
A, Hackman M, Fallon N, Barilla RM, Henning JR, Jamal M, Rao R, et
al: Toll-like receptor 7 regulates pancreatic carcinogenesis in
mice and humans. J Clin Invest. 122:4118–4129. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wild CA, Brandau S, Lindemann M, Lotfi R,
Hoffmann TK, Lang S and Bergmann C: Toll-like receptors in
regulatory T cells of patients with head and neck cancer. Arch
Otolaryngol Head Neck Surg. 136:1253–1259. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liang F, Ren C, Wang J, Wang S, Yang L,
Han X, Chen Y, Tong G and Yang G: The crosstalk between STAT3 and
p53/RAS signaling controls cancer cell metastasis and cisplatin
resistance via the Slug/MAPK/PI3K/AKTmediated regulation of EMT and
autophagy. Oncogenesis. 8:592019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang JR, Shen GN, Luo YH, Piao XJ, Zhang
Y, Wang H, Li JQ, Xu WT, Zhang Y, Wang SN, et al:
2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone induces
apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in
human gastric cancer cells. J Chemother. 31:214–226. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lakshmanachetty S, Balaiya V, High WA and
Koster MI: Loss of TP63 promotes the metastasis of head and neck
squamous cell carcinoma by activating MAPK and STAT3 signaling. Mol
Cancer Res. 17:1279–1293. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ahmed ST and Ivashkiv LB: Inhibition of
IL-6 and IL-10 signaling and Stat activation by inflammatory and
stress pathways. J Immunol. 165:5227–5237. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yan K, Xu X, Wu T, Li J, Cao G, Li Y and
Ji Z: Knockdown of PYCR1 inhibits proliferation, drug resistance
and EMT in colorectal cancer cells by regulating STAT3-Mediated p38
MAPK and NF-kB signalling pathway. Biochem Biophys Res Commun.
520:486–491. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Benekli M, Baumann H and Wetzler M:
Targeting signal transducer and activator of transcription
signaling pathway in leukemias. J Clin Oncol. 27:4422–4432. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang S, Yang Z, Bao W, Liu L, You Y, Wang
X, Shao L, Fu W, Kou X, Shen W, et al: SNX10 (sorting nexin 10)
inhibits colorectal cancer initiation and progression by
controlling autophagic degradation of SRC. Autophagy. 4:1–15. 2019.
View Article : Google Scholar
|
|
75
|
Liu CY, Huang TT, Chu PY, Huang CT, Lee
CH, Wang WL, Lau KY, Tsai WC, Chao TI, Su JC, et al: The tyrosine
kinase inhibitor nintedanib activates SHP-1 and induces apoptosis
in triple-negative breast cancer cells. Exp Mol Med. 49:e3662017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: A leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jarnicki A, Putoczki T and Ernst M: Stat3:
Linking inflammation to epithelial cancer-more than a ‘gut’
feeling? Cell Div. 5:142010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Siveen KS, Sikka S, Surana R, Dai X, Zhang
J, Kumar AP, Tan BK, Sethi G and Bishayee A: Targeting the STAT3
signaling pathway in cancer: Role of synthetic and natural
inhibitors. Biochim Biophys Acta. 1845:136–154. 2014.PubMed/NCBI
|
|
79
|
Huang DC, Adams JM and Cory S: The
conserved N-terminal BH4 domain of Bcl-2 homologues is essential
for inhibition of apoptosis and interaction with CED-4. EMBO J.
17:1029–1039. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Reed JC: Mechanisms of apoptosis avoidance
in cancer. Curr Opin Oncol. 11:68–75. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Welcker M, Lukas J, Strauss M and Bartek
J: Enhanced protein stability: A novel mechanism of D-type cyclin
over-abundance identified in human sarcoma cells. Oncogene.
13:419–425. 1996.PubMed/NCBI
|
|
82
|
Wei D, Le X, Zheng L, Wang L, Frey JA, Gao
AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL and Xie K: STAT-3
activation regulates the expression of vascular endothelial growth
factor and human pancreatic cancer angiogenesis and metastasis.
Oncogene. 22:319–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dechow TN, Pedranzini L, Leitch A, Leslie
K, Gerald WL, Linkov I and Bromberg JF: Requirement of matrix
metalloproteinase-9 for the transformation of human mammary
epithelial cells by STAT-3-C. Proc Natl Acad Sci USA.
101:10602–10607. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Niu G, Wright KL, Huang M, Song L, Haura
E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, et al:
Constitutive STAT-3 activity up-regulates VEGF expression and tumor
angiogenesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lieblein JC, Ball S, Hutzen B, Sasser AK,
Lin HJ, Huang TH, Hall BM and Lin J: STAT3 can be activated through
paracrine signaling in breast epithelial cells. BMC Cancer.
8:3022008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lin J, Jin X, Rothman K, Lin HJ, Tang H
and Burke W: Modulation of signal transducer and activator of
transcription 3 activities by p53 tumor suppressor in breast cancer
cells. Cancer Res. 62:376–380. 2002.PubMed/NCBI
|
|
87
|
Li L, Tang W, Wu X, Karnak D, Meng X,
Thompson R, Hao X, Li Y, Qiao XT, Lin J, et al: HAb18G/CD147
promotes pSTAT-3-mediated pancreatic cancer development via CD44s.
Clin Cancer Res. 19:6703–6715. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Xu W, Sun D, Wang Y, Zheng X, Li Y, Xia Y
and Teng Y: Inhibitory effect of microRNA-608 on lung cancer cell
proliferation, migration, and invasion by targeting BRD4 through
the JAK2/STAT3 pathway. Bosn J Basic Med Sci. Oct 17–2019.doi:
10.17305/bjbms.2019.4216 (Epub ahead of print). View Article : Google Scholar
|
|
89
|
Sun R, Liu Z, Qiu B, Chen T, Li Z, Zhang
X, Xu Y and Zhang Z: Annexin10 promotes extrahepatic
cholangiocarcinoma metastasis by facilitating EMT via
PLA2G4A/PGE2/STAT3 pathway. EBioMedicine. 47:142–155. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sun C and Bernards R: Feedback and
redundancy in receptor tyrosine kinase signaling: Relevance to
cancer therapies. Trends Biochem Sci. 39:465–474. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li G, Zhao L, Li W, Fan K, Qian W, Hou S,
Wang H, Dai J, Wei H and Guo Y: Feedback activation of STAT3
mediates trastuzumab resistance via upregulation of MUC1 and MUC4
expression. Oncotarget. 5:8317–8329. 2014.PubMed/NCBI
|
|
92
|
Song H, Wang R, Wang S and Lin J: A
low-molecular-weight compound discovered through virtual database
screening inhibits STAT-3 function in breast cancer cells. Proc
Natl Acad Sci USA. 102:4700–4705. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen CL, Cen L, Kohout J, Hutzen B, Chan
C, Hsieh FC, Loy A, Huang V, Cheng G and Lin J: Signal transducer
and activator of transcription 3 activation is associated with
bladder cancer cell growth and survival. Mol Cancer. 7:782008.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Miyoshi K, Takaishi M, Nakajima K, Ikeda
M, Kanda T, Tarutani M, Iiyama T, Asao N, DiGiovanni J and Sano S:
STAT3 as a therapeutic target for the treatment of psoriasis: A
clinical feasibility study with STA-21, a STAT3 inhibitor. J Invest
Dermatol. 131:108–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Park JS, Kwok SK, Lim MA, Kim EK, Ryu JG,
Kim SM, Oh HJ, Ju JH, Park SH, Kim HY and Cho ML: STA-21, a
promising STAT-3 inhibitor that reciprocally regulates Th17 and
Treg cells, inhibits osteoclastogenesis in mice and humans and
alleviates autoimmune inflammation in an experimental model of
rheumatoid arthritis. Arthritis Rheumatol. 66:918–929. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C
and Lin J: STAT-3 is necessary for proliferation and survival in
colon cancer-initiating cells. Cancer Res. 71:7226–7237. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lin L, Benson DM Jr, DeAngelis S, Bakan
CE, Li PK, Li C and Lin J: A small molecule, LLL12 inhibits
constitutive STAT-3 and IL-6-induced STAT-3 signaling and exhibits
potent growth suppressive activity in human multiple myeloma cells.
Int J Cancer. 130:1459–1469. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu Y, Li PK, Li C and Lin J: Inhibition
of STAT-3 signaling blocks the anti-apoptotic activity of IL-6 in
human liver cancer cells. J Biol Chem. 285:27429–27439. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Jain R, Kulkarni P, Dhali S, Rapole S and
Srivastava S: Quantitative proteomic analysis of global effect of
LLL12 on U87 cell's proteome: An insight into the molecular
mechanism of LLL12. J Proteomics. 113:127–142. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zuo M, Li C, Lin J and Javle M: LLL12, a
novel small inhibitor targeting STAT-3 for hepatocellular carcinoma
therapy. Oncotarget. 6:10940–10949. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bid HK, Kibler A, Phelps DA, Manap S, Xiao
L, Lin J, Capper D, Oswald D, Geier B, DeWire M, et al:
Development, characterization, and reversal of acquired resistance
to the MEK1 inhibitor selumetinib (AZD6244) in an in vivo model of
childhood astrocytoma. Clin Cancer Res. 19:6716–6729. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Siddiquee K, Zhang S, Guida WC, Blaskovich
MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence
NJ, et al: Selective chemical probe inhibitor of STAT3, identified
through structure-based virtual screening, induces antitumor
activity. Proc Natl Acad Sci USA. 104:7391–7396. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang X, Yue P, Fletcher S, Zhao W,
Gunning PT and Turkson J: A novel small-molecule disrupts STAT-3
SH2 domain-phosphotyrosine interactions and STAT-3-dependent tumor
processes. Biochem Pharmacol. 79:1398–1409. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fletcher S, Singh J, Zhang X, Yue P, Page
BD, Sharmeen S, Shahani VM, Zhao W, Schimmer AD, Turkson J and
Gunning PT: Disruption of transcriptionally active Stat3 dimers
with non-phosphorylated, salicylic acid-based small molecules:
Potent in vitro and tumor cell activities. Chembiochem.
10:1959–1964. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang X, Yue P, Page BD, Li T, Zhao W,
Namanja AT, Paladino D, Zhao J, Chen Y, Gunning PT and Turkson J:
Orally bioavailable small-molecule inhibitor of transcription
factor Stat-3 regresses human breast and lung cancer xenografts.
Proc Natl Acad Sci USA. 109:9623–9628. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Resetca D, Haftchenary S, Gunning PT and
Wilson DJ: Changes in signal transducer and activator of
transcription 3 (STAT-3) dynamics induced by complexation with
pharmacological inhibitors of Src homology 2 (SH2) domain
dimerization. J Biol Chem. 289:32538–32547. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Haftchenary S, Luchman HA, Jouk AO, Veloso
AJ, Page BD, Cheng XR, Dawson SS, Grinshtein N, Shahani VM, Kerman
K, et al: Potent targeting of the STAT 3 protein in brain cancer
stem cells: A promising route for treating glioblastoma. ACS Med
Chem Lett. 4:1102–1107. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhao C, Xiao H, Wu X, Li C, Liang G, Yang
S and Lin J: Rational combination of MEK inhibitor and the STAT-3
pathway modulator for the therapy in K-Ras mutated pancreatic and
colon cancer cells. Oncotarget. 6:14472–14487. 2015.PubMed/NCBI
|
|
109
|
Xiao H, Bid HK, Jou D, Wu X, Yu W, Li C,
Houghton PJ and Lin J: A novel small molecular STAT-3 inhibitor,
LY5, inhibits cell viability, cell migration, and angiogenesis in
medulloblastoma cells. J Biol Chem. 290:3418–3429. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hayakawa F, Sugimoto K, Harada Y,
Hashimoto N, Ohi N, Kurahashi S and Naoe T: A novel STAT inhibitor,
OPB-31121, has a significant antitumor effect on leukemia with
STAT-addictive oncokinases. Blood Cancer J. 3:e1662013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kim MJ, Nam HJ, Kim HP, Han SW, Im SA, Kim
TY, Oh DY and Bang YJ: OPB-31121, a novel small molecular
inhibitor, disrupts the JAK2/STAT-3 pathway and exhibits an
antitumor activity in gastric cancer cells. Cancer Lett.
335:145–152. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yu W, Xiao H, Lin J and Li C: Discovery of
novel STAT3 small molecule inhibitors via in silico site-directed
fragment-based drug design. J Med Chem. 56:4402–4412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Huang W, Dong Z, Chen Y, Wang F, Wang CJ,
Peng H, He Y, Hangoc G, Pollok K, Sandusky G, et al: Small-molecule
inhibitors targeting the DNA-binding domain of STAT-3 suppress
tumor growth, metastasis and STAT-3 target gene expression in vivo.
Oncogene. 35:8022016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Huang W, Dong Z, Wang F, Peng H, Liu JY
and Zhang JT: A small molecule compound targeting STAT-3
DNA-binding domain inhibits cancer cell proliferation, migration,
and invasion. ACS Chem Biol. 9:1188–1196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ogura M, Uchida T, Terui Y, Hayakawa F,
Kobayashi Y, Taniwaki M, Takamatsu Y, Naoe T, Tobinai K, Munakata
W, et al: Phase I study of OPB-51602, an oral inhibitor of signal
transducer and activator of transcription 3, in patients with
relapsed/refractory hematological malignancies. Cancer Sci.
106:896–901. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wong AL, Soo RA, Tan DS, Lee SC, Lim JS,
Marban PC, Kong LR, Lee YJ, Wang LZ, Thuya WL, et al: Phase I and
biomarker study of OPB-51602, a novel signal transducer and
activator of transcription (STAT) 3 inhibitor, in patients with
refractory solid malignancies. Ann Oncol. 26:998–1005. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Brambilla L, Genini D, Laurini E, Merulla
J, Perez L, Fermeglia M, Carbone GM, Pricl S and Catapano CV:
Hitting the right spot: Mechanism of action of OPB-31121, a novel
and potent inhibitor of the Signal Transducer and Activator of
Transcription 3 (STAT-3). Mol Oncol. 9:1194–1206. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Oh DY, Lee SH, Han SW, Kim MJ, Kim TM, Kim
TY, Heo DS, Yuasa M, Yanagihara Y and Bang YJ: Phase I study of
OPB-31121, an Oral STAT-3 inhibitor, in patients with advanced
solid tumors. Cancer Res Treat. 47:607–615. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Okusaka T, Ueno H, Ikeda M, Mitsunaga S,
Ozaka M, Ishii H, Yokosuka O, Ooka Y, Yoshimoto R, Yanagihara Y and
Okita K: Phase 1 and pharmacological trial of OPB-31121, a signal
transducer and activator of transcription-3 inhibitor in patients
with advanced hepatocellular carcinoma. Hepatol Res. 45:1283–1291.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Takakura A, Nelson EA, Haque N, Humphreys
BD, Zandi-Nejad K, Frank DA and Zhou J: Pyrimethamine inhibits
adult polycystic kidney disease by modulating STAT signaling
pathways. Hum Mol Genet. 20:4143–4154. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Meydan N, Grunberger T, Dadi H, Shahar M,
Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, et
al: Inhibition of acute lymphoblastic leukaemia by a Jak-2
inhibitor. Nature. 379:645–648. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Jin J, Guo Q, Xie J, Jin D and Zhu Y:
Combination of MEK inhibitor and the JAK2-STAT3 pathway inhibition
for the therapy of colon cancer. Pathol Oncol Res. 25:769–775.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Joung YH, Na YM, Yoo YB, Darvin P, Sp N,
Kang DY, Kim SY, Kim HS, Choi YH, Lee HK, et al: Combination of
AG490, a Jak2 inhibitor, and methylsulfonylmethane synergistically
suppresses bladder tumor growth via the Jak2/STAT3 pathway. Int J
Oncol. 44:883–895. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Pandey MK, Sung B and Aggarwal BB:
Betulinic acid suppresses STAT-3 activation pathway through
induction of protein tyrosine phosphatase SHP-1 in human multiple
myeloma cells. Int J Cancer. 127:282–292. 2010.PubMed/NCBI
|
|
125
|
Su D, Gao YQ, Dai WB, Hu Y, Wu YF and Mei
QX: Helicteric acid, oleanic acid, and betulinic acid, three
triterpenes from helicteres angustifolia L., Inhibit proliferation
and induce apoptosis in HT-29 colorectal cancer cells via
suppressing NF-κB and STAT3 signaling. Evid Based Complement
Alternat Med. 2017:51807072017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Nardini M, Pisu P, Gentili V, Natella F,
Di Felice M, Piccolella E and Scaccini C: Effect of caffeic acid on
tert-butyl hydroperoxide-induced oxidative stress in U937. Free
Radic Biol Med. 25:1098–1105. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tapiero H, Tew KD, Ba GN and Mathe G:
Polyphenols: Do they play a role in the prevention of human
pathologies? Biomed Pharmacother. 56:200–207. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Nardini M, Leonardi F, Scaccini C and
Virgili F: Modulation of ceramide-induced NF-kappaB binding
activity and apoptotic response by caffeic acid in U937 cells:
Comparison with other antioxidants. Free Radic Biol Med.
30:722–733. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Jung JE, Kim HS, Lee CS, Park DH, Kim YN,
Lee MJ, Lee JW, Park JW, Kim MS, Ye SK and Chung MH: Caffeic acid
and its synthetic derivative CADPE suppress tumor angiogenesis by
blocking STAT-3-mediated VEGF expression in human renal carcinoma
cells. Carcinogenesis. 28:1780–1787. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Rajendran P, Li F, Shanmugam MK, Kannaiyan
R, Goh JN, Wong KF, Wang W, Khin E, Tergaonkar V, Kumar AP, et al:
Celastrol suppresses growth and induces apoptosis of human
hepatocellular carcinoma through the modulation of STAT-3/JAK2
signaling cascade in vitro and in vivo. Cancer Prev Res (Phila).
5:631–643. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Kannaiyan R, Hay HS, Rajendran P, Li F,
Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, et
al: Celastrol inhibits proliferation and induces chemosensitization
through down-regulation of NF-KB and STAT-3 regulated gene products
in multiple myeloma cells. Br J Pharmacol. 164:1506–1521. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Pang X, Yi Z, Zhang J, Lu B, Sung B, Qu W,
Aggarwal BB and Liu M: Celastrol suppresses angiogenesis-mediated
tumor growth through inhibition of AKT/mammalian target of
rapamycin pathway. Cancer Res. 70:1951–1959. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Lu Z, Jin Y, Qiu L, Lai Y and Pan J:
Celastrol, a novel HSP90 inhibitor, depletes Bcr-Abl and induces
apoptosis in imatinib-resistant chronic myelogenous leukemia cells
harboring T315I mutation. Cancer Lett. 290:182–191. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Weissenberger J, Priester M, Bernreuther
C, Rakel S, Glatzel M, Seifert V and Kögel D: Dietary curcumin
attenuates glioma growth in a syngeneic mouse model by inhibition
of the JAK1,2/STAT-3 signaling pathway. Clin Cancer Res.
16:5781–5795. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Li F, Fernandez PP, Rajendran P, Hui KM
and Sethi G: Diosgenin, a steroidal saponin, inhibits STAT-3
signaling pathway leading to suppression of proliferation and
chemosensitization of human hepatocellular carcinoma cells. Cancer
Lett. 292:197–207. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Rajendran P, Li F, Shanmugam MK, Vali S,
Abbasi T, Kapoor S, Ahn KS, Kumar AP and Sethi G: Honokiol inhibits
signal transducer and activator of transcription-3 signaling,
proliferation, and survival of hepatocellular carcinoma cells via
the protein tyrosine phosphatase SHP-1. J Cell Physiol.
227:2184–2195. 2012. View Article : Google Scholar : PubMed/NCBI
|