|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tartari F, Santoni M, Pistelli M and
Berardi R: Healthcare cost of HER2-positive and negative breast
tumors in the United States (2012–2035). Cancer Treat Rev.
60:12–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Maheshwari RK, Singh AK, Gaddipati J and
Srimal RC: Multiple biological activities of curcumin: A short
review. Life Sci. 78:2081–2087. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jin TR: Curcumin and dietary polyphenol
research: Beyond drug discovery. Acta Pharmacol Sin. 39:779–786.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sa G and Das T: Anti cancer effects of
curcumin: Cycle of life and death. Cell Div. 3:142008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Saha S, Adhikary A, Bhattacharyya P, Das T
and Sa G: Death by design: Where curcumin sensitizes drug-resistant
tumours. Anticancer Res. 32:2567–2584. 2012.PubMed/NCBI
|
|
9
|
Aggarwal BB and Harikumar KB: Potential
therapeutic effects of curcumin, the anti-inflammatory agent,
against neurodegenerative, cardiovascular, pulmonary, metabolic,
autoimmune and neoplastic diseases. Int J Biochem Cell Biol.
41:40–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Choudhuri T, Pal S, Das T and Sa G:
Curcumin selectively induces apoptosis in deregulated cyclin
D1-expressed cells at G2 phase of cell cycle in a p53-dependent
manner. J Biol Chem. 280:20059–20068. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kunnumakkara AB, Anand P and Aggarwal BB:
Curcumin inhibits proliferation, invasion, angiogenesis and
metastasis of different cancers through interaction with multiple
cell signaling proteins. Cancer Lett. 269:199–225. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang JB, Qi LL, Zheng SD and Wu TX:
Curcumin induces apoptosis through the mitochondria-mediated
apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci B. 10:93–102.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lee JH and Chung IK: Curcumin inhibits
nuclear localization of telomerase by dissociating the Hsp90
co-chaperone p23 from hTERT. Cancer Lett. 290:76–86. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shehzad A and Lee YS: Molecular mechanisms
of curcumin action: Signal transduction. Biofactors. 39:27–36.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bagratuni T, Mavrianou N, Gavalas NG,
Tzannis K, Arapinis C, Liontos M, Christodoulou MI, Thomakos N,
Haidopoulos D, Rodolakis A, et al: JQ1 inhibits tumour growth in
combination with cisplatin and suppresses JAK/STAT signalling
pathway in ovarian cancer. Eur J Cancer. 126:125–135. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Su T, Huang L, Zhang N, Peng S, Li X, Wei
G, Zhai E, Zeng Z and Xu L: FGF14 functions as a tumor suppressor
through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J
Cancer. 11:819–825. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rebouissou S and Nault JC: Advances in
molecular classification and precision oncology in hepatocellular
carcinoma. J Hepatol. 72:215–229. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Vinay DS, Ryan EP, Pawelec G, Talib WH,
Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et
al: Immune evasion in cancer: Mechanistic basis and therapeutic
strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mukherjee S, Hussaini R, White R, Atwi D,
Fried A, Sampat S, Piao L, Pan Q and Banerjee P: TriCurin, a
synergistic formulation of curcumin, resveratrol, and epicatechin
gallate, repolarizes tumor-associated macrophages and triggers an
immune response to cause suppression of HPV+ tumors. Cancer Immunol
Immunother. 67:761–774. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bahrami A, Fereidouni M, Pirro M, Bianconi
V and Sahebkar A: Modulation of regulatory T cells by natural
products in cancer. Cancer Lett. 459:72–85. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pan P, Huang YW, Oshima K, Yearsley M,
Zhang J, Arnold M, Yu J and Wang LS: The immunomodulatory potential
of natural compounds in tumor-bearing mice and humans. Crit Rev
Food Sci Nutr. 59:992–1007. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schnekenburger M, Dicato M and Diederich
MF: Anticancer potential of naturally occurring immunoepigenetic
modulators: A promising avenue? Cancer. 125:1612–1628. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sun XD, Liu XE and Huang DS: Curcumin
induces apoptosis of triple-negative breast cancer cells by
inhibition of EGFR expression. Mol Med Rep. 6:1267–1270. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
McDougall AR, Tolcos M, Hooper SB, Cole TJ
and Wallace MJ: Trop2: From development to disease. Dev Dyn.
244:99–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang L, Yang G, Zhang R, Dong L, Chen H,
Bo J, Xue W and Huang Y: Curcumin inhibits cell proliferation and
motility via suppression of TROP2 in bladder cancer cells. Int J
Oncol. 53:515–526. 2018.PubMed/NCBI
|
|
26
|
Zhao Z, Li C, Xi H, Gao Y and Xu D:
Curcumin induces apoptosis in pancreatic cancer cells through the
induction of forkhead box O1 and inhibition of the PI3K/Akt
pathway. Mol Med Rep. 12:5415–5422. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang JY, Wang X, Wang XJ, Zheng BZ, Wang
Y, Wang X and Liang B: Curcumin inhibits the growth via
Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur Rev
Med Pharmacol Sci. 22:7492–7499. 2018.PubMed/NCBI
|
|
28
|
Srivastava NS and Srivastava RAK: Curcumin
and quercetin synergistically inhibit cancer cell proliferation in
multiple cancer cells and modulate Wnt/β-catenin signaling and
apoptotic pathways in A375 cells. Phytomedicine. 52:117–128. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sun Y, Liu L, Wang Y, He A, Hu H, Zhang J,
Han M and Huang Y: Curcumin inhibits the proliferation and invasion
of MG-63 cells through inactivation of the p-JAK2/p-STAT3 pathway.
Onco Targets Ther. 12:2011–2021. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang WH, Chen J, Zhang BR, Lu SJ, Wang F,
Peng L, Dai JH and Sun YZ: Curcumin inhibits proliferation and
enhances apoptosis in A549 cells by downregulating lncRNA UCA1.
Pharmazie. 73:402–407. 2018.PubMed/NCBI
|
|
31
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sato Y, Yoshino H, Tsuruga E and
Kashiwakura I: Fas ligand enhances apoptosis of human lung cancer
cells cotreated with RIG-I-like receptor agonist and radiation.
Curr Cancer Drug Targets. Jan 15–2020.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lee KC, Lee KF, Tung SY, Huang WS, Lee LY,
Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC and Kuo HC: Induction
apoptosis of erinacine a in human colorectal cancer cells involving
the expression of TNFR, fas, and fas ligand via the JNK/p300/p50
signaling pathway with histone acetylation. Front Pharmacol.
10:11742019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mortezaee K, Salehi E, Mirtavoos-Mahyari
H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ and Sahebkar A:
Mechanisms of apoptosis modulation by curcumin: Implications for
cancer therapy. J Cell Physiol. 234:12537–12550. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Harini L, Srivastava S, Gnanakumar GP,
Karthikeyan B, Ross C, Krishnakumar V, Kannan VR, Sundar K and
Kathiresan T: An ingenious non-spherical mesoporous silica
nanoparticle cargo with curcumin induces mitochondria-mediated
apoptosis in breast cancer (MCF-7) cells. Oncotarget. 10:1193–1208.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Moustakas A and Heldin CH: Non-Smad
TGF-beta signals. J Cell Sci. 118:3573–3584. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang X, Hang Y, Liu J, Hou Y, Wang N and
Wang M: Anticancer effect of curcumin inhibits cell growth through
miR-21/PTEN/Akt pathway in breast cancer cell. Oncol Lett.
13:4825–4831. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen YY, Lin YJ, Huang WT, Hung CC, Lin
HY, Tu YC, Liu DM, Lan SJ and Sheu MJ: Demethoxycurcumin-loaded
chitosan nanoparticle downregulates DNA repair pathway to improve
cisplatin-induced apoptosis in non-small cell lung cancer.
Molecules. 23(pii): E32172018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang C, Song X, Shang M, Zou W, Zhang M,
Wei H and Shao H: Curcumin exerts cytotoxicity dependent on
reactive oxygen species accumulation in non-small-cell lung cancer
cells. Future Oncol. 15:1243–1253. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y
and Tang J: Cytokine-mediated therapeutic resistance in breast
cancer. Cytokine. 108:151–159. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
de Campos PS, Matte BF, Diel LF, Jesus LH,
Bernardi L, Alves AM, Rados PV and Lamers ML: Low doses of curcuma
longa modulates cell migration and cell-cell adhesion. Phytother
Res. 31:1433–1440. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cao MT, Liu HF, Liu ZG, Xiao P, Chen JJ,
Tan Y, Jiang XX, Jiang ZC, Qiu Y, Huang HJ, et al: Curcumin
downregulates the expression of Snail via suppressing Smad2 pathway
to inhibit TGF-β1-induced epithelial-mesenchymal transitions in
hepatoma cells. Oncotarget. 8:108498–108508. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li W, Ma Z, Ma J, Li X, Xu Q, Duan W, Chen
X, Lv Y, Zhou S, Wu E, et al: Hydrogen peroxide mediates
hyperglycemia-induced invasive activity via ERK and p38 MAPK in
human pancreatic cancer. Oncotarget. 6:31119–31133. 2015.PubMed/NCBI
|
|
44
|
Cao L, Liu J, Zhang L, Xiao X and Li W:
Curcumin inhibits H2O2-induced invasion and migration of human
pancreatic cancer via suppression of the ERK/NF-κB pathway. Oncol
Rep. 36:2245–2251. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jászai J and Schmidt MHH: Trends and
challenges in tumor anti-angiogenic therapies. Cells. 8(pii):
E11022019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin Z, Zhang Q and Luo W: Angiogenesis
inhibitors as therapeutic agents in cancer: Challenges and future
directions. Eur J Pharmacol. 793:76–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Norooznezhad AH and Norooznezhad F:
Cannabinoids: Possible agents for treatment of psoriasis via
suppression of angiogenesis and inflammation. Med Hypotheses.
99:15–18. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Saberi-Karimian M, Katsiki N, Caraglia M,
Boccellino M, Majeed M and Sahebkar A: Vascular endothelial growth
factor: An important molecular target of curcumin. Crit Rev Food
Sci Nutr. 59:299–312. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jiao D, Wang J, Lu W, Tang X, Chen J, Mou
H and Chen QY: Curcumin inhibited HGF-induced EMT and angiogenesis
through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways
in lung cancer. Mol Ther Oncolytics. 3:160182016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liang C, Shi S, Meng Q, Liang D, Ji S,
Zhang B, Qin Y, Xu J, Ni Q and Yu X: Complex roles of the stroma in
the intrinsic resistance to gemcitabine in pancreatic cancer: Where
we are and where we are going. Exp Mol Med. 49:e4062017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Su P, Yang Y, Wang G, Chen X and Ju Y:
Curcumin attenuates resistance to irinotecan via induction of
apoptosis of cancer stem cells in chemoresistant colon cancer
cells. Int J Oncol. 53:1343–1353. 2018.PubMed/NCBI
|
|
52
|
Zhou QM, Sun Y, Lu YY, Zhang H, Chen QL
and Su SB: Curcumin reduces mitomycin C resistance in breast cancer
stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer
Cell Int. 17:842017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang J, Liu J, Xu X and Li L: Curcumin
suppresses cisplatin resistance development partly via modulating
extracellular vesicle-mediated transfer of MEG3 and miR-214 in
ovarian cancer. Cancer Chemother Pharmacol. 79:479–87. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang H, Kong W, He L, Zhao JJ, O'Donnell
JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV and Cheng JQ:
MicroRNA expression profiling in human ovarian cancer: miR-214
induces cell survival and cisplatin resistance by targeting PTEN.
Cancer Res. 68:425–433. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Batista S, Gregório AC, Hanada Otake A,
Couto N and Costa-Silva B: The gastrointestinal tumor
microenvironment: An updated biological and clinical perspective. J
Oncol. 2019:62405052019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
O'Donnell JS, Teng MWL and Smyth MJ:
Cancer immunoediting and resistance to T cell-based immunotherapy.
Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wattenberg MM and Beatty GL: Overcoming
immunotherapeutic resistance by targeting the cancer inflammation
cycle. Semin Cancer Biol. Jan 15–2020.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dunn GP, Koebel CM and Schreiber RD:
Interferons, immunity and cancer immunoediting. Nat Rev Immunol.
6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee JH, Choi SY, Jung NC, Song JY, Seo HG,
Lee HS and Lim DS: The effect of the tumor microenvironment and
tumor-derived metabolites on dendritic cell function. J Cancer.
11:769–775. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Galland S and Stamenkovic I: Mesenchymal
stromal cells in cancer: A review of their immunomodulatory
functions and dual effects on tumor progression. J Pathol. Oct
14–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Swann JB and Smyth MJ: Immune surveillance
of tumors. J Clin Invest. 117:1137–1146. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Das T, Sa G, Paszkiewicz-Kozik E, Hilston
C, Molto L, Rayman P, Kudo D, Biswas K, Bukowski RM, Finke JH and
Tannenbaum CS: Renal cell carcinoma tumors induce T cell apoptosis
through receptor-dependent and receptor-independent pathways. J
Immunol. 180:4687–4696. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Snyder JT, Alexander-Miller MA, Berzofskyl
JA and Belyakov IM: Molecular mechanisms and biological
significance of CTL avidity. Curr HIV Res. 1:287–294. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen MC, Pangilinan CR and Lee CH:
Salmonella breaks tumor immune tolerance by downregulating tumor
programmed death-ligand 1 expression. Cancers (Basel). 12(pii):
E572019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sa G, Das T, Moon C, Hilston CM, Rayman
PA, Rini BI, Tannenbaum CS and Finke JH: GD3, an overexpressed
tumor-derived ganglioside, mediates the apoptosis of activated but
not resting T cells. Cancer Res. 69:3095–3104. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rabinovich GA, Gabrilovich D and Sotomayor
EM: Immunosuppressive strategies that are mediated by tumor cells.
Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Geng Y, Liu J, Xie Y, Jiang H, Zuo K, Li T
and Liu Z: Trichostatin A promotes GLI1 degradation and P21
expression in multiple myeloma cells. Cancer Manag Res.
10:2905–2914. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang Y, Zhou X, Song Y, Ji X, Zhang A,
Zhang G and Gao Z: The mismatch repair gene hPMS1 (human
postmeiotic segregation1) is down regulated in oral squamous cell
carcinoma. Gene. 524:28–34. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fratta E, Coral S, Covre A, Parisi G,
Colizzi F, Danielli R, Nicolay HJ, Sigalotti L and Maio M: The
biology of cancer testis antigens: Putative function, regulation
and therapeutic potential. Mol Oncol. 5:164–182. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu M, Zhou J, Chen Z and Cheng AS:
Understanding the epigenetic regulation of tumours and their
microenvironments: Opportunities and problems for epigenetic
therapy. J Pathol. 241:10–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dunn J and Rao S: Epigenetics and
immunotherapy: The current state of play. Mol Immunol. 87:227–239.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rosenthal R, Cadieux EL, Salgado R, Bakir
MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, et
al: Neoantigen-directed immune escape in lung cancer evolution.
Nature. 567:479–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dunn GP, Bruce AT, Ikeda H, Old LJ and
Schreiber RD: Cancer immunoediting: From immunosurveillance to
tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mori S, Jewett A, Murakami-Mori K,
Cavalcanti M and Bonavida B: The participation of the Fas-mediated
cytotoxic pathway by natural killer cells is tumor-cell-dependent.
Cancer Immunol Immunother. 44:282–290. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Takeda K, Hayakawa Y, Smyth MJ, Kayagaki
N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H and Okumura K:
Involvement of tumor necrosis factor-related apoptosis-inducing
ligand in surveillance of tumor metastasis by liver natural killer
cells. Nat Med. 7:94–100. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
76
|
Street SE, Cretney E and Smyth MJ:
Perforin and interferon-gamma activities independently control
tumor initiation, growth, and metastasis. Blood. 97:192–197. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
MacKie RM, Reid R and Junor B: Fatal
melanoma transferred in a donated kidney 16 years after melanoma
surgery. N Engl J Med. 348:567–568. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li W, Wang H, Ma Z, Zhang J, Ou-Yang W, Qi
Y and Liu J: Multi-omics analysis of microenvironment
characteristics and immune escape mechanisms of hepatocellular
carcinoma. Front Oncol. 9:10192019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kim R, Emi M and Tanabe K: Cancer
immunoediting from immune surveillance to immune escape.
Immunology. 121:1–14. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Itakura E, Huang RR, Wen DR, Paul E,
Wünsch PH and Cochran AJ: IL-10 expression by primary tumor cells
correlates with melanoma progression from radial to vertical growth
phase and development of metastatic competence. Mod Pathol.
24:801–809. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Brody JR, Costantino CL, Berger AC, Sato
T, Lisanti MP, Yeo CJ, Emmons RV and Witkiewicz AK: Expression of
indoleamine 2,3-dioxygenase in metastatic malignant melanoma
recruits regulatory T cells to avoid immune detection and affects
survival. Cell Cycle. 8:1930–1934. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zou W: Immunosuppressive networks in the
tumour environment and their therapeutic relevance. Nat Rev Cancer.
5:263–274. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bhattacharyya S, Mandal D, Sen GS, Pal S,
Banerjee S, Lahiry L, Finke JH, Tannenbaum CS, Das T and Sa G:
Tumor-induced oxidative stress perturbs nuclear factor-kappaB
activity-augmenting tumor necrosis factor-alpha-mediated T-cell
death: Protection by Curcumin. Cancer Res. 67:362–370. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bhattacharyya S, Md Sakib Hossain D,
Mohanty S, Sankar Sen G, Chattopadhyay S, Banerjee S, Chakraborty
J, Das K, Sarkar D, Das T and Sa G: Curcumin reverses T
cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.
Cell Mol Immunol. 7:306–315. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xu B, Yu L and Zhao LZ: Curcumin up
regulates T helper 1 cells in patients with colon cancer. Am J
Transl Res. 9:1866–1875. 2017.PubMed/NCBI
|
|
86
|
Zou JY, Su CH, Luo HH, Lei YY, Zeng B, Zhu
HS and Chen ZG: Curcumin converts Foxp3+ regulatory T cells to T
helper 1 cells in patients with lung cancer. J Cell Biochem.
119:1420–1428. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Milano F, Mari L, van de Luijtgaarden W,
Parikh K, Calpe S and Krishnadath KK: Nano-curcumin inhibits
proliferation of esophageal adenocarcinoma cells and enhances the T
cell mediated immune response. Front Oncol. 3:1372013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rosenberg SA, Restifo NP, Yang JC, Morgan
RA and Dudley ME: Adoptive cell transfer: A clinical path to
effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hawkins RE, Gilham DE, Debets R, Eshhar Z,
Taylor N, Abken H and Schumacher TN; ATTACK Consortium, :
Development of adoptive cell therapy for cancer: A clinical
perspective. Hum Gene Ther. 21:665–672. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chang YF, Chuang HY, Hsu CH, Liu RS,
Gambhir SS and Hwang JJ: Immunomodulation of curcumin on adoptive
therapy with T cell functional imaging in mice. Cancer Prev Res
(Phila). 5:444–452. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Luo F, Song X, Zhang Y and Chu Y: Low-dose
curcumin leads to the inhibition of tumor growth via enhancing
CTL-mediated antitumor immunity. Int Immunopharmacol. 11:1234–1240.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lu Y, Miao L, Wang Y, Xu Z, Zhao Y, Shen
Y, Xiang G and Huang L: Curcumin micelles remodel tumor
microenvironment and enhance vaccine activity in an advanced
melanoma model. Mol Ther. 24:364–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lin Y, Xu J and Lan H: Tumor-associated
macrophages in tumor metastasis: Biological roles and clinical
therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kim DH, Lee HG and Choi JM: Curcumin
Elevates TFH cells and germinal center B cell response
for antibody production in mice. Immune Netw. 19:e352019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shevach EM: Application of IL-2 therapy to
target T regulatory cell function. Trends Immunol. 33:626–632.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Oh JG, Hwang DJ and Heo TH: Direct
regulation of IL-2 by curcumin. Biochem Biophys Res Commun.
495:300–305. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shiri S, Alizadeh AM, Baradaran B,
Farhanghi B, Shanehbandi D, Khodayari S, Khodayari H and Tavassoli
A: Dendrosomal curcumin suppresses metastatic breast cancer in mice
by changing m1/m2 macrophage balance in the tumor microenvironment.
Asian Pac J Cancer Prev. 16:3917–3922. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xie Q, Yang Z, Huang X, Zhang Z, Li J, Ju
J, Zhang H and Ma J: Ilamycin C induces apoptosis and inhibits
migration and invasion in triple-negative breast cancer by
suppressing IL-6/STAT3 pathway. J Hematol Oncol. 12:602019.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Singh M, Ramos I, Asafu-Adjei D,
Quispe-Tintaya W, Chandra D, Jahangir A, Zang X, Aggarwal BB and
Gravekamp C: Curcumin improves the therapeutic efficacy of
Listeria(at)-Mage-b vaccine in correlation with improved T-cell
responses in blood of a triple-negative breast cancer model 4T1.
Cancer Med. 2:571–582. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bill MA, Bakan C, Benson DM Jr, Fuchs J,
Young G and Lesinski GB: Curcumin induces proapoptotic effects
against human melanoma cells and modulates the cellular response to
immunotherapeutic cytokines. Mol Cancer Ther. 8:2726–2735. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jin H, Jia Y, Yao Z, Huang J, Hao M, Yao
S, Lian N, Zhang F, Zhang C, Chen X, et al: Hepatic stellate cell
interferes with NK cell regulation of fibrogenesis via curcumin
induced senescence of hepatic stellate cell. Cell Signal. 33:79–85.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhang HG, Kim H, Liu C, Yu S, Wang J,
Grizzle WE, Kimberly RP and Barnes S: Curcumin reverses breast
tumor exosomes mediated immune suppression of NK cell tumor
cytotoxicity. Biochim Biophys Acta. 1773:1116–1123. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lee HH and Cho H: Improved anti-cancer
effect of curcumin on breast cancer cells by increasing the
activity of natural killer cells. J Microbiol Biotechnol.
28:874–882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Halder RC, Almasi A, Sagong B, Leung J,
Jewett A and Fiala M: Curcuminoids and ω-3 fatty acids with
anti-oxidants potentiate cytotoxicity of natural killer cells
against pancreatic ductal adenocarcinoma cells and inhibit
interferon γ production. Front Physiol. 22:6:1292015.
|
|
105
|
Mills CD, Kincaid K, Alt JM, Heilman MJ
and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J
Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Murray PJ, Allen JE, Biswas SK, Fisher EA,
Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence
T, et al: Macrophage activation and polarization: Nomenclature and
experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Mukherjee S, Hussaini R, White R, Atwi D,
Fried A, Sampat S, Piao L, Pan Q and Banerjee P: TriCurin, a
synergistic formulation of curcumin, resveratrol, and epicatechin
gallate, repolarizes tumor-associated macrophages and triggers an
immune response to cause suppression of HPV+ tumors. Cancer Immunol
Immunother. 67:761–774. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Mukherjee S, Fried A, Hussaini R, White R,
Baidoo J, Yalamanchi S and Banerjee P: Phytosomal curcumin causes
natural killer cell-dependent repolarization of glioblastoma (GBM)
tumor-associated microglia/macrophages and elimination of GBM and
GBM stem cells. J Exp Clin Cancer Res. 37:1682018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mukherjee S, Baidoo JNE, Sampat S, Mancuso
A, David L, Cohen LS, Zhou S and Banerjee P: Liposomal TriCurin, a
synergistic combination of curcumin, epicatechin gallate and
resveratrol, repolarizes tumor-associated microglia/macrophages,
and eliminates glioblastoma (GBM) and GBM stem cells. Molecules.
23(pii): E2012018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kuttan R, Sudheeran PC and Josph CD:
Turmeric and curcumin as topical agents in cancer therapy. Tumori.
73:29–31. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Pastorelli D, Fabricio ASC, Giovanis P,
D'Ippolito S, Fiduccia P, Soldà C, Buda A, Sperti C, Bardini R, Da
Dalt G, et al: Phytosome complex of curcumin as complementary
therapy of advanced pancreatic cancer improves safety and efficacy
of gemcitabine: Results of a prospective phase II trial. Pharmacol
Res. 132:72–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
James MI, Iwuji C, Irving G, Karmokar A,
Higgins JA, Griffin-Teal N, Thomas A, Greaves P, Cai H, Patel SR,
et al: Curcumin inhibits cancer stem cell phenotypes in ex vivo
models of colorectal liver metastases, and is clinically safe and
tolerable in combination with FOLFOX chemotherapy. Cancer Lett.
364:135–141. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Mahammedi H, Planchat E, Pouget M, Durando
X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert
M, et al: The New Combination docetaxel, prednisone and curcumin in
patients with castration-resistant prostate cancer: A pilot phase
II study. Oncology. 90:69–78. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ryan JL, Heckler CE, Ling M, Katz A,
Williams JP, Pentland AP and Morrow GR: Curcumin for radiation
dermatitis: A randomized, double-blind, placebo-controlled clinical
trial of thirty breast cancer patients. Radiat Res. 180:34–43.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Dhillon N, Aggarwal BB, Newman RA, Wolff
RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V and Kurzrock
R: Phase II trial of curcumin in patients with advanced pancreatic
cancer. Clin Cancer Res. 14:4491–4499. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Saif MW: Is there a role for herbal
medicine in the treatment of pancreatic cancer? Highlights from the
‘44th ASCO Annual Meeting’. Chicago, IL, USA. May 30-June 3, 2008.
JOP. 9:403–407. 2008.PubMed/NCBI
|
|
117
|
Epelbaum R, Schaffer M, Vizel B, Badmaev V
and Bar-Sela G: Curcumin and gemcitabine in patients with advanced
pancreatic cancer. Nutr Cancer. 62:1137–1141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kanai M, Yoshimura K, Asada M, Imaizumi A,
Suzuki C, Matsumoto S, Nishimura T, Mori Y, Masui T, Kawaguchi Y,
et al: A phase I/II study of gemcitabine-based chemotherapy plus
curcumin for patients with gemcitabine-resistant pancreatic cancer.
Cancer Chemother Pharmacol. 68:157–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wan Y, Liang Y, Liang F, Shen N, Shinozuka
K, Yu JT, Ran C, Quan Q, Tanzi RE and Zhang C: A curcumin analog
reduces levels of the Alzheimer's disease-associated amyloid-β
protein by modulating AβPP processing and autophagy. J Alzheimers
Dis. 72:761–771. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Rezzani R, Franco C and Rodella LF:
Curcumin as a therapeutic strategy in liver diseases. Nutrients.
11(pii): E24982019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Fleenor BS, Carlini NA and Campbell MS:
Curcumin and arterial function in health and disease: Impact on
oxidative stress and inflammation. Curr Opin Clin Nutr Metab Care.
22:459–464. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhao S, Pi C, Ye Y, Zhao L and Wei Y:
Recent advances of analogues of curcumin for treatment of cancer.
Eur J Med Chem. 180:524–535. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tønnesen HH, Másson M and Loftsson T:
Studies of curcumin and curcuminoids. XXVII. Cyclodextrin
complexation: Solubility, chemical and photochemical stability. Int
J Pharm. 244:127–135. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li X, Uehara S, Sawangrat K, Morishita M,
Kusamori K, Katsumi H, Sakane T and Yamamoto A: Improvement of
intestinal absorption of curcumin by cyclodextrins and the
mechanisms underlying absorption enhancement. Int J Pharm.
535:340–349. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Bisht S, Feldmann G, Soni S, Ravi R,
Karikar C and Maitra A and Maitra A: Polymeric
nanoparticle-encapsulated curcumin (‘nanocurcumin’): A novel
strategy for human cancer therapy. J Nanobiotechnology. 5:32007.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Han W, Xie B, Li Y, Shi L, Wan J, Chen X
and Wang H: Orally deliverable nanotherapeutics for the synergistic
treatment of colitis-associated colorectal cancer. Theranostics.
9:7458–7473. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Guo F, Fu Q, Jin C, Ji X, Yan Q, Yang Q,
Wu D, Gao Y, Hong W, Li A and Yang G: Dual functional matrix
metalloproteinase-responsive curcumin-loaded nanoparticles for
tumor-targeted treatment. Drug Deliv. 26:1027–1038. 2019.
View Article : Google Scholar : PubMed/NCBI
|