Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2020 Volume 19 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2020 Volume 19 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Comprehensive gene and pathway analysis of cervical cancer progression

  • Authors:
    • Yuexiong Yi
    • Yan Fang
    • Kejia Wu
    • Yanyan Liu
    • Wei Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
    Copyright: © Yi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3316-3332
    |
    Published online on: March 3, 2020
       https://doi.org/10.3892/ol.2020.11439
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cervical Cancer is one of the leading causes of cancer‑associated mortality in women. The present study aimed to identify key genes and pathways involved in cervical cancer (CC) progression, via a comprehensive bioinformatics analysis. The GSE63514 dataset from the Gene Expression Omnibus database was analyzed for hub genes and cancer progression was divided into four phases (phases I‑IV). Pathway enrichment, protein‑protein interaction (PPI) and pathway crosstalk analyses were performed, to identify key genes and pathways using a criterion nodal degree ≥5. Gene pathway analysis was determined by mapping the key genes into the key pathways. Co‑expression between key genes and their effect on overall survival (OS) time was assessed using The Cancer Genome Atlas database. A total of 3,446 differentially expressed genes with 107 hub genes were identified within the four phases. A total of 14 key genes with 11 key pathways were obtained, following extraction of ≥5 degree nodes from the PPI and pathway crosstalk networks. Gene pathway analysis revealed that CDK1 and CCNB1 regulated the cell cycle and were activated in phase I. Notably, the following terms, ‘pathways in cancer’, ‘focal adhesion’ and the ‘PI3K‑Akt signaling pathway’ ranked the highest in phases II‑IV. Furthermore, FN1, ITGB1 and MMP9 may be associated with metastasis of tumor cells. STAT1 was indicated to predominantly function at the phase IV via cancer‑associated signaling pathways, including ‘pathways in cancer’ and ‘Toll‑like receptor signaling pathway’. Survival analysis revealed that high ITGB1 and FN1 expression levels resulted in significantly worse OS. CDK1 and CCNB1 were revealed to regulate proliferation and differentiation through the cell cycle and viral tumorigenesis, while FN1 and ITGB1, which may be developed as novel prognostic factors, were co‑expressed to induce metastasis via cancer‑associated signaling pathways, including PI3K‑Art signaling pathway, and focal adhesion in CC; however, the underlying molecular mechanisms require further research.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Muliira RS, Salas AS and O'Brien B: Quality of life among female cancer survivors in Africa: An integrative literature review. Asia Pac J Oncol Nurs. 4:6–17. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Gravitt PE and Winer RL: Natural history of HPV infection across the lifespan: Role of viral latency. Viruses. 9:E2672017. View Article : Google Scholar : PubMed/NCBI

4 

Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ and Muñoz N: Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 189:12–19. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Louie KS, de Sanjose S, Diaz M, Castellsagué X, Herrero R, Meijer CJ, Shah K, Franceschi S, Muñoz N and Bosch FX; International Agency for Research on Cancer Multicenter Cervical Cancer Study Group, : Early age at first sexual intercourse and early pregnancy are risk factors for cervical cancer in developing countries. Br J Cancer. 100:1191–1197. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Liu ZC, Liu WD, Liu YH, Ye XH and Chen SD: Multiple sexual partners as a potential independent risk factor for cervical cancer: A meta-analysis of epidemiological studies. Asian Pac J Cancer Prev. 16:3893–3900. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Smith JS, Green J, Berrington de Gonzalez A, Appleby P, Peto J, Plummer M, Franceschi S and Beral V: Cervical cancer and use of hormonal contraceptives: A systematic review. Lancet. 361:1159–1167. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK and Shen CY: PIK3CA as an oncogene in cervical cancer. Oncogene. 19:2739–2744. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Zheng L, Li T, Zhang Y, Guo Y, Yao J, Dou L and Guo K: Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer. Oncol Rep. 33:2337–2344. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Bai X, Wang W, Zhao P, Wen J, Guo X, Shen T, Shen J and Yang X: LncRNA CRNDE acts as an oncogene in cervical cancer through sponging miR-183 to regulate CCNB1 expression. Carcinogenesis. Oct 12–2019.(Epub ahead of print).

11 

Bremer GL, Tieboschb AT, van der Putten HW, de Haan J and Arends JW: p53 tumor suppressor gene protein expression in cervical cancer: Relationship to prognosis. Eur J Obstet Gynecol Reprod Biol. 63:55–59. 1995. View Article : Google Scholar : PubMed/NCBI

12 

Cohen Y, Singer G, Lavie O, Dong SM, Beller U and Sidransky D: The RASSF1A tumor suppressor gene is commonly inactivated in adenocarcinoma of the uterine cervix. Clin Cancer Res. 9:2981–2984. 2003.PubMed/NCBI

13 

Hasina R, Pontier AL, Fekete MJ, Martin LE, Qi XM, Brigaudeau C, Pramanik R, Cline EI, Coignet LJ and Lingen MW: NOL7 is a nucleolar candidate tumor suppressor gene in cervical cancer that modulates the angiogenic phenotype. Oncogene. 25:588–598. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Roura E, Castellsagué X, Pawlita M, Travier N, Waterboer T, Margall N, Bosch FX, de Sanjosé S, Dillner J, Gram IT, et al: Smoking as a major risk factor for cervical cancer and pre-cancer: Results from the EPIC cohort. Int J cancer. 135:453–466. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Husain RS and Ramakrishnan V: Global variation of human papillomavirus genotypes and selected genes involved in cervical malignancies. Ann Glob Health. 81:675–683. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Soto D, Song C and McLaughlin-Drubin ME: Epigenetic alterations in human papillomavirus-associated cancers. Viruses. 9:E2482017. View Article : Google Scholar : PubMed/NCBI

17 

Mincheva A, Gissmann L and zur Hausen H: Chromosomal integration sites of human papillomavirus DNA in three cervical cancer cell lines mapped by in situ hybridization. Med Microbiol Immunol. 176:245–256. 1987. View Article : Google Scholar : PubMed/NCBI

18 

Senapati R, Senapati NN and Dwibedi B: Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer. 11:592016. View Article : Google Scholar : PubMed/NCBI

19 

Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M and Huh K: Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 78:11451–11460. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, et al: Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 529:541–545. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Scheffner M, Huibregtse JM, Vierstra RD and Howley PM: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 75:495–505. 1993. View Article : Google Scholar : PubMed/NCBI

22 

Sherr CJ: The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res. 60:3689–3695. 2000.PubMed/NCBI

23 

Martin LG, Demers GW and Galloway DA: Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. J Virol. 72:975–985. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Löffler H, Fechter A, Matuszewska M, Saffrich R, Mistrik M, Marhold J, Hornung C, Westermann F, Bartek J and Krämer A: Cep63 recruits Cdk1 to the centrosome: Implications for regulation of mitotic entry, centrosome amplification, and genome maintenance. Cancer Res. 71:2129–2139. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Skyldberg B, Fujioka K, Hellström AC, Sylvén L, Moberger B and Auer G: Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod Pathol. 14:279–284. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Duensing S and Münger K: The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62:7075–7082. 2002.PubMed/NCBI

27 

Chaiwongkot A, Niruthisard S, Kitkumthorn N and Bhattarakosol P: Quantitative methylation analysis of human papillomavirus 16 L1 gene reveals potential biomarker for cervical cancer progression. Diagn Microbiol Infect Dis. 89:265–270. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Sharma A, De R, Javed S, Srinivasan R, Pal A and Bhattacharyya S: Sonic hedgehog pathway activation regulates cervical cancer stem cell characteristics during epithelial to mesenchymal transition. J Cell Physiol. Feb 4–2019.(Epub ahead of print). View Article : Google Scholar

29 

Li YP, Zhang L, Zou YL and Yu Y: Association between FGFR4 gene polymorphism and high-risk HPV infection cervical cancer. Asian Pac J Trop Med. 10:680–684. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Zhang J and Gao Y: CCAT-1 promotes proliferation and inhibits apoptosis of cervical cancer cells via the Wnt signaling pathway. Oncotarget. 8:68059–68070. 2017.PubMed/NCBI

31 

Mora-García ML, Ávila-Ibarra LR, García-Rocha R, Weiss-Steider B, Hernández-Montes J, Don-López CA, Gutiérrez-Serrano V, Titla-Vilchis IJ, Fuentes-Castañeda MC, Monroy-Mora A, et al: Cervical cancer cells suppress effector functions of cytotoxic T cells through the adenosinergic pathway. Cell Immunol. 320:46–55. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Song ZC, Ding L, Ren ZY, Sun XS, Yang Q, Wang L, Feng MJ, Liu CL and Wang JT: Effects of Src on cervical cancer cells proliferation and apoptosis through ERK signal transduction pathway. Zhonghua Liu Xing Bing Xue Za Zhi. 38:1246–1251. 2017.(In Chinese; Abstract available in Chinese from the publisher). PubMed/NCBI

33 

Xu Z, Zhou Y, Shi F, Cao Y, Dinh TLA, Wan J and Zhao M: Investigation of differentially-expressed microRNAs and genes in cervical cancer using an integrated bioinformatics analysis. Oncol Lett. 13:2784–2790. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Chen SZ, Ma WL and Zheng WL: Screening for cervical cancer-related genes and their bioinformatics analysis. Nan Fang Yi Ke Da Xue Xue Bao. 28:585–588. 2008.(In Chinese). PubMed/NCBI

35 

Nayar R and Wilbur DC: The bethesda system for reporting cervical cytology: A historical perspective. Acta Cytol. 61:359–372. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Shoji T, Takatori E, Takeuchi S, Yoshizaki A, Uesugi N, Sugai T and Sugiyama T: Clinical significance of atypical glandular cells in the bethesda system 2001: A comparison with the histopathological diagnosis of surgically resected specimens. Cancer Invest. 32:105–109. 2014. View Article : Google Scholar : PubMed/NCBI

37 

O'Connor M, Gallagher P, Waller J, Martin CM, O'Leary JJ and Sharp L; Irish Cervical Screening Research Consortium (CERVIVA), : Adverse psychological outcomes following colposcopy and related procedures: A systematic review. BJOG. 123:24–38. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Haque N, Uddin AFMK, Dey BR, Islam F and Goodman A: Challenges to cervical cancer treatment in Bangladesh: The development of a women's cancer ward at Dhaka Medical College Hospital. Gynecol Oncol Rep. 21:67–72. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Roque DR, Wysham WZ and Soper JT: The surgical management of cervical cancer: An overview and literature review. Obstet Gynecol Surv. 69:426–441. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Marin JJ, Romero MR, Blazquez AG, Herraez E, Keck E and Briz O: Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. Anticancer Agents Med Chem. 9:162–184. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Chen HHW and Kuo MT: Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget. 8:62742–62758. 2017.PubMed/NCBI

42 

Lecavalier-Barsoum M, Chaudary N, Han K, Pintilie M, Hill RP and Milosevic M: Targeting CXCL12/CXCR4 and myeloid cells to improve the therapeutic ratio in patient-derived cervical cancer models treated with radio-chemotherapy. Br J Cancer. 121:249–256. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA, Wang XM and Yu FJ: SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway. J Cell Biochem. 119:3829–3842. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Gu J, Zhang X, Yang Z and Wang N: Expression of cyclin D1 protein isoforms and its prognostic significance in cervical cancer. Cancer Manag Res. 11:9073–9083. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Chay DB, Han GH, Nam S, Cho H, Chung JY and Hewitt SM: Forkhead box protein O1 (FOXO1) and paired box gene 3 (PAX3) overexpression is associated with poor prognosis in patients with cervical cancer. Int J Clin Oncol. 24:1429–1439. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Tang H, Wang Y, Zhang B, Xiong S, Liu L, Chen W, Tan G and Li H: High brain acid soluble protein 1(BASP1) is a poor prognostic factor for cervical cancer and promotes tumor growth. Cancer Cell Int. 17:972017. View Article : Google Scholar : PubMed/NCBI

47 

Yang X, Cheng Y and Li C: The role of TLRs in cervical cancer with HPV infection: A review. Signal Transduct Target Ther. 2:170552017. View Article : Google Scholar : PubMed/NCBI

48 

Frumovitz M and Sood AK: Vascular endothelial growth factor (VEGF) pathway as a therapeutic target in gynecologic malignancies. Gynecol Oncol. 104:768–778. 2007. View Article : Google Scholar : PubMed/NCBI

49 

den Boon JA, Pyeon D, Wang SS, Horswill M, Schiffman M, Sherman M, Zuna RE, Wang Z, Hewitt SM, Pearson R, et al: Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc Natl Acad Sci USA. 112:E3255–E3264. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

52 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 8 (Suppl 4):S112014. View Article : Google Scholar : PubMed/NCBI

55 

Wang J, Vasaikar S, Shi Z, Greer M and Zhang B: WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45:W130–W137. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Chen J, Bardes EE, Aronow BJ and Jegga AG: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37:W305–W311. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Hu Y, Pan Z, Hu Y, Zhang L and Wang J: Network and pathway-based analyses of genes associated with Parkinson's disease. Mol Neurobiol. 54:4452–4465. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Scardoni G, Petterlini M and Laudanna C: Analyzing biological network parameters with CentiScaPe. Bioinformatics. 25:2857–2859. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Han JD, Berlin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP and Vidal M: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature. 430:88–93. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Kanwal A and Fazal S: Construction and analysis of protein-protein interaction network correlated with ankylosing spondylitis. Gene. 638:41–51. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP and Hautaniemi S: Integrated network analysis platform for protein-protein interactions. Nat Methods. 6:75–77. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, et al: IntAct-source resource for molecular interaction data. Nucleic Acids Res. 35:D561–D565. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L and Cesareni G: MINT: The Molecular INTeraction database. Nucleic Acids Res. 35:D572–D574. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V, et al: The BioGRID interaction database: 2008 update. Nucleic Acids Res. 36:D637–D640. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU and Eisenberg D: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32:D449–D451. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, et al: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13:2363–2371. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Güldener U, Münsterkötter M, Oesterheld M, Pagel P, Ruepp A, Mewes HW and Stümpflen V: MPact: The MIPS protein interaction resource on yeast. Nucleic Acids Res. 34:D436–D441. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Vasaikar SV, Straub P, Wang J and Zhang B: LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46:D956–D963. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Cancer Genome Atlas Research Network, ; Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, De Vos J and Hamamah S: Identifying new human oocyte marker genes: A microarray approach. Reprod Biomed Online. 14:175–183. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Schwab MS, Roberts BT, Gross SD, Tunquist BJ, Taieb FE, Lewellyn AL and Maller JL: Bub1 is activated by the protein kinase p90(Rsk) during Xenopus oocyte maturation. Curr Biol. 11:141–150. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Ouandaogo ZG, Frydman N, Hesters L, Assou S, Haouzi D, Dechaud H, Frydman R and Hamamah S: Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum Reprod. 27:2438–2447. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Li J, Qian WP and Sun QY: Cyclins regulating oocyte meiotic cell cycle progression†. Biol Reprod. 101:878–881. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Kaplan MH: STAT signaling in inflammation. JAKSTAT. 2:e241982013.PubMed/NCBI

75 

Qiu X, Guo H, Yang J, Ji Y, Wu CS and Chen X: Down-regulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Sci Rep. 8:16792018. View Article : Google Scholar : PubMed/NCBI

76 

Bros M, Haas K, Moll L and Grabbe S: RhoA as a key regulator of innate and adaptive immunity. Cells. 8:E7332019. View Article : Google Scholar : PubMed/NCBI

77 

Erdely A, Antonini JM, Salmen-Muniz R, Liston A, Hulderman T, Simeonova PP, Kashon ML, Li S, Gu JK, Stone S, et al: Type I interferon and pattern recognition receptor signaling following particulate matter inhalation. Part Fibre Toxicol. 9:252012. View Article : Google Scholar : PubMed/NCBI

78 

Luu K, Greenhill CJ, Majoros A, Decker T, Jenkins BJ and Mansell A: STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunol Cell Biol. 92:761–769. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Smolen KK, Ruck CE, Fortuno ES III, Ho K, Dimitriu P, Mohn WW, Speert DP, Cooper PJ, Esser M, Goetghebuer T, et al: Pattern recognition receptor-mediated cytokine response in infants across 4 continents. J Allergy Clin Immunol. 133:818–826.e4. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Xiang C, Chen J and Fu P: HGF/Met signaling in cancer invasion: The impact on cytoskeleton remodeling. Cancers (Basel). 9:E442017. View Article : Google Scholar : PubMed/NCBI

81 

Lei T and Ling X: IGF-1 promotes the growth and metastasis of hepatocellular carcinoma via the inhibition of proteasome-mediated cathepsin B degradation. World J Gastroenterol. 21:10137–10149. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Cho S, Kitadai Y, Yoshida S, Tanaka S, Yoshihara M, Yoshida K and Chayama K: Deletion of the KIT gene is associated with liver metastasis and poor prognosis in patients with gastrointestinal stromal tumor in the stomach. Int J Oncol. 28:1361–1367. 2006.PubMed/NCBI

83 

Li B, Shen W, Peng H, Li Y, Chen F, Zheng L, Xu J and Jia L: Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT. Onco Targets Ther. 12:3207–3221. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Liu Y, Ren CC, Yang L, Xu YM and Chen YN: Role of CXCL12-CXCR4 axis in ovarian cancer metastasis and CXCL12-CXCR4 blockade with AMD3100 suppresses tumor cell migration and invasion in vitro. J Cell Physiol. 234:3897–3909. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Chen Y, Jiang J, Zhao M, Luo X, Liang Z, Zhen Y, Fu Q, Deng X, Lin X, Li L, et al: microRNA-374a suppresses colon cancer progression by directly reducing CCND1 to inactivate the PI3K/AKT pathway. Oncotarget. 7:41306–41319. 2016.PubMed/NCBI

86 

Thomas SJ, Snowden JA, Zeidler MP and Danson SJ: The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 113:365–371. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Stacker SA and Achen MG: The VEGF signaling pathway in cancer: The road ahead. Chin J Cancer. 32:297–302. 2013.PubMed/NCBI

88 

Shi X, Wang J, Lei Y, Cong C, Tan D and Zhou X: Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep. 19:4529–4535. 2019.PubMed/NCBI

89 

Li X, Jiang S and Tapping RI: Toll-like receptor signaling in cell proliferation and survival. Cytokine. 49:1–9. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Gene Ontology Consortium: Gene ontology consortium: Going forward. Nucleic Acids Res. 43:D1049–D1056. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Kawai T and Akira S: Toll-like receptor and RIG-1-like receptor signaling. Ann N Y Acad Sci. 1143:1–20. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Gkretsi V and Stylianopoulos T: Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front Oncol. 8:1452018. View Article : Google Scholar : PubMed/NCBI

93 

Zhang YL, Wang RC, Cheng K, Ring BZ and Su L: Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 14:90–99. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Campbell PM and Der CJ: Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol. 14:105–114. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Sun F, Wang J, Sun Q, Li F, Gao H, Xu L, Zhang J, Sun X, Tian Y, Zhao Q, et al: Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4492019. View Article : Google Scholar : PubMed/NCBI

96 

Sanderson RD: Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol. 12:89–98. 2001. View Article : Google Scholar : PubMed/NCBI

97 

Loo YM and Gale M Jr: Immune signaling by RIG-I-like receptors. Immunity. 34:680–692. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Nyati KK and Prasad KN: Role of cytokines and Toll-like receptors in the immunopathogenesis of Guillain-Barré syndrome. Mediators Inflamm. 2014:7586392014. View Article : Google Scholar : PubMed/NCBI

99 

Saxena M and Yeretssian G: NOD-Like receptors: Master regulators of inflammation and cancer. Front Immunol. 5:3272014. View Article : Google Scholar : PubMed/NCBI

100 

Crosbie EJ, Einstein MH, Franceschi S and Kitchener HC: Human papillomavirus and cervical cancer. Lancet. 382:889–899. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Balasubramaniam SD, Balakrishnan V, Oon CE and Kaur G: Key molecular events in cervical cancer development. Medicina (Kaunas). 55:E3842019. View Article : Google Scholar : PubMed/NCBI

102 

Lin M, Ye M, Zhou J, Wang ZP and Zhu X: Recent advances on the molecular mechanism of cervical carcinogenesis based on systems biology technologies. Comput Struct Biotechnol J. 17:241–250. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Ye J, Yin L, Xie P, Wu J, Huang J, Zhou G, Xu H, Lu E and He X: Antiproliferative effects and molecular mechanisms of troglitazone in human cervical cancer in vitro. Onco Targets Ther. 8:1211–1218. 2015.PubMed/NCBI

104 

Yugawa T and Kiyono T: Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: Novel functions of E6 and E7 oncoproteins. Rev Med Virol. 19:97–113. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Jones MC, Askari JA, Humphries JD and Humphries MJ: Cell adhesion is regulated by CDK1 during the cell cycle. J Cell Biol. 217:3203–3218. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Hochegger H, Dejsuphong D, Sonoda E, Saberi A, Rajendra E, Kirk J, Hunt T and Takeda S: An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J Cell Biol. 178:257–268. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Vassilev LT: Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle. 5:2555–2556. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Shaikh F, Sanehi P and Rawal R: Molecular screening of compounds to the predicted protein-protein interaction site of Rb1-E7 with p53-E6 in HPV. Bioinformation. 8:607–612. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH and Shin DY: p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem. 274:29677–29682. 1999. View Article : Google Scholar : PubMed/NCBI

110 

Lindqvist A, van Zon W, Karlsson Rosenthal C and Wolthuis RM: Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol. 5:e1232007. View Article : Google Scholar : PubMed/NCBI

111 

Crasta K, Huang P, Morgan G, Winey M and Surana U: Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO J. 25:2551–2563. 2006. View Article : Google Scholar : PubMed/NCBI

112 

Fang Y, Yu H, Liang X, Xu J and Cai X: Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol Ther. 15:1268–1279. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Krek W and Nigg EA: Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: Identification of major phosphorylation sites. EMBO J. 10:305–316. 1991. View Article : Google Scholar : PubMed/NCBI

114 

Morgan DO: Principles of CDK regulation. Nature. 374:131–134. 1995. View Article : Google Scholar : PubMed/NCBI

115 

Banerjee NS, Wang HK, Broker TR and Chow LT: Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem. 286:15473–15482. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, et al: STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 14:e10069752018. View Article : Google Scholar : PubMed/NCBI

117 

Stewart DA, Cooper CR and Sikes RA: Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol. 2:22004. View Article : Google Scholar : PubMed/NCBI

118 

Chiu CF, Ho MY, Peng JM, Hung SW, Lee WH, Liang CM and Liang SM: Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane. Oncogene. 32:777–787. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Matter ML and Ruoslahti E: A signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription. J Biol Chem. 276:27757–27763. 2001. View Article : Google Scholar : PubMed/NCBI

120 

Egeblad M and Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2:161–174. 2002. View Article : Google Scholar : PubMed/NCBI

121 

Sand JM, Larsen L, Hogaboam C, Martinez F, Han M, Røssel Larsen M, Nawrocki A, Zheng Q, Karsdal MA and Leeming DJ: MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis-validation of two novel biomarker assays. PLoS One. 8:e849342013. View Article : Google Scholar : PubMed/NCBI

122 

Bokhari AA, Baker TM, Dorjbal B, Waheed S, Zahn CM, Hamilton CA, Maxwell GL and Syed V: Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway. Oncotarget. 7:69733–69748. 2016. View Article : Google Scholar : PubMed/NCBI

123 

da Silva Cardeal LB, Brohem CA, Corrêa TC, Winnischofer SM, Nakano F, Boccardo E, Villa LL, Sogayar MC and Maria-Engler SS: Higher expression and activity of metalloproteinases in human cervical carcinoma cell lines is associated with HPV presence. Biochem Cell Biol. 84:713–719. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Cardeal LB, Boccardo E, Termini L, Rabachini T, Andreoli MA, di Loreto C, Longatto Filho A, Villa LL and Maria-Engler SS: HPV16 oncoproteins induce MMPs/RECK-TIMP-2 imbalance in primary keratinocytes: Possible implications in cervical carcinogenesis. PLoS One. 7:e335852012. View Article : Google Scholar : PubMed/NCBI

125 

Shiau MY, Fan LC, Yang SC, Tsao CH, Lee H, Cheng YW, Lai LC and Chang YH: Human papillomavirus up-regulates MMP-2 and MMP-9 expression and activity by inducing interleukin-8 in lung adenocarcinomas. PLoS One. 8:e544232013. View Article : Google Scholar : PubMed/NCBI

126 

Ding Y, Pan Y, Liu S, Jiang F and Jiao J: Elevation of MiR-9-3p suppresses the epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via down-regulating FN1, ITGB1 and ITGAV. Cancer Biol Ther. 18:414–424. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Wang J, Deng L, Huang J, Cai R, Zhu X, Liu F, Wang Q, Zhang J and Zheng Y: High expression of Fibronectin 1 suppresses apoptosis through the NF-κB pathway and is associated with migration in nasopharyngeal carcinoma. Am J Transl Res. 9:4502–4511. 2017.PubMed/NCBI

128 

Rajkumar T, Sabitha K, Vijayalakshmi N, Shirley S, Bose MV, Gopal G and Selvaluxmy G: Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer. 11:802011. View Article : Google Scholar : PubMed/NCBI

129 

Koromilas AE and Sexl V: The tumor suppressor function of STAT1 in breast cancer. JAKSTAT. 2:e233532013.PubMed/NCBI

130 

Zhang Y and Liu Z: STAT1 in cancer: Friend or foe? Discov Med. 24:19–29. 2017.PubMed/NCBI

131 

Akram M, Kim KA, Kim ES, Shin YJ, Noh D, Kim E, Kim JH, Majid A, Chang SY, Kim JK and Bae ON: Selective inhibition of JAK2/STAT1 signaling and iNOS expression mediates the anti-inflammatory effects of coniferyl aldehyde. Chem Biol Interact. 256:102–110. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yi Y, Fang Y, Wu K, Liu Y and Zhang W: Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett 19: 3316-3332, 2020.
APA
Yi, Y., Fang, Y., Wu, K., Liu, Y., & Zhang, W. (2020). Comprehensive gene and pathway analysis of cervical cancer progression. Oncology Letters, 19, 3316-3332. https://doi.org/10.3892/ol.2020.11439
MLA
Yi, Y., Fang, Y., Wu, K., Liu, Y., Zhang, W."Comprehensive gene and pathway analysis of cervical cancer progression". Oncology Letters 19.4 (2020): 3316-3332.
Chicago
Yi, Y., Fang, Y., Wu, K., Liu, Y., Zhang, W."Comprehensive gene and pathway analysis of cervical cancer progression". Oncology Letters 19, no. 4 (2020): 3316-3332. https://doi.org/10.3892/ol.2020.11439
Copy and paste a formatted citation
x
Spandidos Publications style
Yi Y, Fang Y, Wu K, Liu Y and Zhang W: Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett 19: 3316-3332, 2020.
APA
Yi, Y., Fang, Y., Wu, K., Liu, Y., & Zhang, W. (2020). Comprehensive gene and pathway analysis of cervical cancer progression. Oncology Letters, 19, 3316-3332. https://doi.org/10.3892/ol.2020.11439
MLA
Yi, Y., Fang, Y., Wu, K., Liu, Y., Zhang, W."Comprehensive gene and pathway analysis of cervical cancer progression". Oncology Letters 19.4 (2020): 3316-3332.
Chicago
Yi, Y., Fang, Y., Wu, K., Liu, Y., Zhang, W."Comprehensive gene and pathway analysis of cervical cancer progression". Oncology Letters 19, no. 4 (2020): 3316-3332. https://doi.org/10.3892/ol.2020.11439
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team