Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review)

  • Authors:
    • Yinliang Lu
    • Baocai Liu
    • Ying Liu
    • Xinyue Yu
    • Guanghui Cheng
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 993-1000
    |
    Published online on: May 28, 2020
       https://doi.org/10.3892/ol.2020.11684
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ionizing radiation (IR) is an important cancer treatment approach. However, radioresistance eventually occurs, resulting in poor outcomes in patients with cancer. Radioresistance is associated with multiple signaling pathways, particularly pro‑survival signaling pathways. The extracellular signal‑regulated kinase 1/2 (ERK1/2) cascade is an important signaling pathway that initiates several cellular processes and is regulated by various stimuli, including IR. Although numerous studies have demonstrated the pro‑survival effects of active ERK, activation of ERK has also been associated with cell death, indicating that radiosensitization may occur by ERK stimulation. In this context, the present review describes the associations between ERK signaling, cancer and IR, and discusses the association between ERK and its pro‑survival function in cancer cells, including stimuli, molecular mechanisms, clinical use of inhibitors and underlying limitations. Additionally, the present review introduces the view that active ERK may induce cell death, and describes the potential factors associated with this process. This review describes the various outcomes induced by active ERK to prompt future studies to aim to enhance radiosensitivity in the treatment of cancer.
View Figures

Figure 1

Figure 2

View References

1 

Alicikus ZA, Yamada Y, Zhang Z, Pei X, Hunt M, Kollmeier M, Cox B and Zelefsky MJ: Ten-year outcomes of high-dose, intensity-modulated radiotherapy for localized prostate cancer. Cancer. 117:1429–1437. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Barker HE, Paget JT, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Hawkins AJ, Golding SE, Khalil A and Valerie K: DNA double-strand break-induced pro-survival signaling. Radiother Oncol. 101:13–17. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Ding M, Zhang E, He R and Wang X: Newly developed strategies for improving sensitivity to radiation by targeting signal pathways in cancer therapy. Cancer Sci. 104:1401–1410. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Ciccarelli C, Di Rocco A, Gravina GL, Mauro A, Festuccia C, Del Fattore A, Berardinelli P, De Felice F, Musio D, Bouché M, et al: Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. J Cancer Res Clin Oncol. 144:1685–1699. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Morris ZS and Harari PM: Interaction of radiation therapy with molecular targeted agents. J Clin Oncol. 32:2886–2893. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Neuzillet C, Tijeras-Raballand A, De Mestier L, Cros J, Faivre S and Raymond E: MEK in cancer and cancer therapy. Pharmacol Ther. 141:160–171. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Kidger AM, Sipthorp J and Cook SJ: ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther. 187:45–60. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Samatar AA and Poulikakos PI: Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 13:928–942. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Bonner JA, Vroman BT, Christianson TJ and Karnitz LM: Ionizing radiation-induced MEK and Erk activation does not enhance survival of irradiated human squamous carcinoma cells. Int J Radiat Oncol Biol Phys. 42:921–925. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Mebratu Y and Tesfaigzi Y: How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 8:1168–1175. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Teixeiro E and Daniels MA: ERK and cell death: ERK location and T cell selection. FEBS J. 277:30–38. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Cagnol S and Chambard JC: ERK and cell death: Mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J. 277:2–21. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Keshet Y and Seger R: The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 661:3–38. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI

18 

De Luca A, Maiello MR, D'alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16 (Suppl 2):S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Ramos JW: The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 40:2707–2719. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Yoon S and Seger R: The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors. 24:21–44. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E and White FM: Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal. 4:rs112011. View Article : Google Scholar : PubMed/NCBI

22 

Sun Y, Liu WZ, Liu T, Feng X, Yang N and Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Balmanno K and Cook SJ: Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 16:368–377. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, et al: Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 45:54–65. 2005. View Article : Google Scholar : PubMed/NCBI

26 

DuShane JK, Wilczek MP, Mayberry CL and Maginnis MS: ERK is a critical regulator of JC polyomavirus infection. J Virol. 92:e01529–17. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Muslin AJ: MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin Sci (Lond). 115:203–218. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK and Singh SP: The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res. 35:775–795. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-I S, Wada H, Fujimoto J and Kohno M: Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 18:813–822. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Park HS, You GE, Yang KH, Kim JY, An S, Song JY, Lee SJ, Lim YK and Nam SY: Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur J Cell Biol. 94:653–660. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Corn BW, Kovner F, Bek S, Wexler I, Lifschits B and Seger R: ERK signaling in colorectal cancer: A preliminary report on the expression of phosphorylated ERK and the effects of radiation therapy. Am J Clin Oncol. 31:255–258. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Panganiban RA, Snow AL and Day RM: Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci. 14:15931–15958. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Dent P, Yacoub A, Fisher PB, Hagan MP and Grant S: MAPK pathways in radiation responses. Oncogene. 22:5885–5896. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Yan Y, Black CP and Cowan KH: Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene. 26:4689–4698. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Williams TM, Flecha AR, Keller P, Ram A, Karnak D, Galbán S, Galbán CJ, Ross BD, Lawrence TS, Rehemtulla A and Sebolt-Leopold J: Cotargeting MAPK and PI3K signaling with concurrent radiotherapy as a strategy for the treatment of pancreatic cancer. Mol Cancer Ther. 11:1193–1202. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Cuneo KC, Geng L, Fu A, Orton D, Hallahan DE and Chakravarthy AB: SU11248 (sunitinib) sensitizes pancreatic cancer to the cytotoxic effects of ionizing radiation. Int J Radiat Oncol Biol Phys. 71:873–879. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Carter S, Auer KL, Reardon DB, Birrer M, Fisher PB, Valerie K, Schmidt-Ullrich R, Mikkelsen R and Dent P: Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene. 16:2787–2796. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Hein AL, Ouellette MM and Yan Y: Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol. 45:1813–1819. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 118:3065–3074. 2008.PubMed/NCBI

40 

Cho JH, Hong WG, Jung YJ, Lee J, Lee E, Hwang SG, Um HD and Park JK: Γ-Ionizing radiation-induced activation of the EGFR-p38/ERK-STAT3/CREB-1-EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate. Tumour Biol. 37:7315–7325. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Lee HC, An S, Lee H, Woo SH, Jin HO, Seo SK, Choe TB, Yoo DH, Lee SJ, Hong YJ, et al: Activation of epidermal growth factor receptor and its downstream signaling pathway by nitric oxide in response to ionizing radiation. Mol Cancer Res. 6:996–1002. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Sambade MJ, Camp JT, Kimple RJ, Sartor CI and Shields JM: Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol. 93:639–644. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Park JS, Qiao L, Su ZZ, Hinman D, Willoughby K, McKinstry R, Yacoub A, Duigou GJ, Young CS, Grant S, et al: Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene. 20:3266–3280. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Zhang X, Ma N, Yao W, Li S and Ren Z: RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer. Cancer Cell Int. 19:3562019. View Article : Google Scholar : PubMed/NCBI

45 

King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, Egnuni T, Stead LF, Patel A, Wurdak H and Short SC: RAD51 is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Reports. 8:125–139. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Chowdhury P, Dey P, De D and Ghosh U: Gamma ray-induced in vitro cell migration via EGFR/ERK/Akt/p38 activation is prevented by olaparib pretreatment. Int J Radiat Biol. 96:651–660. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Lee YJ, Soh JW, Dean NM, Cho CK, Kim TH, Lee SJ and Lee YS: Protein kinase Cdelta overexpression enhances radiation sensitivity via extracellular regulated protein kinase 1/2 activation, abolishing the radiation-induced G(2)-M arrest. Cell Growth Differ. 13:237–246. 2002.PubMed/NCBI

48 

Singh S, Upadhyay AK, Ajay AK and Bhat MK: p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: A novel target of p53 in apoptosis. FEBS Lett. 581:289–295. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Cheng G, Kong D, Hou X, Liang B, He M, Liang N, Ma S and Liu X: The tumor suppressor, p53, contributes to radiosensitivity of lung cancer cells by regulating autophagy and apoptosis. Cancer Biother Radiopharm. 28:153–159. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Premkumar K and Shankar BS: Involvement of MAPK signalling in radioadaptive response in BALB/c mice exposed to low dose ionizing radiation. Int J Radiat Biol. 92:249–262. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI

52 

Kaczanowski S: Apoptosis: Its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol. 13:0310012016. View Article : Google Scholar : PubMed/NCBI

53 

Gerl R and Vaux DL: Apoptosis in the development and treatment of cancer. Carcinogenesis. 26:263–270. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011. View Article : Google Scholar : PubMed/NCBI

55 

Pistritto G, Trisciuoglio D, Ceci C, Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 8:603–619. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Chen N, Zhang R, Konishi T and Wang J: Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS. Mutat Res. 813:10–17. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Boucher MJ, Morisset J, Vachon PH, Reed JC, Lainé J and Rivard N: MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem. 79:355–369. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Kurland JF, Voehringer DW and Meyn RE: The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. J Biol Chem. 278:32465–32470. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Chatterjee N and Walker GC: Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 58:235–263. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF and Valerie K: Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther. 8:730–738. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Valerie K and Povirk LF: Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 22:5792–5812. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Meyn RE, Munshi A, Haymach JV, Milas L and Ang KK: Receptor signaling as a regulatory mechanism of DNA repair. Radiother Oncol. 92:316–322. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Yacoub A, McKinstry R, Hinman D, Chung T, Dent P and Hagan MP: Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res. 159:439–452. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Yacoub A, Park JS, Qiao L, Dent P and Hagan MP: MAPK dependence of DNA damage repair: Ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol. 77:1067–1078. 2001. View Article : Google Scholar : PubMed/NCBI

66 

Engeland K: Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25:114–132. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Zhao H and Piwnica-Worms H: ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 21:4129–4139. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Abbott DW and Holt JT: Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem. 274:2732–2742. 1999. View Article : Google Scholar : PubMed/NCBI

69 

Yan Y, Black CP, Cao PT, Haferbier JL, Kolb RH, Spieker RS, Ristow AM and Cowan KH: Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res. 68:5113–5121. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Dossett LA, Kudchadkar RR and Zager JS: BRAF and MEK inhibition in melanoma. Expert Opin Drug Saf. 14:559–570. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Caunt CJ, Sale MJ, Smith PD and Cook SJ: MEK1 and MEK2 inhibitors and cancer therapy: The long and winding road. Nat Rev Cancer. 15:577–592. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Affolter A, Muller MF, Sommer K, Stenzinger A, Zaoui K, Lorenz K, Wolf T, Sharma S, Wolf J, Perner S, et al: Targeting irradiation-induced mitogen-activated protein kinase activation in vitro and in an ex vivo model for human head and neck cancer. Head Neck. 38 (Suppl 1):E2049–E2061. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Frémin C and Meloche S: From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 3:82010. View Article : Google Scholar : PubMed/NCBI

74 

Estrada-Bernal A, Chatterjee M, Haque SJ, Yang L, Morgan MA, Kotian S, Morrell D, Chakravarti A and Williams TM: MEK inhibitor GSK1120212-mediated radiosensitization of pancreatic cancer cells involves inhibition of DNA double-strand break repair pathways. Cell Cycle. 14:3713–3724. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Marampon F, Gravina GL, Di Rocco A, Bonfili P, Di Staso M, Fardella C, Polidoro L, Ciccarelli C, Festuccia C, Popov VM, et al: MEK/ERK inhibitor U0126 increases the radiosensitivity of rhabdomyosarcoma cells in vitro and in vivo by downregulating growth and DNA repair signals. Mol Cancer Ther. 10:159–168. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Chung EJ, Urick ME, Kurshan N, Shield W III, Asano H, Smith PD, Scroggins BS, Burkeen J and Citrin DE: MEK1/2 inhibition enhances the radiosensitivity of cancer cells by downregulating survival and growth signals mediated by EGFR ligands. Int J Oncol. 42:2028–2036. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, et al: Long-Term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell. 29:75–89. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Kroeze SG, Fritz C, Hoyer M, Lo SS, Ricardi U, Sahgal A, Stahel R, Stupp R and Guckenberger M: Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: A systematic review. Cancer Treat Rev. 53:25–37. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Luebker SA and Koepsell SA: Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front Oncol. 9:2682019. View Article : Google Scholar : PubMed/NCBI

80 

Lito P, Rosen N and Solit DB: Tumor adaptation and resistance to RAF inhibitors. Nat Med. 19:1401–1409. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Jaiswal BS, Durinck S, Stawiski EW, Yin J, Wang W, Lin E, Moffat J, Martin SE, Modrusan Z and Seshagiri S: ERK mutations and amplification confer resistance to ERK-Inhibitor therapy. Clin Cancer Res. 24:4044–4055. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Hollmann CA, Owens T, Nalbantoglu J, Hudson TJ and Sladek R: Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death. Cancer Res. 66:3550–3557. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y and Seger R: Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene. 20:147–155. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW and Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 277:12710–12717. 2002. View Article : Google Scholar : PubMed/NCBI

85 

Mukherjee S, Dash S, Lohitesh K and Chowdhury R: The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS One. 12:e01792032017. View Article : Google Scholar : PubMed/NCBI

86 

Martin P, Poggi MC, Chambard JC, Boulukos KE and Pognonec P: Low dose cadmium poisoning results in sustained ERK phosphorylation and caspase activation. Biochem Biophys Res Commun. 350:803–807. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Martin P and Pognonec P: ERK and cell death: Cadmium toxicity, sustained ERK activation and cell death. FEBS J. 277:39–46. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Lin T, Mak NK and Yang MS: MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: Involvement of p53 phosphorylation and acetylation. Toxicology. 247:145–153. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Lee YJ, Soh JW, Jeoung DI, Cho CK, Jhon GJ, Lee SJ and Lee YS: PKC epsilon-mediated ERK1/2 activation involved in radiation-induced cell death in NIH3T3 cells. Biochim Biophys Acta. 1593:219–229. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Watanabe H, Kurabayashi T and Miura M: Inhibition of the extracellular signal-regulated kinase (ERK) pathway and the induction of radioresistance in rat 3Y1 cells. Int J Radiat Biol. 80:451–457. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Yang R, Piperdi S and Gorlick R: Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Clin Cancer Res. 14:6396–6404. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Randhawa H, Kibble K, Zeng H, Moyer MP and Reindl KM: Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol In Vitro. 27:1626–1633. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Zhao L, Li J, Hao YH, Gao YB, Wang SM, Zhang J, Dong J, Zhou HM, Liu SC and Peng RY: Microwave-induced apoptosis and cytotoxicity of NK cells through ERK1/2 signaling. Biomed Environ Sci. 30:323–332. 2017.PubMed/NCBI

94 

Han HY, Kim H, Jeong SH, Lim DS and Ryu MH: Sulfasalazine induces autophagic cell death in oral cancer cells via Akt and ERK pathways. Asian Pac J Cancer Prev. 15:6939–6944. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Bastola T, An RB, Kim YC, Kim J and Seo J: Cearoin induces autophagy, ERK activation and apoptosis via ROS generation in SH-SY5Y neuroblastoma cells. Molecules. 22(pii): E2422017. View Article : Google Scholar : PubMed/NCBI

96 

Tian X, Geng J, Zheng Q, Wang L, Huang P, Tong J and Zheng S: Single high dose irradiation induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cells through the Ras/Raf/MEK/ERK pathways. Int J Radiat Biol. 1–8. 2020.(Epub ahead of print).

97 

Wang Z, Ma L, Su M, Zhou Y, Mao K, Li C, Peng G, Zhou C, Shen B and Dou J: Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling. Cell Death Dis. 9:2172018. View Article : Google Scholar : PubMed/NCBI

98 

Brown L and Benchimol S: The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: Cell cycle arrest or apoptosis. J Biol Chem. 281:3832–3840. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Xu J, Patel NH, Saleh T, Cudjoe EK Jr, Alotaibi M, Wu Y, Lima S, Hawkridge AM and Gewirtz DA: Differential radiation sensitivity in p53 Wild-Type and p53-Deficient tumor cells associated with senescence but not apoptosis or (Nonprotective) Autophagy. Radiat Res. 190:538–557. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Wang Y, Xu H, Lu Z, Yu X, Lv C, Tian Y and Sui D: Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp Ther Med. 15:4916–4924. 2018.PubMed/NCBI

101 

Lv C, Hong Y, Miao L, Li C, Xu G, Wei S, Wang B, Huang C and Jiao B: Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis. 4:e9522013. View Article : Google Scholar : PubMed/NCBI

102 

Liu Y, Yang Y, Ye YC, Shi QF, Chai K, Tashiro S, Onodera S and Ikejima T: Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J Pharmacol Sci. 118:423–432. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Woessmann W, Chen X and Borkhardt A: Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother Pharmacol. 50:397–404. 2002. View Article : Google Scholar : PubMed/NCBI

104 

Pognonec P: ERK and cell death: Overview. FEBS J. 277:12010. View Article : Google Scholar : PubMed/NCBI

105 

Wainstein E and Seger R: The dynamic subcellular localization of ERK: Mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 39:15–20. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Cook SJ, Stuart K, Gilley R and Sale MJ: Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284:4177–4195. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, et al: Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol. 8:1053–1063. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Fehrenbacher N, Bar-Sagi D and Philips M: Ras/MAPK signaling from endomembranes. Mol Oncol. 3:297–307. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Shaul YD and Seger R: The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim Biophys Acta. 1773:1213–1226. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P and Cheresh DA: Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 137:481–492. 1997. View Article : Google Scholar : PubMed/NCBI

111 

Ajenjo N, Canon E, Sanchez-Perez I, Matallanas D, León J, Perona R and Crespo P: Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells. J Biol Chem. 279:32813–32823. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 20(pii): E11942019. View Article : Google Scholar : PubMed/NCBI

113 

Huang K, Chen Y, Zhang R, Wu Y, Ma Y, Fang X and Shen S: Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 9:1572018. View Article : Google Scholar : PubMed/NCBI

114 

Yeh PS, Wang W, Chang YA, Lin CJ, Wang JJ and Chen RM: Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett. 370:66–77. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lu Y, Liu B, Liu Y, Yu X and Cheng G: Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review). Oncol Lett 20: 993-1000, 2020.
APA
Lu, Y., Liu, B., Liu, Y., Yu, X., & Cheng, G. (2020). Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review). Oncology Letters, 20, 993-1000. https://doi.org/10.3892/ol.2020.11684
MLA
Lu, Y., Liu, B., Liu, Y., Yu, X., Cheng, G."Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review)". Oncology Letters 20.2 (2020): 993-1000.
Chicago
Lu, Y., Liu, B., Liu, Y., Yu, X., Cheng, G."Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review)". Oncology Letters 20, no. 2 (2020): 993-1000. https://doi.org/10.3892/ol.2020.11684
Copy and paste a formatted citation
x
Spandidos Publications style
Lu Y, Liu B, Liu Y, Yu X and Cheng G: Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review). Oncol Lett 20: 993-1000, 2020.
APA
Lu, Y., Liu, B., Liu, Y., Yu, X., & Cheng, G. (2020). Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review). Oncology Letters, 20, 993-1000. https://doi.org/10.3892/ol.2020.11684
MLA
Lu, Y., Liu, B., Liu, Y., Yu, X., Cheng, G."Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review)". Oncology Letters 20.2 (2020): 993-1000.
Chicago
Lu, Y., Liu, B., Liu, Y., Yu, X., Cheng, G."Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review)". Oncology Letters 20, no. 2 (2020): 993-1000. https://doi.org/10.3892/ol.2020.11684
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team