Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.xlsx
    • Supplementary_Data4.xlsx
    • Supplementary_Data5.xlsx
    • Supplementary_Data6.xlsx
    • Supplementary_Data7.xlsx
    • Supplementary_Data8.xlsx
    • Supplementary_Data9.xlsx
    • Supplementary_Data10.docx
Article Open Access

Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study

  • Authors:
    • Daniela Raguer Valadão de Souza
    • Rodrigo Pessôa
    • Andrezza Nascimento
    • Youko Nukui
    • Juliana Pereira
    • Jorge Casseb
    • Augusto César Penalva de Oliveira
    • Alberto José da Silva Duarte
    • Patricia Bianca Clissa
    • Sabri Saeed Sanabani
  • View Affiliations / Copyright

    Affiliations: Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil, Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil, Department of Neurology, Emilio Ribas Institute of Infectious Diseases, São Paulo 01246‑900, Brazil, Immunopathology Laboratory, Butantan Institute, São Paulo 05503‑900, Brazil, Laboratory of Medical Investigation Unit 03,Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
    Copyright: © Valadão de Souza et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2311-2321
    |
    Published online on: July 1, 2020
       https://doi.org/10.3892/ol.2020.11803
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In the present pilot study, massively parallel sequencing (MPS) technology was used to investigate cellular small RNA (sRNA) levels in the peripheral blood mononuclear cells (PBMCs) of human T‑lymphotropic virus type I (HTLV‑I) infected asymptomatic carriers with monoclonal (ASM) and polyclonal (ASP) T cell receptor (TCR) γ gene. Blood samples from 15 HTLV‑I asymptomatic carriers (seven ASM and eight ASP) were tested for the clonal TCR‑γ gene and submitted for sRNA library construction together with blood samples of five healthy controls (HCs) using Illumina sequencing platform. The sRNA‑sequencing reads were aligned, annotated and profiled using various bioinformatics tools. Based on these results, possible markers were validated in the study samples by performing reverse transcription‑quantitative (RT‑q)PCR analysis. A total of 76 known sRNAs and 52 putative novel sRNAs were identified. Among them, 44 known and 34 potential novel sRNAs were differentially expressed in the ASM and ASP libraries compared with HCs. In addition, 10 known sRNAs were exclusively dysregulated in the ASM group and one (transfer RNA 65) was significantly upregulated in the ASP group. Homo sapiens (hsa) microRNA (miRNA/mir)‑23a‑3p, ‑28‑5p, hsa‑let‑7e‑5p and hsa‑mir‑28‑3p and ‑361‑5p were the most abundantly upregulated mature miRNAs and hsa‑mir‑363‑3p, ‑532‑5p, ‑106a‑5p, ‑25‑3p and ‑30e‑5p were significantly downregulated miRNAs (P<0.05) with a >2‑fold difference between the ASM and ASP groups compared with HCs. Based on these results, hsa‑mir‑23a‑3p and ‑363‑3p were selected for additional validation. However, the quantification of these two miRNAs using RT‑qPCR did not provide any significant differences. While the present study failed to identify predictive sRNA markers to distinguish between ASM and ASP, the MPS results revealed differential sRNA expression profiles in the PBMCs of HTLV‑1 asymptomatic carriers (ASM and ASP) compared with HCs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD and Gallo RC: Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 77:7415–7419. 1980. View Article : Google Scholar : PubMed/NCBI

2 

Gessain A and Cassar O: Epidemiological aspects and world distribution of HTLV-1 Infection. Front Microbiol. 3:3882012. View Article : Google Scholar : PubMed/NCBI

3 

Matsuoka M: Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene. 22:5131–5140. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Verdonck K, Gonzalez E, Van Dooren S, Vandamme AM, Vanham G and Gotuzzo E: Human T-lymphotropic virus 1: Recent knowledge about an ancient infection. Lancet Infect Dis. 7:266–281. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Franchini G, Ambinder RF and Barry M: Viral disease in hematology. Hematology Am Soc Hematol Educ Program. 409–423. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Murphy EL, Hanchard B, Figueroa JP, Gibbs WN, Lofters WS, Campbell M, Goedert JJ and Blattner WA: Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer. 43:250–253. 1989. View Article : Google Scholar : PubMed/NCBI

7 

Yamaguchi K and Watanabe T: Human T lymphotropic virus type-I and adult T-cell leukemia in Japan. Int J Hematol. 76 (Suppl 2):240–245. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Matsuoka M and Jeang KT: Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 7:270–280. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Higuchi M and Fujii M: Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology. 6:1172009. View Article : Google Scholar : PubMed/NCBI

10 

Yoshida M, Seiki M, Yamaguchi K and Takatsuki K: Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci USA. 81:2534–2537. 1984. View Article : Google Scholar : PubMed/NCBI

11 

Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K, Tanaka Y and Matsuoka M: Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer. 109:559–567. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Mesnard JM, Barbeau B and Devaux C: HBZ, a new important player in the mystery of adult T-cell leukemia. Blood. 108:3979–3982. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Nagata Y, Kontani K, Enami T, Kataoka K, Ishii R, Totoki Y, Kataoka TR, Hirata M, Aoki K, Nakano K, et al: Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood. 127:596–604. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Etoh K, Yamaguchi K, Tokudome S, Watanabe T, Okayama A, Stuver N, Mueller N, Takatsuki K and Matsuoka M: Rapid quantification of HTLV–I provirus load: Detection of monoclonal proliferation of HTLV–I-infected cells among blood donors. Int J Cancer. 81:859–864. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Ohshima K, Mukai Y, Shiraki H, Suzumiya J, Tashiro K and Kikuchi M: Clonal integration and expression of human T-cell lymphotropic virus type I in carriers detected by polymerase chain reaction and inverse PCR. Am J Hematol. 54:306–312. 1997. View Article : Google Scholar : PubMed/NCBI

16 

Furukawa Y, Fujisawa J, Osame M, Toita M, Sonoda S, Kubota R, Ijichi S and Yoshida M: Frequent clonal proliferation of human T-cell leukemia virus type 1 (HTLV-1)-infected T cells in HTLV-1-associated myelopathy (HAM-TSP). Blood. 80:1012–1016. 1992. View Article : Google Scholar : PubMed/NCBI

17 

Ikeda S, Momita S, Kinoshita K, Kamihira S, Moriuchi Y, Tsukasaki K, Ito M, Kanda T, Moriuchi R, Nakamura T, et al: Clinical course of human T-lymphotropic virus type I carriers with molecularly detectable monoclonal proliferation of T lymphocytes: Defining a low- and high-risk population. Blood. 82:2017–2024. 1993. View Article : Google Scholar : PubMed/NCBI

18 

Carvalho EM and Da Fonseca Porto A: Epidemiological and clinical interaction between HTLV-1 and Strongyloides stercoralis. Parasite Immunol. 26:487–497. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, et al: Global identification of human transcribed sequences with genome tiling arrays. Science. 306:2242–2246. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Djebali S, Davis CA, Merkel A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Higuchi C, Nakatsuka A, Eguchi J, Teshigawara S, Kanzaki M, Katayama A, Yamaguchi S, Takahashi N, Murakami K, Ogawa D, et al: Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism. 64:489–497. 2015. View Article : Google Scholar : PubMed/NCBI

22 

van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J and Olson EN: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 316:575–579. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Zhang WC, Chin TM, Yang H, Nga ME, Lunny DP, Lim EK, Sun LL, Pang YH, Leow YN, Malusay SR, et al: Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 7:117022016. View Article : Google Scholar : PubMed/NCBI

25 

Farazi TA, Juranek SA and Tuschl T: The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development. 135:1201–1214. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Mattick JS and Makunin IV: Non-coding RNA. Hum Mol Genet 15 (Spec No 1). R17–R29. 2006. View Article : Google Scholar

27 

Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, et al: A uniform system for microRNA annotation. RNA. 9:277–279. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Griffiths-Jones S, Bateman A, Marshall M, Khanna A and Eddy SR: Rfam: An RNA family database. Nucleic Acids Res. 31:439–441. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Li J, Wu B, Xu J and Liu C: Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum. PLoS One. 9:e994422014. View Article : Google Scholar : PubMed/NCBI

30 

Brennecke J, Hipfner DR, Stark A, Russell RB and Cohen SM: Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 113:25–36. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E and Plasterk RH: The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet. 35:217–218. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Xu P, Vernooy SY, Guo M and Hay BA: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 13:790–795. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Bandiera S, Hatem E, Lyonnet S and Henrion-Caude A: microRNAs in diseases: From candidate to modifier genes. Clin Genet. 77:306–313. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Bueno MJ and Malumbres M: MicroRNAs and the cell cycle. Biochim Biophys Acta. 1812:592–601. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Pichler K, Schneider G and Grassmann R: MicroRNA miR-146a and further oncogenesis-related cellular microRNAs are dysregulated in HTLV-1-transformed T lymphocytes. Retrovirology. 5:1002008. View Article : Google Scholar : PubMed/NCBI

36 

Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N, Matsuoka M and Jeang KT: Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 68:8976–8985. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Shenouda SK and Alahari SK: MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Huntzinger E and Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 12:99–110. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Ruggero K, Corradin A, Zanovello P, Amadori A, Bronte V, Ciminale V and D'Agostino DM: Role of microRNAs in HTLV-1 infection and transformation. Mol Aspects Med. 31:367–382. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Bellon M, Lepelletier Y, Hermine O and Nicot C: Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV–I adult T-cell leukemia. Blood. 113:4914–4917. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Ruggero K, Guffanti A, Corradin A, Sharma VK, De Bellis G, Corti G, Grassi A, Zanovello P, Bronte V, Ciminale V and D'Agostino DM: Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: A role for a tRNA fragment as a primer for reverse transcriptase. J Virol. 88:3612–3622. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Heneine W, Khabbaz RF, Lal RB and Kaplan JE: Sensitive and specific polymerase chain reaction assays for diagnosis of human T-cell lymphotropic virus type I (HTLV–I) and HTLV–II infections in HTLV–I/II-seropositive individuals. J Clin Microbiol. 30:1605–1607. 1992. View Article : Google Scholar : PubMed/NCBI

45 

Pessoa R, Watanabe JT, Nukui Y, Pereira J, Casseb J, de Oliveira AC, Segurado AC and Sanabani SS: Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLoS One. 9:e933742014. View Article : Google Scholar : PubMed/NCBI

46 

Shadrach B and Warshawsky I: A comparison of multiplex and monoplex T-cell receptor gamma PCR. Diagn Mol Pathol. 13:127–134. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Clissa PB, Pessoa R, Ferraz KF, de Souza DR and Sanabani SS: Data on global expression of non-coding RNome in mice gastrocnemius muscle exposed to jararhagin, snake venom metalloproteinase. Data Brief. 9:685–688. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Langenberger D, Bermudez-Santana CI, Stadler PF and Hoffmann S: Identification and classification of small RNAs in transcriptome sequence data. Pac Symp Biocomput. 80–87. 2010.PubMed/NCBI

49 

Hansen KD, Irizarry RA and Wu Z: Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 13:204–216. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D'Andrade P, DeMayo M, Dennis L, et al: Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 11:809–815. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Motameny S, Wolters S, Nürnberg P and Schumacher B: Next Generation Sequencing of miRNAs-Strategies, Resources and Methods. Genes (Basel). 1:70–84. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Dias S, Hemmings S, Muller C, Louw J and Pheiffer C: MicroRNA expression varies according to glucose tolerance, measurement platform, and biological source. Biomed Res Int. 2017:10801572017. View Article : Google Scholar : PubMed/NCBI

54 

Leshkowitz D, Horn-Saban S, Parmet Y and Feldmesser E: Differences in microRNA detection levels are technology and sequence dependent. RNA. 19:527–538. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Tsukasaki K, Tsushima H, Yamamura M, Hata T, Murata K, Maeda T, Atogami S, Sohda H, Momita S, Ideda S, et al: Integration patterns of HTLV–I provirus in relation to the clinical course of ATL: Frequent clonal change at crisis from indolent disease. Blood. 89:948–956. 1997. View Article : Google Scholar : PubMed/NCBI

56 

Wattel E, Vartanian JP, Pannetier C and Wain-Hobson S: Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol. 69:2863–2868. 1995. View Article : Google Scholar : PubMed/NCBI

57 

Moles R and Nicot C: The Emerging Role of miRNAs in HTLV-1 Infection and ATLL Pathogenesis. Viruses. 7:4047–4074. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Van Duyne R, Guendel I, Klase Z, Narayanan A, Coley W, Jaworski E, Roman J, Popratiloff A, Mahieux R, Kehn-Hall K and Kashanchi F: Localization and sub-cellular shuttling of HTLV-1 tax with the miRNA machinery. PLoS One. 7:e406622012. View Article : Google Scholar : PubMed/NCBI

59 

Abe M, Suzuki H, Nishitsuji H, Shida H and Takaku H: Interaction of human T-cell lymphotropic virus type I Rex protein with Dicer suppresses RNAi silencing. FEBS Lett. 584:4313–4318. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, Matsuda Y, Sato-Otsubo A, Muto S, Utsunomiya A, et al: Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell. 21:121–135. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Cameron JE, Fewell C, Yin Q, McBride J, Wang X, Lin Z and Flemington EK: Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology. 382:257–266. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG and Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 203:2519–2527. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Tomita M, Tanaka Y and Mori N: MicroRNA miR-146a is induced by HTLV-1 tax and increases the growth of HTLV-1-infected T-cells. Int J Cancer. 130:2300–2309. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Deng J, He M, Chen L, Chen C, Zheng J and Cai Z: The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival. PLoS One. 8:e764502013. View Article : Google Scholar : PubMed/NCBI

65 

Deng M, Tang HL, Lu XH, Liu MY, Lu XM, Gu YX, Liu JF and He ZM: miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One. 8:e726622013. View Article : Google Scholar : PubMed/NCBI

66 

Lin Y, Chen H, Hu Z, Mao Y, Xu X, Zhu Y, Xu X, Wu J, Li S, Mao Q, et al: miR-26a inhibits proliferation and motility in bladder cancer by targeting HMGA1. FEBS Lett. 587:2467–2473. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack JR and Wirth T: MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood. 112:4202–4212. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, Li MF, Chen GQ and Zhao Q: Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 32:2–9. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, Khan AA, Setty M, Rondou P, Vandenberghe P, et al: A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 43:673–678. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Batchu RB, Gruzdyn OV, Qazi AM, Kaur J, Mahmud EM, Weaver DW and Gruber SA: Enhanced phosphorylation of p53 by microRNA-26a leading to growth inhibition of pancreatic cancer. Surgery. 158:981–987. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Zhang J, Han C and Wu T: MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology. 143:246–256.e8. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Salvatori B, Iosue I, Mangiavacchi A, Loddo G, Padula F, Chiaretti S, Peragine N, Bozzoni I, Fazi F and Fatica A: The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis. 3:e4132012. View Article : Google Scholar : PubMed/NCBI

73 

Luzi E, Marini F, Sala SC, Tognarini I, Galli G and Brandi ML: Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res. 23:287–295. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM, Wang LR, Zhang KZ, Zhang QB, Ao JY, et al: MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS One. 8:e779572013. View Article : Google Scholar : PubMed/NCBI

75 

Qian X, Zhao P, Li W, Shi ZM, Wang L, Xu Q, Wang M, Liu N, Liu LZ and Jiang BH: MicroRNA-26a promotes tumor growth and angiogenesis in glioma by directly targeting prohibitin. CNS Neurosci Ther. 19:804–812. 2013.PubMed/NCBI

76 

Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, et al: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 101:11755–11760. 2004. View Article : Google Scholar : PubMed/NCBI

77 

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435:839–843. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP and Burge CB: Prediction of mammalian microRNA targets. Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Fukuda RI, Tsuchiya K, Suzuki K, Itoh K, Fujita J, Utsunomiya A and Tsuji T: HTLV–I Tax regulates the cellular proliferation through the down-regulation of PIP3-phosphatase expressions via the NF-κB pathway. Int J Biochem Mol Biol. 3:95–104. 2012.PubMed/NCBI

81 

Liu L, Wang S, Chen R, Wu Y, Zhang B, Huang S, Zhang J, Xiao F, Wang M and Liang Y: Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem Biophys Res Commun. 425:368–373. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Whitman SP, Maharry K, Radmacher MD, Becker H, Mrózek K, Margeson D, Holland KB, Wu YZ, Schwind S, Metzeler KH, et al: FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B study. Blood. 116:3622–3626. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Bai XT and Nicot C: miR-28-3p is a cellular restriction factor that inhibits human T cell leukemia virus, type 1 (HTLV-1) replication and virus infection. J Biol Chem. 290:5381–5390. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Chen L, Han L, Wei J, Zhang K, Shi Z, Duan R, Li S, Zhou X, Pu P, Zhang J and Kang C: SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. Sci Rep. 5:85882015. View Article : Google Scholar : PubMed/NCBI

85 

Koduru SV, Tiwari AK, Leberfinger A, Hazard SW, Kawasawa YI, Mahajan M and Ravnic DJ: A Comprehensive NGS data analysis of differentially regulated miRNAs, piRNAs, lncRNAs and sn/snoRNAs in triple negative breast cancer. J Cancer. 8:578–596. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Valadão de Souza DR, Pessôa R, Nascimento A, Nukui Y, Pereira J, Casseb J, Penalva de Oliveira AC, da Silva Duarte AJ, Clissa PB, Sanabani SS, Sanabani SS, et al: Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study. Oncol Lett 20: 2311-2321, 2020.
APA
Valadão de Souza, D.R., Pessôa, R., Nascimento, A., Nukui, Y., Pereira, J., Casseb, J. ... Sanabani, S.S. (2020). Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study. Oncology Letters, 20, 2311-2321. https://doi.org/10.3892/ol.2020.11803
MLA
Valadão de Souza, D. R., Pessôa, R., Nascimento, A., Nukui, Y., Pereira, J., Casseb, J., Penalva de Oliveira, A. C., da Silva Duarte, A. J., Clissa, P. B., Sanabani, S. S."Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study". Oncology Letters 20.3 (2020): 2311-2321.
Chicago
Valadão de Souza, D. R., Pessôa, R., Nascimento, A., Nukui, Y., Pereira, J., Casseb, J., Penalva de Oliveira, A. C., da Silva Duarte, A. J., Clissa, P. B., Sanabani, S. S."Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study". Oncology Letters 20, no. 3 (2020): 2311-2321. https://doi.org/10.3892/ol.2020.11803
Copy and paste a formatted citation
x
Spandidos Publications style
Valadão de Souza DR, Pessôa R, Nascimento A, Nukui Y, Pereira J, Casseb J, Penalva de Oliveira AC, da Silva Duarte AJ, Clissa PB, Sanabani SS, Sanabani SS, et al: Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study. Oncol Lett 20: 2311-2321, 2020.
APA
Valadão de Souza, D.R., Pessôa, R., Nascimento, A., Nukui, Y., Pereira, J., Casseb, J. ... Sanabani, S.S. (2020). Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study. Oncology Letters, 20, 2311-2321. https://doi.org/10.3892/ol.2020.11803
MLA
Valadão de Souza, D. R., Pessôa, R., Nascimento, A., Nukui, Y., Pereira, J., Casseb, J., Penalva de Oliveira, A. C., da Silva Duarte, A. J., Clissa, P. B., Sanabani, S. S."Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study". Oncology Letters 20.3 (2020): 2311-2321.
Chicago
Valadão de Souza, D. R., Pessôa, R., Nascimento, A., Nukui, Y., Pereira, J., Casseb, J., Penalva de Oliveira, A. C., da Silva Duarte, A. J., Clissa, P. B., Sanabani, S. S."Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: A pilot study". Oncology Letters 20, no. 3 (2020): 2311-2321. https://doi.org/10.3892/ol.2020.11803
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team