|
1
|
Bray F, Jemal A, Grey N, Ferlay J and
Forman D: Global cancer transitions according to the Human
development index (2008–2030): A population-based study. Lancet
Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Luo J, Solimini NL and Elledge SJ:
Principles of cancer therapy: Oncogene and non-oncogene addiction.
Cell. 136:823–837. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tamiya H, Kim H, Klymenko O, Kim H, Feng
Y, Zhang T, Han JY, Murao A, Snipas SJ, Jilaveanu L, et al:
SHARPIN-mediated regulation of protein arginine methyltransferase 5
controls melanoma growth. J Clin Invest. 128:517–530. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jung J, Kim JM, Park B, Cheon Y, Lee B,
Choo SH, Koh SS and Lee S: Newly identified tumor-associated role
of human Sharpin. Mol Cell Biochem. 340:161–167. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ojo D, Wu Y, Bane A and Tang D: A role of
SIPL1/SHARPIN in promoting resistance to hormone therapy in breast
cancer. Biochim Biophys Acta Mol Basis Dis. 1864:735–745. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bii VM, Rae DT and Trobridge GD: A novel
gammaretroviral shuttle vector insertional mutagenesis screen
identifies SHARPIN as a breast cancer metastasis gene and
prognostic biomarker. Oncotarget. 6:39507–39520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Seymour RE, Hasham MG, Cox GA, Shultz LD,
Hogenesch H, Roopenian DC and Sundberg JP: Spontaneous mutations in
the mouse Sharpin gene result in multiorgan inflammation, immune
system dysregulation and dermatitis. Genes Immun. 8:416–421. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang Z, Potter CS, Sundberg JP and
Hogenesch H: SHARPIN is a key regulator of immune and inflammatory
responses. J Cell Mol Med. 16:2271–2279. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rittinger K and Ikeda F: Linear ubiquitin
chains: Enzymes, mechanisms and biology. Open Biol. 7:1700262017.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tokunaga F, Nakagawa T, Nakahara M, Saeki
Y, Taniguchi M, Sakata S, Tanaka K, Nakano H and Iwai K: SHARPIN is
a component of the NF-κB-activating linear ubiquitin chain assembly
complex. Nature. 471:633–636. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Peltzer N, Darding M, Montinaro A, Draber
P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C,
Taraborrelli L, et al: LUBAC is essential for embryogenesis by
preventing cell death and enabling haematopoiesis. Nature.
557:112–117. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tang Y, Joo D, Liu G, Tu H, You J, Jin J,
Zhao X, Hung MC and Lin X: Linear ubiquitination of cFLIP induced
by LUBAC contributes to TNFα-induced apoptosis. J Biol Chem.
293:20062–20072. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ikeda F, Deribe YL, Skanland SS, Stieglitz
B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V,
Terzic J, et al: SHARPIN forms a linear ubiquitin ligase complex
regulating NF-κB activity and apoptosis. Nature. 471:637–641. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Teh CE, Lalaoui N, Jain R, Policheni AN,
Heinlein M, Alvarez-Diaz S, Sheridan JM, Rieser E, Deuser S,
Darding M, et al: Linear ubiquitin chain assembly complex
coordinates late thymic T-cell differentiation and regulatory
T-cell homeostasis. Nat Commun. 7:133532016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Redecke V, Chaturvedi V, Kuriakose J and
Hacker H: SHARPIN controls the development of regulatory T cells.
Immunology. 148:216–226. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tian Z, Tang J, Yang Q, Li X, Zhu J and Wu
G: Atypical ubiquitin-binding protein SHARPIN promotes breast
cancer progression. Biomed Pharmacother. 119:1094142019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang H, Yu S, Wang W, Li X, Hou Y, Liu Z,
Shi Y, Mu K, Niu G, Xu J, et al: SHARPIN facilitates p53
degradation in breast cancer cells. Neoplasia. 19:84–92. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhou S, Liang Y, Zhang X, Liao L, Yang Y,
Ouyang W and Xu H: SHARPIN promotes melanoma progression via Rap1
signaling pathway. J Invest Dermatol. 140:395–403.e6. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
De Melo J, Wu V, He L, Yan J and Tang D:
SIPL1 enhances the proliferation, attachment, and migration of CHO
cells by inhibiting PTEN function. Int J Mol Med. 34:835–841. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sasaki K and Iwai K: Roles of linear
ubiquitinylation, a crucial regulator of NF-κB and cell death, in
the immune system. Immunol Rev. 266:175–189. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ikeda F: Linear ubiquitination signals in
adaptive immune responses. Immunol Rev. 266:222–236. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Iwai K, Fujita H and Sasaki Y: Linear
ubiquitin chains: NF-κB signalling, cell death and beyond. Nat Rev
Mol Cell Biol. 15:503–508. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tokunaga F, Sakata S, Saeki Y, Satomi Y,
Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, et
al: Involvement of linear polyubiquitylation of NEMO in NF-kappaB
activation. Nat Cell Biol. 11:123–132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rivkin E, Almeida SM, Ceccarelli DF, Juang
YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G,
et al: The linear ubiquitin-specific deubiquitinase gumby regulates
angiogenesis. Nature. 498:318–324. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fujita H, Tokunaga A, Shimizu S, Whiting
AL, Aguilar-Alonso F, Takagi K, Walinda E, Sasaki Y, Shimokawa T,
Mizushima T, et al: Cooperative domain formation by homologous
motifs in HOIL-1L and SHARPIN plays A crucial role in LUBAC
stabilization. Cell Rep. 23:1192–1204. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Matsunaga Y, Nakatsu Y, Fukushima T, Okubo
H, Iwashita M, Sakoda H, Fujishiro M, Yamamotoya T, Kushiyama A,
Takahashi S, et al: LUBAC formation is impaired in the livers of
mice with MCD-dependent nonalcoholic steatohepatitis. Mediators
Inflamm. 2015:1253802015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rodgers MA, Bowman JW, Fujita H, Orazio N,
Shi M, Liang Q, Amatya R, Kelly TJ, Iwai K, Ting J, et al: The
linear ubiquitin assembly complex (LUBAC) is essential for NLRP3
inflammasome activation. J Exp Med. 211:1333–1347. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tokunaga F: Linear ubiquitination-mediated
NF-κB regulation and its related disorders. J Biochem. 154:313–323.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Oeckinghaus A, Hayden MS and Ghosh S:
Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
D'Ignazio L, Batie M and Rocha S: Hypoxia
and inflammation in cancer, focus on HIF and NF-κB. Biomedicines.
5:212017. View Article : Google Scholar
|
|
31
|
Israel A: The IKK complex, a central
regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol.
2:a0001582010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Smit JJ, van Dijk WJ, El Atmioui D, Merkx
R, Ovaa H and Sixma TK: Target specificity of the E3 ligase LUBAC
for ubiquitin and NEMO relies on different minimal requirements. J
Biol Chem. 288:31728–31737. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tokunaga F and Iwai K: Involvement of
LUBAC-mediated linear polyubiquitination of NEMO in NF-kappaB
activation. Tanpakushitsu Kakusan Koso. 54:635–642. 2009.(In
Japanese). PubMed/NCBI
|
|
34
|
Iwai K and Tokunaga F: Linear
polyubiquitination: A new regulator of NF-kappaB activation. EMBO
Rep. 10:706–713. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rahighi S, Ikeda F, Kawasaki M, Akutsu M,
Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, et al:
Specific recognition of linear ubiquitin chains by NEMO is
important for NF-kappaB activation. Cell. 136:1098–1109. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bal E, Laplantine E, Hamel Y, Dubosclard
V, Boisson B, Pescatore A, Picard C, Hadj-Rabia S, Royer G,
Steffann J, et al: Lack of interaction between NEMO and SHARPIN
impairs linear ubiquitination and NF-κB activation and leads to
incontinentia pigmenti. J Allergy Clin Immunol. 140:1671–1682.e2.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Niu J, Shi Y, Iwai K and Wu ZH: LUBAC
regulates NF-κB activation upon genotoxic stress by promoting
linear ubiquitination of NEMO. EMBO J. 30:3741–3753. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lane D and Levine A: p53 Research: The
past thirty years and the next thirty years. Cold Spring Harb
Perspect Biol. 2:a0008932010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ozaki T and Nakagawara A: Role of p53 in
cell death and human cancers. Cancers (Basel). 3:994–1013. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bieging KT, Mello SS and Attardi LD:
Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev
Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Muller PA, Vousden KH and Norman JC: p53
and its mutants in tumor cell migration and invasion. J Cell Biol.
192:209–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Scoumanne A, Zhang J and Chen X: PRMT5 is
required for cell-cycle progression and p53 tumor suppressor
function. Nucleic Acids Res. 37:4965–4976. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Honda R, Tanaka H and Yasuda H:
Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53.
FEBS Lett. 420:25–27. 2007. View Article : Google Scholar
|
|
44
|
Lee JT and Gu W: The multiple levels of
regulation by p53 ubiquitination. Cell Death Differ. 17:86–92.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lessel D, Wu D, Trujillo C, Ramezani T,
Lessel I, Alwasiyah MK, Saha B, Hisama FM, Rading K, Goebel I, et
al: Dysfunction of the MDM2/p53 axis is linked to premature aging.
J Clin Invest. 127:3598–3608. 2007. View Article : Google Scholar
|
|
46
|
Chen J, Lin J and Levine AJ: Regulation of
transcription functions of the p53 tumor suppressor by the mdm-2
oncogene. Mol Med. 1:142–152. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu X, Bayle JH, Olson D and Levine AJ: The
p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.
1999. View Article : Google Scholar
|
|
48
|
Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y,
Du X, Li J, Li P, Ren R and Pan J: Targeting methyltransferase
PRMT5 eliminates leukemia stem cells in chronic myelogenous
leukemia. J Clin Invest. 126:3961–3980. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rehman I, Basu SM, Das SK, Bhattacharjee
S, Ghosh A, Pommier Y and Das BB: PRMT5-mediated arginine
methylation of TDP1 for the repair of topoisomerase I covalent
complexes. Nucleic Acids Res. 46:5601–5617. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Durant ST, Cho EC and La Thangue NB: p53
methylation-the Arg-ument is clear. Cell Cycle. 8:801–802. 2008.
View Article : Google Scholar
|
|
51
|
Gkountela S, Li Z, Chin CJ, Lee SA and
Clark AT: PRMT5 is required for human embryonic stem cell
proliferation but not pluripotency. Stem Cell Rev. 10:230–239.
2014. View Article : Google Scholar
|
|
52
|
Stopa N, Krebs JE and Shechter D: The
PRMT5 arginine methyltransferase: Many roles in development, cancer
and beyond. Cell Mol Life Sci. 72:2041–2059. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu M, Yao B, Gui T, Guo C, Wu X, Li J, Ma
L, Deng Y, Xu P, Wang Y, et al: PRMT5-dependent transcriptional
repression of c-Myc target genes promotes gastric cancer
progression. Theranostics. 10:4437–4452. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Vinet M, Suresh S, Maire V, Monchecourt C,
Nemati F, Lesage L, Pierre F, Ye M, Lescure A, Brisson A, et al:
Protein arginine methyltransferase 5: A novel therapeutic target
for triple-negative breast cancers. Cancer Med. 8:2414–2428. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY,
Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, et al: Crosstalk between
Arg 1175 methylation and Tyr 1173 phosphorylation negatively
modulates EGFR-mediated ERK activation. Nat Cell Biol. 13:174–181.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cho EC, Zheng S, Munro S, Liu G, Carr SM,
Moehlenbrink J, Lu YC, Stimson L, Khan O, Konietzny R, et al:
Arginine methylation controls growth regulation by E2F-1. EMBO J.
31:1785–1797. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fu T, Lv X, Kong Q and Yuan C: A novel
SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell
invasion. Oncotarget. 8:54809–54820. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jansson M, Durant ST, Cho EC, Sheahan S,
Edelmann M, Kessler B and La Thangue NB: Arginine methylation
regulates the p53 response. Nat Cell Biol. 10:1431–1439. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang M, Sun J, Sun X, Shen Q, Gao Z and
Yang C: Caenorhabditis elegans protein arginine methyltransferase
PRMT-5 negatively regulates DNA damage-induced apoptosis. PLoS
Genet. 5:e10005142009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bezzi M, Teo SX, Muller J, Mok WC, Sahu
SK, Vardy LA, Bonday ZQ and Guccione E: Regulation of constitutive
and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA
in sensing defects in the spliceosomal machinery. Genes Dev.
27:1903–1916. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gerhart SV, Kellner WA, Thompson C,
Pappalardi MB, Zhang XP, Montes de Oca R, Penebre E, Duncan K,
Boriack-Sjodin A, Le B, et al: Activation of the p53-MDM4
regulatory axis defines the anti-tumour response to PRMT5
inhibition through its role in regulating cellular splicing. Sci
Rep. 8:97112018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y and Diehl JA: PRMT5-dependent p53
escape in tumorigenesis. Oncoscience. 2:700–702. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Scaglione A, Patzig J, Liang J, Frawley R,
Bok J, Mela A, Yattah C, Zhang J, Teo SX, Zhou T, et al:
PRMT5-mediated regulation of developmental myelination. Nat Commun.
9:28402018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu F, Cheng G, Hamard PJ, Greenblatt S,
Wang L, Man N, Perna F, Xu H, Tadi M, Luciani L, et al: Arginine
methyltransferase PRMT5 is essential for sustaining normal adult
hematopoiesis. J Clin Invest. 125:3532–3544. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhu H, Wang H, Huang Q, Liu Q, Guo Y, Lu
J, Li X, Xue C and Han Q: Transcriptional repression of p53 by PAX3
contributes to gliomagenesis and differentiation of glioma stem
cells. Front Mol Neurosci. 11:1872018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang C, Zhao L, Su Q, Fan X, Wang Y, Gao
S, Wang H, Chen H, Chan CB and Liu Z: Phosphorylation of MITF by
AKT affects its downstream targets and causes TP53-dependent cell
senescence. Int J Biochem Cell Biol. 80:132–142. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lilja J, Zacharchenko T, Georgiadou M,
Jacquemet G, De Franceschi N, Peuhu E, Hamidi H, Pouwels J, Martens
V, Nia FH, et al: SHANK proteins limit integrin activation by
directly interacting with Rap1 and R-Ras. Nat Cell Biol.
19:292–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lee JT, Shan J, Zhong J, Li M, Zhou B,
Zhou A, Parsons R and Gu W: RFP-mediated ubiquitination of PTEN
modulates its effect on AKT activation. Cell Res. 23:552–564. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Graupera M, Guillermet-Guibert J, Foukas
LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J,
Cutillas PR, et al: Angiogenesis selectively requires the p110alpha
isoform of PI3K to control endothelial cell migration. Nature.
453:662–666. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Worby CA and Dixon JE: Pten. Annu Rev
Biochem. 83:641–669. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang Y, Wu C, Han B, Xu F, Mao M, Guo X
and Wang J: Dexmedetomidine attenuates repeated propofol
exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling
disruption, and juvenile cognitive deficits in neonatal rats. Mol
Med Rep. 14:769–775. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nakanishi A, Wada Y, Kitagishi Y and
Matsuda S: Link between PI3K/AKT/PTEN pathway and NOX proteinin
diseases. Aging Dis. 5:203–211. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Engelman JA, Luo J and Cantley LC: The
evolution of phosphatidylinositol 3-kinases as regulators of growth
and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Silva A, Yunes JA, Cardoso BA, Martins LR,
Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA and Barata
JT: PTEN posttranslational inactivation and hyperactivation of the
PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin
Invest. 118:3762–3774. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gomes AM, Soares MV, Ribeiro P, Caldas J,
Povoa V, Martins LR, Melao A, Serra-Caetano A, de Sousa AB, Lacerda
JF, et al: Adult B-cell acute lymphoblastic leukemia cells display
decreased PTEN activity and constitutive hyperactivation of
PI3K/Akt pathway despite high PTEN protein levels. Haematologica.
99:1062–1068. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Poliseno L, Salmena L, Zhang J, Carver B,
Haveman WJ and Pandolfi PP: A coding-independent function of gene
and pseudogene mRNAs regulates tumour biology. Nature.
465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Al-Khouri AM, Ma Y, Togo SH, Williams S
and Mustelin T: Cooperative phosphorylation of the tumor suppressor
phosphatase and tensin homologue (PTEN) by casein kinases and
glycogen synthase kinase 3beta. J Biol Chem. 280:35195–35202. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ikenoue T, Inoki K, Zhao B and Guan KL:
PTEN acetylation modulates its interaction with PDZ domain. Cancer
Res. 68:6908–6912. 2018. View Article : Google Scholar
|
|
79
|
Yang JM, Schiapparelli P, Nguyen HN,
Igarashi A, Zhang Q, Abbadi S, Amzel LM, Sesaki H,
Quinones-Hinojosa A and Iijima M: Characterization of PTEN
mutations in brain cancer reveals that pten mono-ubiquitination
promotes protein stability and nuclear localization. Oncogene.
36:3673–3685. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Song Z, Han X, Shen L, Zou H, Zhang B, Liu
J and Gong A: PTEN silencing enhances neuronal proliferation and
differentiation by activating PI3K/Akt/GSK3β pathway in vitro. Exp
Cell Res. 363:179–187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hopkins BD, Hodakoski C, Barrows D, Mense
SM and Parsons RE: PTEN function: The long and the short of it.
Trends Biochem Sci. 39:183–190. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu X, Senechal K, Neshat MS, Whang YE and
Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions
as a negative regulator of the phosphoinositide 3-kinase/Akt
pathway. Proc Natl Acad Sci USA. 95:15587–15591. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
He L, Ingram A, Rybak AP and Tang D:
Shank-interacting protein-like 1 promotes tumorigenesis via PTEN
inhibition in human tumor cells. J Clin Invest. 120:2094–2108.
2012. View Article : Google Scholar
|
|
84
|
De Melo J, Lin X, He L, Wei F, Major P and
Tang D: SIPL1-facilitated PTEN ubiquitination contributes to its
association with PTEN. Cell Signal. 26:2749–2756. 2014. View Article : Google Scholar : PubMed/NCBI
|