Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Shank‑associated RH domain interactor signaling in tumorigenesis (Review)

  • Authors:
    • Chong Zeng
    • Dan Xiong
    • Ketao Zhang
    • Jie Yao
  • View Affiliations / Copyright

    Affiliations: Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China, Department of Hematology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China, Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
    Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2579-2586
    |
    Published online on: July 9, 2020
       https://doi.org/10.3892/ol.2020.11850
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Shank‑associated RH domain interactor (SHARPIN) is a component of the linear ubiquitin chain activation complex, which is essential for p53 signaling and inflammation. Previous studies have demonstrated that SHARPIN functions in tumor cell survival, growth, invasion and tumorigenesis. These functions include the regulation of p53 proteins via poly‑ubiquitination, interaction with a type II protein arginine methyltransferase 5 in melanoma cells, modulating ras‑associated protein‑1 through p38 and c‑Jun N‑terminal kinases/c‑Jun signaling, and mediating phosphoinositide 3‑kinase/AKT signaling via phosphatase and tensin homologue deleted on chromosome 10. Hence, SHARPIN not only participates in the inflammatory response but also serves a critical role in tumor cells. The present review summarizes the biological functions of the absence or presence of SHARPIN with regard to activating the canonical NF‑κB signaling pathway and the effects on p53 and other signaling pathways for the modulation of tumorigenesis. Therefore, this review provides insight into the underlying role and mechanisms of SHARPIN in tumorigenesis, as well as its potential application in cancer therapy.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Bray F, Jemal A, Grey N, Ferlay J and Forman D: Global cancer transitions according to the Human development index (2008–2030): A population-based study. Lancet Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Luo J, Solimini NL and Elledge SJ: Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell. 136:823–837. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Tamiya H, Kim H, Klymenko O, Kim H, Feng Y, Zhang T, Han JY, Murao A, Snipas SJ, Jilaveanu L, et al: SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. J Clin Invest. 128:517–530. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Jung J, Kim JM, Park B, Cheon Y, Lee B, Choo SH, Koh SS and Lee S: Newly identified tumor-associated role of human Sharpin. Mol Cell Biochem. 340:161–167. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Ojo D, Wu Y, Bane A and Tang D: A role of SIPL1/SHARPIN in promoting resistance to hormone therapy in breast cancer. Biochim Biophys Acta Mol Basis Dis. 1864:735–745. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Bii VM, Rae DT and Trobridge GD: A novel gammaretroviral shuttle vector insertional mutagenesis screen identifies SHARPIN as a breast cancer metastasis gene and prognostic biomarker. Oncotarget. 6:39507–39520. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Seymour RE, Hasham MG, Cox GA, Shultz LD, Hogenesch H, Roopenian DC and Sundberg JP: Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8:416–421. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Wang Z, Potter CS, Sundberg JP and Hogenesch H: SHARPIN is a key regulator of immune and inflammatory responses. J Cell Mol Med. 16:2271–2279. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Rittinger K and Ikeda F: Linear ubiquitin chains: Enzymes, mechanisms and biology. Open Biol. 7:1700262017. View Article : Google Scholar : PubMed/NCBI

10 

Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H and Iwai K: SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature. 471:633–636. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C, Taraborrelli L, et al: LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 557:112–117. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Tang Y, Joo D, Liu G, Tu H, You J, Jin J, Zhao X, Hung MC and Lin X: Linear ubiquitination of cFLIP induced by LUBAC contributes to TNFα-induced apoptosis. J Biol Chem. 293:20062–20072. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J, et al: SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature. 471:637–641. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Teh CE, Lalaoui N, Jain R, Policheni AN, Heinlein M, Alvarez-Diaz S, Sheridan JM, Rieser E, Deuser S, Darding M, et al: Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat Commun. 7:133532016. View Article : Google Scholar : PubMed/NCBI

15 

Redecke V, Chaturvedi V, Kuriakose J and Hacker H: SHARPIN controls the development of regulatory T cells. Immunology. 148:216–226. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Tian Z, Tang J, Yang Q, Li X, Zhu J and Wu G: Atypical ubiquitin-binding protein SHARPIN promotes breast cancer progression. Biomed Pharmacother. 119:1094142019. View Article : Google Scholar : PubMed/NCBI

17 

Yang H, Yu S, Wang W, Li X, Hou Y, Liu Z, Shi Y, Mu K, Niu G, Xu J, et al: SHARPIN facilitates p53 degradation in breast cancer cells. Neoplasia. 19:84–92. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Zhou S, Liang Y, Zhang X, Liao L, Yang Y, Ouyang W and Xu H: SHARPIN promotes melanoma progression via Rap1 signaling pathway. J Invest Dermatol. 140:395–403.e6. 2020. View Article : Google Scholar : PubMed/NCBI

19 

De Melo J, Wu V, He L, Yan J and Tang D: SIPL1 enhances the proliferation, attachment, and migration of CHO cells by inhibiting PTEN function. Int J Mol Med. 34:835–841. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Sasaki K and Iwai K: Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol Rev. 266:175–189. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Ikeda F: Linear ubiquitination signals in adaptive immune responses. Immunol Rev. 266:222–236. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Iwai K, Fujita H and Sasaki Y: Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nat Rev Mol Cell Biol. 15:503–508. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, et al: Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 11:123–132. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G, et al: The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 498:318–324. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Fujita H, Tokunaga A, Shimizu S, Whiting AL, Aguilar-Alonso F, Takagi K, Walinda E, Sasaki Y, Shimokawa T, Mizushima T, et al: Cooperative domain formation by homologous motifs in HOIL-1L and SHARPIN plays A crucial role in LUBAC stabilization. Cell Rep. 23:1192–1204. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Matsunaga Y, Nakatsu Y, Fukushima T, Okubo H, Iwashita M, Sakoda H, Fujishiro M, Yamamotoya T, Kushiyama A, Takahashi S, et al: LUBAC formation is impaired in the livers of mice with MCD-dependent nonalcoholic steatohepatitis. Mediators Inflamm. 2015:1253802015. View Article : Google Scholar : PubMed/NCBI

27 

Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, Amatya R, Kelly TJ, Iwai K, Ting J, et al: The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med. 211:1333–1347. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Tokunaga F: Linear ubiquitination-mediated NF-κB regulation and its related disorders. J Biochem. 154:313–323. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Oeckinghaus A, Hayden MS and Ghosh S: Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar : PubMed/NCBI

30 

D'Ignazio L, Batie M and Rocha S: Hypoxia and inflammation in cancer, focus on HIF and NF-κB. Biomedicines. 5:212017. View Article : Google Scholar

31 

Israel A: The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2:a0001582010. View Article : Google Scholar : PubMed/NCBI

32 

Smit JJ, van Dijk WJ, El Atmioui D, Merkx R, Ovaa H and Sixma TK: Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements. J Biol Chem. 288:31728–31737. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Tokunaga F and Iwai K: Involvement of LUBAC-mediated linear polyubiquitination of NEMO in NF-kappaB activation. Tanpakushitsu Kakusan Koso. 54:635–642. 2009.(In Japanese). PubMed/NCBI

34 

Iwai K and Tokunaga F: Linear polyubiquitination: A new regulator of NF-kappaB activation. EMBO Rep. 10:706–713. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, et al: Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell. 136:1098–1109. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Bal E, Laplantine E, Hamel Y, Dubosclard V, Boisson B, Pescatore A, Picard C, Hadj-Rabia S, Royer G, Steffann J, et al: Lack of interaction between NEMO and SHARPIN impairs linear ubiquitination and NF-κB activation and leads to incontinentia pigmenti. J Allergy Clin Immunol. 140:1671–1682.e2. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Niu J, Shi Y, Iwai K and Wu ZH: LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J. 30:3741–3753. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Lane D and Levine A: p53 Research: The past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2:a0008932010. View Article : Google Scholar : PubMed/NCBI

39 

Ozaki T and Nakagawara A: Role of p53 in cell death and human cancers. Cancers (Basel). 3:994–1013. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Bieging KT, Mello SS and Attardi LD: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Muller PA, Vousden KH and Norman JC: p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 192:209–218. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Scoumanne A, Zhang J and Chen X: PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res. 37:4965–4976. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Honda R, Tanaka H and Yasuda H: Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27. 2007. View Article : Google Scholar

44 

Lee JT and Gu W: The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 17:86–92. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Lessel D, Wu D, Trujillo C, Ramezani T, Lessel I, Alwasiyah MK, Saha B, Hisama FM, Rading K, Goebel I, et al: Dysfunction of the MDM2/p53 axis is linked to premature aging. J Clin Invest. 127:3598–3608. 2007. View Article : Google Scholar

46 

Chen J, Lin J and Levine AJ: Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol Med. 1:142–152. 1995. View Article : Google Scholar : PubMed/NCBI

47 

Wu X, Bayle JH, Olson D and Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132. 1999. View Article : Google Scholar

48 

Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y, Du X, Li J, Li P, Ren R and Pan J: Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest. 126:3961–3980. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y and Das BB: PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res. 46:5601–5617. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Durant ST, Cho EC and La Thangue NB: p53 methylation-the Arg-ument is clear. Cell Cycle. 8:801–802. 2008. View Article : Google Scholar

51 

Gkountela S, Li Z, Chin CJ, Lee SA and Clark AT: PRMT5 is required for human embryonic stem cell proliferation but not pluripotency. Stem Cell Rev. 10:230–239. 2014. View Article : Google Scholar

52 

Stopa N, Krebs JE and Shechter D: The PRMT5 arginine methyltransferase: Many roles in development, cancer and beyond. Cell Mol Life Sci. 72:2041–2059. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Liu M, Yao B, Gui T, Guo C, Wu X, Li J, Ma L, Deng Y, Xu P, Wang Y, et al: PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics. 10:4437–4452. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Vinet M, Suresh S, Maire V, Monchecourt C, Nemati F, Lesage L, Pierre F, Ye M, Lescure A, Brisson A, et al: Protein arginine methyltransferase 5: A novel therapeutic target for triple-negative breast cancers. Cancer Med. 8:2414–2428. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, et al: Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol. 13:174–181. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Cho EC, Zheng S, Munro S, Liu G, Carr SM, Moehlenbrink J, Lu YC, Stimson L, Khan O, Konietzny R, et al: Arginine methylation controls growth regulation by E2F-1. EMBO J. 31:1785–1797. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Fu T, Lv X, Kong Q and Yuan C: A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget. 8:54809–54820. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B and La Thangue NB: Arginine methylation regulates the p53 response. Nat Cell Biol. 10:1431–1439. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Yang M, Sun J, Sun X, Shen Q, Gao Z and Yang C: Caenorhabditis elegans protein arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced apoptosis. PLoS Genet. 5:e10005142009. View Article : Google Scholar : PubMed/NCBI

60 

Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ and Guccione E: Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 27:1903–1916. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Gerhart SV, Kellner WA, Thompson C, Pappalardi MB, Zhang XP, Montes de Oca R, Penebre E, Duncan K, Boriack-Sjodin A, Le B, et al: Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep. 8:97112018. View Article : Google Scholar : PubMed/NCBI

62 

Li Y and Diehl JA: PRMT5-dependent p53 escape in tumorigenesis. Oncoscience. 2:700–702. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, Yattah C, Zhang J, Teo SX, Zhou T, et al: PRMT5-mediated regulation of developmental myelination. Nat Commun. 9:28402018. View Article : Google Scholar : PubMed/NCBI

64 

Liu F, Cheng G, Hamard PJ, Greenblatt S, Wang L, Man N, Perna F, Xu H, Tadi M, Luciani L, et al: Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J Clin Invest. 125:3532–3544. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Zhu H, Wang H, Huang Q, Liu Q, Guo Y, Lu J, Li X, Xue C and Han Q: Transcriptional repression of p53 by PAX3 contributes to gliomagenesis and differentiation of glioma stem cells. Front Mol Neurosci. 11:1872018. View Article : Google Scholar : PubMed/NCBI

66 

Wang C, Zhao L, Su Q, Fan X, Wang Y, Gao S, Wang H, Chen H, Chan CB and Liu Z: Phosphorylation of MITF by AKT affects its downstream targets and causes TP53-dependent cell senescence. Int J Biochem Cell Biol. 80:132–142. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Lilja J, Zacharchenko T, Georgiadou M, Jacquemet G, De Franceschi N, Peuhu E, Hamidi H, Pouwels J, Martens V, Nia FH, et al: SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat Cell Biol. 19:292–305. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Lee JT, Shan J, Zhong J, Li M, Zhou B, Zhou A, Parsons R and Gu W: RFP-mediated ubiquitination of PTEN modulates its effect on AKT activation. Cell Res. 23:552–564. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR, et al: Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature. 453:662–666. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Worby CA and Dixon JE: Pten. Annu Rev Biochem. 83:641–669. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Wang Y, Wu C, Han B, Xu F, Mao M, Guo X and Wang J: Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep. 14:769–775. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Nakanishi A, Wada Y, Kitagishi Y and Matsuda S: Link between PI3K/AKT/PTEN pathway and NOX proteinin diseases. Aging Dis. 5:203–211. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA and Barata JT: PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest. 118:3762–3774. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Gomes AM, Soares MV, Ribeiro P, Caldas J, Povoa V, Martins LR, Melao A, Serra-Caetano A, de Sousa AB, Lacerda JF, et al: Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica. 99:1062–1068. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ and Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Al-Khouri AM, Ma Y, Togo SH, Williams S and Mustelin T: Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem. 280:35195–35202. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Ikenoue T, Inoki K, Zhao B and Guan KL: PTEN acetylation modulates its interaction with PDZ domain. Cancer Res. 68:6908–6912. 2018. View Article : Google Scholar

79 

Yang JM, Schiapparelli P, Nguyen HN, Igarashi A, Zhang Q, Abbadi S, Amzel LM, Sesaki H, Quinones-Hinojosa A and Iijima M: Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene. 36:3673–3685. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Song Z, Han X, Shen L, Zou H, Zhang B, Liu J and Gong A: PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway in vitro. Exp Cell Res. 363:179–187. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Hopkins BD, Hodakoski C, Barrows D, Mense SM and Parsons RE: PTEN function: The long and the short of it. Trends Biochem Sci. 39:183–190. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Wu X, Senechal K, Neshat MS, Whang YE and Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 95:15587–15591. 1998. View Article : Google Scholar : PubMed/NCBI

83 

He L, Ingram A, Rybak AP and Tang D: Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Invest. 120:2094–2108. 2012. View Article : Google Scholar

84 

De Melo J, Lin X, He L, Wei F, Major P and Tang D: SIPL1-facilitated PTEN ubiquitination contributes to its association with PTEN. Cell Signal. 26:2749–2756. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zeng C, Xiong D, Zhang K and Yao J: Shank‑associated RH domain interactor signaling in tumorigenesis (Review). Oncol Lett 20: 2579-2586, 2020.
APA
Zeng, C., Xiong, D., Zhang, K., & Yao, J. (2020). Shank‑associated RH domain interactor signaling in tumorigenesis (Review). Oncology Letters, 20, 2579-2586. https://doi.org/10.3892/ol.2020.11850
MLA
Zeng, C., Xiong, D., Zhang, K., Yao, J."Shank‑associated RH domain interactor signaling in tumorigenesis (Review)". Oncology Letters 20.3 (2020): 2579-2586.
Chicago
Zeng, C., Xiong, D., Zhang, K., Yao, J."Shank‑associated RH domain interactor signaling in tumorigenesis (Review)". Oncology Letters 20, no. 3 (2020): 2579-2586. https://doi.org/10.3892/ol.2020.11850
Copy and paste a formatted citation
x
Spandidos Publications style
Zeng C, Xiong D, Zhang K and Yao J: Shank‑associated RH domain interactor signaling in tumorigenesis (Review). Oncol Lett 20: 2579-2586, 2020.
APA
Zeng, C., Xiong, D., Zhang, K., & Yao, J. (2020). Shank‑associated RH domain interactor signaling in tumorigenesis (Review). Oncology Letters, 20, 2579-2586. https://doi.org/10.3892/ol.2020.11850
MLA
Zeng, C., Xiong, D., Zhang, K., Yao, J."Shank‑associated RH domain interactor signaling in tumorigenesis (Review)". Oncology Letters 20.3 (2020): 2579-2586.
Chicago
Zeng, C., Xiong, D., Zhang, K., Yao, J."Shank‑associated RH domain interactor signaling in tumorigenesis (Review)". Oncology Letters 20, no. 3 (2020): 2579-2586. https://doi.org/10.3892/ol.2020.11850
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team