Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functional roles of E3 ubiquitin ligases in gastric cancer (Review)

  • Authors:
    • Mingliang Wang
    • Wei Dai
    • Zhangyan Ke
    • Yongxiang Li
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Geriatric Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 22
    |
    Published online on: July 16, 2020
       https://doi.org/10.3892/ol.2020.11883
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

To date, >650 E3 ubiquitin ligases have been described in humans, including >600 really interesting new genes (RINGs), 28 homologous to E6‑associated protein C‑terminus (HECTs) and several RING‑in‑between‑RINGs. They are considered key regulators and therapeutic targets of many types of human cancers, including gastric cancer (GC). Among them, some RING and HECT E3 ligases are closely related to the proliferation, infiltration and prognosis of GC. During the past few years, abnormal expressions and functions of many E3 ligases have been identified in GC. However, the functional roles of E3 ligases in GC have not been fully elucidated. The present article focuses on the functional roles of E3 ligases related to the proteasome in GC. In this comprehensive review, the latest research progress on E3 ligases involved in GC and elaborate their structure, classification, functional roles and therapeutic value in GC was summarized. Finally, 30 E3 ligases that serve essential roles in regulating the development of GC were described. Some of these ligases may serve as oncogenes or tumor suppressors in GC, whereas the pathological mechanism of others needs further study; for example, constitutive photomorphogenic 1. In conclusion, the present review demonstrated that E3 ligases are crucial tumor regulatory factors and potential therapeutic targets in GC. Therefore, more studies should focus on the therapeutic targeting of E3 ligases in GC.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Wu Y, Fan Y, Jiang Y, Wang Y, Liu H and Wei M: Analysis of risk factors associated with precancerous lesion of gastric cancer in patients from eastern China: A comparative study. J Cancer Res Ther. 9:205–209. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, Zhang L, Tang J, Chen J, Wei K, et al: Cancer survival in China, 2003–2005: A population-based study. Int J Cancer. 136:1921–1930. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Woo Y, Goldner B, Son T, Song K, Noh SH, Fong Y and Hyung WJ: Western validation of a novel gastric cancer prognosis prediction model in US gastric cancer patients. J Am Coll Surg. 226:252–258. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Wen T, Wang Z, Li Y, Li Z, Che X, Fan Y, Wang S, Qu J, Yang X, Hou K, et al: A four-factor immunoscore system that predicts clinical outcome for stage II/III gastric cancer. Cancer Immunol Res. 5:524–534. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Abramov IS, Emelyanova MA, Ryabaya OO, Krasnov GS, Zasedatelev AS and Nasedkina TV: Somatic mutations associated with metastasis in acral melanoma. Mol Biol (Mosk). 53:648–653. 2019.(In Russian). View Article : Google Scholar : PubMed/NCBI

7 

Hou YC and Deng JY: Role of E3 ubiquitin ligases in gastric cancer. World J Gastroenterol. 21:786–793. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Hickey CM, Xie Y and Hochstrasser M: DNA binding by the MATα2 transcription factor controls its access to alternative ubiquitin-modification pathways. Mol Biol Cell. 29:542–556. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Bulatov E, Valiullina A, Sayarova R and Rizvanov A: Promising new therapeutic targets for regulation of inflammation and immunity: RING-type E3 ubiquitin ligases. Immunol Lett. 202:44–51. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Lu W, Yang C, He H and Liu H: The CARM1-p300-c-Myc-Max (CPCM) transcriptional complex regulates the expression of CUL4A/4B and affects the stability of CRL4 E3 ligases in colorectal cancer. Int J Biol Sci. 16:1071–1085. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Liu L, Wong CC, Gong B and Yu J: Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene. 37:148–159. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Uchida C and Kitagawa M: RING-, HECT-, and RBR-type E3 ubiquitin ligases: Involvement in human cancer. Curr Cancer Drug Targets. 16:157–174. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Johansson H, Isabella Tsai YC, Fantom K, Chung CW, Kümper S, Martino L, Thomas DA, Eberl HC, Muelbaier M, House D and Rittinger K: Fragment-based covalent ligand screening enables rapid discovery of inhibitors for the RBR E3 ubiquitin ligase HOIP. J Am Chem Soc. 141:2703–2712. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Yu JM, Sun W, Wang ZH, Liang X, Hua F, Li K, Lv XX, Zhang XW, Liu YY, Yu JJ, et al: TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat Commun. 10:57202019. View Article : Google Scholar : PubMed/NCBI

15 

Zhang J, Wu H, Yi B, Zhou J, Wei L, Chen Y and Zhang L: RING finger protein 38 induces gastric cancer cell growth by decreasing the stability of the protein tyrosine phosphatase SHP-1. FEBS Lett. 592:3092–3100. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Huang Z, Cai Y, Yang C, Chen Z, Sun H, Xu Y, Chen W, Xu D, Tian W and Wang H: Knockdown of RNF6 inhibits gastric cancer cell growth by suppressing STAT3 signaling. Onco Targets Ther. 11:6579–6587. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Berndsen CE and Wolberger C: New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 21:301–307. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ and Gould KL: Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol. 10:250–255. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Leslie PL, Ke H and Zhang Y: The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J Biol Chem. 290:12941–12950. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Genschik P, Sumara I and Lechner E: The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular functions and disease implications. EMBO J. 32:2307–2320. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Kelsall IR, Kristariyanto YA, Knebel A, Wood NT, Kulathu Y and Alpi AF: Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling. J Biol Chem. 294:2651–2664. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Weber J, Polo S and Maspero E: HECT E3 ligases: A tale with multiple facets. Front Physiol. 10:370–377. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Lorenz S: Structural mechanisms of HECT-type ubiquitin ligases. Biol Chem. 399:127–145. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Geng R, Tan X, Wu J, Pan Z, Yi M, Shi W, Liu R, Yao C, Wang G, Lin J, et al: RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis. Cell Death Dis. 8:e29942017. View Article : Google Scholar : PubMed/NCBI

25 

Peng R, Zhang PF, Yang X, Wei CY, Huang XY, Cai JB, Lu JC, Gao C, Sun HX, Gao Q, et al: Overexpression of RNF38 facilitates TGF-β signaling by Ubiquitinating and degrading AHNAK in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:1132019. View Article : Google Scholar : PubMed/NCBI

26 

Macdonald DH, Lahiri D, Sampath A, Chase A, Sohal J and Cross NC: Cloning and characterization of RNF6, a novel RING finger gene mapping to 13q12. Genomics. 58:94–97. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Eisenberg I, Hochner H, Levi T, Yelin R, Kahan T and Mitrani-Rosenbaum S: Cloning and characterization of a novel human gene RNF38 encoding a conserved putative protein with a RING finger domain. Biochem Biophys Res Commun. 294:1169–1176. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Katoh M: Molecular cloning and characterization of RNF26 on human chromosome 11q23 region, encoding a novel RING finger protein with leucine zipper. Biochem Biophys Res Commun. 282:1038–1044. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Jongsma ML, Berlin I, Wijdeven RH, Janssen L, Janssen GM, Garstka MA, Janssen H, Mensink M, van Veelen PA, Spaapen RM and Neefjes J: An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell. 166:152–166. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, Zhong B and Shu HB: RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog. 10:e10043582014. View Article : Google Scholar : PubMed/NCBI

31 

Wang R, Zhao X, Xu J, Wen Y, Li A, Lu M and Zhou J: Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis. 9:3522018. View Article : Google Scholar : PubMed/NCBI

32 

Zhu T, Chen R, Li A, Liu J, Gu D, Liu Q, C Chang H and Zhou J: JWA as a novel molecule involved in oxidative stress-associated signal pathway in myelogenous leukemia cells. J Toxicol Environ Health A. 69:1399–1411. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Qiu D, Wang Q, Wang Z, Chen J, Yan D, Zhou Y, Li A, Zhang R, Wang S and Zhou J: RNF185 modulates JWA ubiquitination and promotes gastric cancer metastasis. Biochim Biophys Acta Mol Basis Dis. 1864:1552–1561. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Gao Y, Cai A, Xi H, Li J, Xu W, Zhang Y, Zhang K, Cui J, Wu X, Wei B and Chen L: Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway. Stem Cell Res Ther. 8:982017. View Article : Google Scholar : PubMed/NCBI

35 

Xi HQ, Cai AZ, Wu XS, Cui JX, Shen WS, Bian SB, Wang N, Li JY, Lu CR, Song Z, et al: Leucine-rich repeat-containing G-protein-coupled receptor 5 is associated with invasion, metastasis, and could be a potential therapeutic target in human gastric cancer. Br J Cancer. 110:2011–2020. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Li XB, Yang G, Zhu L, Tang YL, Zhang C, Ju Z, Yang X and Teng Y: Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res. 26:838–849. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, et al: Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6:25–36. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Zhou Y, Lan J, Wang W, Shi Q, Lan Y, Cheng Z and Guan H: ZNRF3 acts as a tumour suppressor by the Wnt signalling pathway in human gastric adenocarcinoma. J Mol Histol. 44:555–563. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, et al: Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell. 174:856–869.e17. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Hao HX, Jiang X and Cong F: Control of Wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers (Basel). 8(pii): E542016. View Article : Google Scholar : PubMed/NCBI

41 

Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, Siu HC, Deng S, Chu KM, Law S, et al: Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 46:573–582. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Liu H, Mintern JD and Villadangos JA: MARCH ligases in immunity. Curr Opin Immunol. 58:38–43. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Wang Q, Chen Q, Zhu L, Chen M, Xu W, Panday S, Wang Z, Li A, Røe OD, Chen R, et al: JWA regulates TRAIL-induced apoptosis via MARCH8-mediated DR4 ubiquitination in cisplatin-resistant gastric cancer cells. Oncogenesis. 6:e3532017. View Article : Google Scholar : PubMed/NCBI

44 

Yin J, Ji Z, Hong Y, Song Z, Hu N, Zhuang M, Bian B, Liu Y and Wu F: Sh-MARCH8 inhibits tumorigenesis via PI3K pathway in gastric cancer. Cell Physiol Biochem. 49:306–321. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Sun M, Li S, Yu K, Xiang J and Li F: An E3 ubiquitin ligase TRIM9 is involved in WSSV infection via interaction with β-TrCP. Dev Comp Immunol. 97:57–63. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Sun Y, Keown JR, Black MM, Raclot C, Demarais N, Trono D, Turelli P and Goldstone DC: A dissection of oligomerization by the TRIM28 tripartite motif and the interaction with members of the Krab-ZFP family. J Mol Biol. 431:2511–2527. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Yokoe T, Toiyama Y, Okugawa Y, Tanaka K, Ohi M, Inoue Y, Mohri Y, Miki C and Kusunoki M: KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann Surg Oncol. 17:821–828. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Kosaka Y, Inoue H, Ohmachi T, Yokoe T, Matsumoto T, Mimori K, Tanaka F, Watanabe M and Mori M: Tripartite motif-containing 29 (TRIM29) is a novel marker for lymph node metastasis in gastric cancer. Ann Surg Oncol. 14:2543–2549. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH and Gao WQ: TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology. 147:1043–1054. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Ma X, Zhang S, Zhang M, Zhu Y, Ma P, Yang S, Su L, Li Z, Lv W and Luan W: TRIM28 down-regulation on methylation imprints in bovine preimplantation embryos. Zygote. 26:449–456. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Zhang P, Zhang H, Wang Y, Zhang P and Qi Y: Tripartite motif-containing protein 59 (TRIM59) promotes epithelial ovarian cancer progression via the focal adhesion kinase(FAK)/AKT/matrix metalloproteinase (MMP) pathway. Med Sci Monit. 25:3366–3373. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Shen H, Zhang J, Zhang Y, Feng Q, Wang H, Li G, Jiang W and Li X: Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signaling pathway. Gene. 698:50–60. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Chen G, Chen W, Ye M, Tan W and Jia B: TRIM59 knockdown inhibits cell proliferation by down-regulating the Wnt/β-catenin signaling pathway in neuroblastoma. Biosci Rep. 39(pii): BSR201812772019. View Article : Google Scholar : PubMed/NCBI

54 

Cui Z, Liu Z, Zeng J, Chen L, Wu Q, Mo J, Zhang G, Song L, Xu W, Zhang S and Guo X: Eugenol inhibits non-small cell lung cancer by repressing expression of NF-κB-regulated TRIM59. Phytother Res. 33:1562–1569. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Halaby MJ, Hakem R and Hakem A: Pirh2: An E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation. Cell Cycle. 12:2733–2737. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Bao Y, Wu X, Yuan D, Shi W and Shi J: High expression of Pirh2 is associated with poor prognosis in glioma. Cell Mol Neurobiol. 37:1501–1509. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Daks A, Petukhov A, Fedorova O, Shuvalov O, Merkulov V, Vasileva E, Antonov A and Barlev NA: E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells. Genes Cancer. 7:383–393. 2016.PubMed/NCBI

58 

Yang S, Chen Y, Sun F, Ni Q, Wang H, Huang Y, Zhang C, Liu K, Wang S, Qiu J, et al: Downregulated pirh2 can decrease the proliferation of breast cancer cells. Arch Med Res. 47:186–195. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Yang G, Gong Y, Wang Q, Wang L and Zhang X: miR-100 antagonism triggers apoptosis by inhibiting ubiquitination-mediated p53 degradation. Oncogene. 36:1023–1037. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Eichinger L, Pachebat JA, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, et al: The genome of the social amoeba Dictyostelium discoideum. Nature. 435:43–57. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Langdon WY, Hyland CD, Grumont RJ and Morse HC III: The c-cbl proto-oncogene is preferentially expressed in thymus and testis tissue and encodes a nuclear protein. J Virol. 63:5420–5424. 1989. View Article : Google Scholar : PubMed/NCBI

62 

Lee H and Tsygankov AY: Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol. 228:2285–2293. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Kamei T, Machida K, Nimura Y, Senga T, Yamada I, Yoshii S, Matsuda S and Hamaguchi M: C-Cbl protein in human cancer tissues is frequently tyrosine phosphorylated in a tumor-specific manner. Int J Oncol. 17:335–339. 2000.PubMed/NCBI

64 

Dong Q, Liu YP, Qu XJ, Hou KZ and Li LL: Expression of c-Cbl, Cbl-b, and epidermal growth factor receptor in gastric carcinoma and their clinical significance. Chin J Cancer. 29:59–64. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Feng D, Ma Y, Liu J, Xu L, Zhang Y, Qu J, Liu Y and Qu X: Cbl-b enhances sensitivity to 5-fluorouracil via EGFR- and mitochondria-mediated pathways in gastric cancer cells. Int J Mol Sci. 14:24399–24411. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Yu P, Fan Y, Qu X, Zhang J, Song N, Liu J and Liu Y: Cbl-b regulates the sensitivity of cetuximab through ubiquitin-proteasome system in human gastric cancer cells. J BUON. 21:867–873. 2016.PubMed/NCBI

67 

CHe X, Zhang Y, Qu X, Guo T, Ma Y, Li C, Fan Y, Hou K, Cai Y, Yu R, et al: The E3 ubiquitin ligase Cbl-b inhibits tumor growth in multidrug-resistant gastric and breast cancer cells. Neoplasma. 64:887–892. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Xu L, Zhang Y, Qu X, Che X, Guo T, Cai Y, Li A, Li D, Li C, Wen T, et al: E3 ubiquitin ligase Cbl-b prevents tumor metastasis by maintaining the epithelial phenotype in multiple drug-resistant gastric and breast cancer cells. Neoplasia. 19:374–382. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Y, Qu X, Hu X, Yang X, Hou K, Teng Y, Zhang J, Sada K and Liu Y: Reversal of P-glycoprotein-mediated multi-drug resistance by the E3 ubiquitin ligase Cbl-b in human gastric adenocarcinoma cells. J Pathol. 218:248–255. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Lai AZ, Durrant M, Zuo D, Ratcliffe CD and Park M: Met kinase-dependent loss of the E3 ligase Cbl in gastric cancer. J Biol Chem. 287:8048–8059. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Gao YJ, Xin Y, Zhang JJ and Zhou J: Mechanism and pathobiologic implications of CHFR promoter methylation in gastric carcinoma. World J Gastroenterol. 14:5000–5007. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Li Y, Yang Y, Lu Y, Herman JG, Brock MV, Zhao P and Guo M: Predictive value of CHFR and MLH1 methylation in human gastric cancer. Gastric Cancer. 18:280–287. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Satoh A, Toyota M, Itoh F, Sasaki Y, Suzuki H, Ogi K, Kikuchi T, Mita H, Yamashita T, Kojima T, et al: Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res. 63:8606–8613. 2003.PubMed/NCBI

74 

Kashima L, Idogawa M, Mita H, Shitashige M, Yamada T, Ogi K, Suzuki H, Toyota M, Ariga H, Sasaki Y and Tokino T: CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. J Biol Chem. 287:12975–12984. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT and Chung IK: Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev. 19:776–781. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Ko A, Shin JY, Seo J, Lee KD, Lee EW, Lee MS, Lee HW, Choi IJ, Jeong JS, Chun KH and Song J: Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. J Natl Cancer Inst. 104:1660–1672. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Jang JH: FIGC, a novel FGF-induced ubiquitin-protein ligase in gastric cancers FEBS. Lett. 578:21–25. 2004.

78 

Wu CE, Esfandiari A, Ho YH, Wang N, Mahdi AK, Aptullahoglu E, Lovat P and Lunec J: Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. Br J Cancer. 118:495–508. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Hu C, Ni Z, Li BS, Yong X, Yang X, Zhang JW, Zhang D, Qin Y, Jie MM, Dong H, et al: hTERT promotes the invasion of gastric cancer cells by enhancing FOXO3a ubiquitination and subsequent ITGB1 upregulation. Gut. 66:31–42. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H, Kim WJ, Park WY, Oh BC, Stein GS, et al: Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res. 69:8111–8119. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Jung CR, Lim JH, Choi Y, Kim DG, Kang KJ, Noh SM and Im DS: Enigma negatively regulates p53 through MDM2 and promotes tumor cell survival in mice. J Clin Invest. 120:4493–4506. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Feng Y, Gao S, Gao Y, Song D, Wang X and Chen Z: Runx3 expression in rectal cancer cells and its effect on cell invasion and proliferation. Oncol Lett. 18:3290–3294. 2019.PubMed/NCBI

83 

Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Höhfeld J and Patterson C: The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol. 3:93–96. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Xiao M, Yan M, Zhang J, Xu Q and Chen W: Carboxy-terminus Hsc70 interacting protein exerts a tumor inhibition function in head and neck cancer. Oncol Rep. 38:1629–1636. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Liu F, Zhou J, Zhou P, Chen W and Guo F: The ubiquitin ligase CHIP inactivates NF-κB signaling and impairs the ability of migration and invasion in gastric cancer cells. Int J Oncol. 46:2096–2106. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI

87 

Lisztwan J, Marti A, Sutterlüty H, Gstaiger M, Wirbelauer C and Krek W: Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): Evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 17:368–383. 1998. View Article : Google Scholar : PubMed/NCBI

88 

Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M and Mohammad RM: Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol. 36:18–32. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Jiang ZH, Peng T, Qian HL, Lu CD, Qiu F and Zhang SZ: DNA damage-induced activation of ATM promotes β-TRCP-mediated ARID1A ubiquitination and destruction in gastric cancer cells. Cancer Cell Int. 19:1622019. View Article : Google Scholar : PubMed/NCBI

90 

Milne AN, Leguit R, Corver WE, Morsink FH, Polak M, de Leng WW, Carvalho R and Offerhaus GJ: Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 32:347–359. 2010.PubMed/NCBI

91 

Li H, Wang Z, Zhang W, Qian K, Xu W and Zhang S: Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett. 370:39–55. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Huang LY, Zhao J, Chen H, Wan L, Inuzuka H, Guo J, Fu X, Zhai Y, Lu Z, Wang X, et al: SCFFBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nat Commun. 9:35692018. View Article : Google Scholar : PubMed/NCBI

93 

Kuai X, Li L, Chen R, Wang K, Chen M, Cui B, Zhang Y, Li J, Zhu H, Zhou H, et al: SCFFBXW7/GSK3β-Mediated GFI1 Degradation Suppresses Proliferation of Gastric Cancer Cells. Cancer Res. 79:4387–4398. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Zhou J, Hayakawa Y, Wang TC and Bass AJ: RhoA mutations identified in diffuse gastric cancer. Cancer Cell. 26:9–11. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Gong J, Cui Z, Li L, Ma Q, Wang Q, Gao Y and Sun H: MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 domain protein 7, FBXW7. Tumour Biol. 36:7831–7840. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Lv Z, Zhang Y, Yu X, Lin Y and Ge Y: RETRACTED: The function of long non-coding RNA MT1JP in the development and progression of gastric cancer. Pathol Res Pract. 214:1218–1223. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Frescas D and Pagano M: Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: Tipping the scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Saitoh T and Katoh M: Expression profiles of betaTRCP1 and betaTRCP2, and mutation analysis of betaTRCP2 in gastric cancer. Int J Oncol. 18:959–964. 2001.PubMed/NCBI

99 

Gao G, Kun T, Sheng Y, Qian M, Kong F, Liu X, Yu Z, Zhang H, Zhang Q, Gu J and Zhang X: SGT1 regulates Akt signaling by promoting beta-TrCP-dependent PHLPP1 degradation in gastric cancer cells. Mol Biol Rep. 40:2947–2953. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Wang S, Zhang Y, Wang Y, Ye P, Li J, Li H, Ding Q and Xia J: Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3β/Foxp3 axis. J Biol Chem. 291:21085–21095. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Li LQ, Pan D, Chen H, Zhang L and Xie WJ: F-box protein FBXL2 inhibits gastric cancer proliferation by ubiquitin-mediated degradation of forkhead box M1. FEBS Lett. 590:445–452. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Cen G, Ding HH, Liu B and Wu WD: FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration. Tumour Biol. 35:8633–8638. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Wu W, Ding H, Cao J and Zhang W: FBXL5 inhibits metastasis of gastric cancer through suppressing Snail1. Cell Physiol Biochem. 35:1764–1772. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Zou S, Ma C, Yang F, Xu X, Jia J and Liu Z: FBXO31 Suppresses gastric cancer EMT by targeting Snail1 for proteasomal degradation. Mol Cancer Res. 16:286–295. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Morimoto M, Nishida T, Honda R and Yasuda H: Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). Biochem Biophys Res Commun. 270:1093–1096. 2000. View Article : Google Scholar : PubMed/NCBI

107 

Cheng Q and Yin G: Cullin-1 regulates MG63 cell proliferation and metastasis and is a novel prognostic marker of osteosarcoma. Int J Biol Markers. 32:e202–e209. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Zhou YH, Xia J, Xu WH, Zhu X, Wu XH, Hua D and Xing C: Cullin-1 promotes cell proliferation in human breast cancer and is related to diabetes. Int J Biol Markers. 31:e375–e381. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Jiang H, He D, Xu H, Liu J, Qu L and Tong S: Cullin-1 promotes cell proliferation via cell cycle regulation and is a novel in prostate cancer. Int J Clin Exp Pathol. 8:1575–1583. 2015.PubMed/NCBI

110 

Chen TJ, Gao F, Yang T, Thakur A, Ren H, Li Y, Zhang S, Wang T and Chen MW: CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells. Biochem Biophys Res Commun. 437:108–113. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Michail O, Moris D, Theocharis S and Griniatsos J: Cullin-1 and −2 protein expression in colorectal cancer: Correlation with clinicopathological variables. In Vivo. 32:391–396. 2018.PubMed/NCBI

112 

Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, Zhou J and Li G: Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol. 42:375–383. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, Ratcliffe PJ and Maher ER: Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 10:1029–1038. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Yokoe S, Nakagawa T, Kojima Y, Higuchi K and Asahi M: Indomethacin-induced intestinal epithelial cell damage is mediated by pVHL activation through the degradation of collagen I and HIF-1α. Biochem Biophys Res Commun. 468:671–676. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Clifford SC, Astuti D, Hooper L, Maxwell PH, Ratcliffe PJ and Maher ER: The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene. 20:5067–5074. 2001. View Article : Google Scholar : PubMed/NCBI

116 

Gao L, Wu GJ, Liu B, Shen MZ, Pan TJ, Yu CG, Wang QH, Ru Y, Liu XP, Niu TS, et al: Up-regulation of pVHL along with down-regulation of HIF-1α by NDRG2 expression attenuates proliferation and invasion in renal cancer cells. PLoS One. 8:e841272013. View Article : Google Scholar : PubMed/NCBI

117 

Bowers AJ and Boylan JF: Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene. 328:135–142. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Ding XF, Zhou J, Hu QY, Liu SC and Chen G: The tumor suppressor pVHL down-regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to maintain cilia in human renal cancer cells. J Biol Chem. 290:1389–1394. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Ding XF, Chen J, Zhou J, Chen G and Wu YL: Never-in-mitosis A-related kinase 8, a novel target of von-Hippel-Lindau tumor suppressor protein, promotes gastric cancer cell proliferation. Oncol Lett. 16:5900–5906. 2018.PubMed/NCBI

120 

Bianchi E, Denti S, Catena R, Rossetti G, Polo S, Gasparian S, Putignano S, Rogge L and Pardi R: Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity. J Biol Chem. 278:19682–19690. 2003. View Article : Google Scholar : PubMed/NCBI

121 

Zhu D, Maier A, Lee JH, Laubinger S, Saijo Y, Wang H, Qu LJ, Hoecker U and Deng XW: Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell. 20:2307–2323. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Saijo Y, Zhu D, Li J, Rubio V, Zhou Z, Shen Y, Hoecker U, Wang H and Deng XW: Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol Cell. 31:607–613. 2008. View Article : Google Scholar : PubMed/NCBI

123 

Ka WH, Cho SK, Chun BN, Byun SY and Ahn JC: The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines. Breast Cancer. 25:529–538. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Zou S, Zhu Y, Wang B, Qian F, Zhang X, Wang L, Fu C, Bao H, Xie M, Gao S, et al: The ubiquitin ligase COP1 promotes glioma cell proliferation by preferentially downregulating tumor suppressor p53. Mol Neurobiol. 54:5008–5016. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Li YF, Wang DD, Zhao BW, Wang W, Huang CY, Chen YM, Zheng Y, Keshari RP, Xia JC and Zhou ZW: High level of COP1 expression is associated with poor prognosis in primary gastric cancer. Int J Biol Sci. 8:1168–1177. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, Mima K, Kurashige J, Takahashi Y, Akiyoshi S, Sudo T, et al: Loss of COP1 expression determines poor prognosis in patients with gastric cancer. Oncol Rep. 30:1971–1975. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Rotin D and Kumar S: Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 10:398–409. 2009. View Article : Google Scholar : PubMed/NCBI

128 

Zheng H, Ke X, Li D and Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y and Wang Q: NEDD4 promotes cell growth and motility in hepatocellular carcinoma. Cell Cycle. 17:728–738. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Shao G, Wang R, Sun A, Wei J, Peng K, Dai Q, Yang W and Lin Q: The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells. Mol Cancer. 17:242018. View Article : Google Scholar : PubMed/NCBI

130 

Kim SS, Yoo NJ, Jeong EG, Kim MS and Lee SH: Expression of NEDD4-1, a PTEN regulator, in gastric and colorectal carcinomas. APMIS. 116:779–784. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Zou X, Levy-Cohen G and Blank M: Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochim Biophys Acta. 1856:91–106. 2015.PubMed/NCBI

132 

Zhang L, Wu Z, Ma Z, Liu H, Wu Y and Zhang Q: WWP1 as a potential tumor oncogene regulates PTEN-Akt signaling pathway in human gastric carcinoma. Tumour Biol. 36:787–798. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Ma L, Chen X, Li C, Cheng R, Gao Z, Meng X, Sun C, Liang C and Liu Y: miR-129-5p and −3p co-target WWP1 to suppress gastric cancer proliferation and migration. J Cell Biochem. Nov 11–2018.(Epub ahead of print).

134 

Li Q, Li Z, Wei S, Wang W, Chen Z, Zhang L, Chen L, Li B, Sun G, Xu J, et al: Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. J Exp Clin Cancer Res. 36:592017. View Article : Google Scholar : PubMed/NCBI

135 

Zhu H, Kavsak P, Abdollah S, Wrana JL and Thomsen GH: A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 400:687–693. 1999. View Article : Google Scholar : PubMed/NCBI

136 

Koganti P, Levy-Cohen G and Blank M: Smurfs in protein homeostasis, signaling, and cancer. Front Oncol. 8:2952018. View Article : Google Scholar : PubMed/NCBI

137 

Dote H, Toyooka S, Tsukuda K, Yano M, Ota T, Murakami M, Naito M, Toyota M, Gazdar AF and Shimizu N: Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour. Br J Cancer. 92:1117–1125. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Li X, Dai X, Wan L, Inuzuka H, Sun L and North BJ: Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget. 7:26057–26069. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Tao Y, Sun C, Zhang T and Song Y: SMURF1 promotes the proliferation, migration and invasion of gastric cancer cells. Oncol Rep. 38:1806–1814. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Yang M, Jiang N, Cao QW, Ma MQ and Sun Q: The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1. Biochem Biophys Res Commun. 478:1624–1629. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Kozlov G, Nguyen L, Lin T, De Crescenzo G, Park M and Gehring K: Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD. J Biol Chem. 282:35787–35795. 2007. View Article : Google Scholar : PubMed/NCBI

142 

Kim MS, Oh JE, Eom HS, Yoo NJ and Lee SH: Mutational analysis of UBR5 gene encoding an E3 ubiquitin ligase in common human cancers. Pathology. 42:93–94. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Richardson PG, Hideshima T and Anderson KC: Bortezomib (PS-341): A novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 10:361–369. 2003. View Article : Google Scholar : PubMed/NCBI

144 

Zhang B and Gu Y: Bortezomib inhibits gastric carcinoma HGC-27 cells through the phospho-Jun N-terminal kinase (p-JNK) pathway in vitro. Gene. 559:164–171. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Yi H, Yan X, Luo Q, Yuan L, Li B, Pan W, Zhang L, Chen H, Wang J, Zhang Y, et al: A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma. J Exp Clin Cancer Res. 37:972018. View Article : Google Scholar : PubMed/NCBI

146 

Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI

147 

Impicciatore G, Sancilio S, Miscia S and Di Pietro R: Nutlins and ionizing radiation in cancer therapy. Curr Pharm Des. 16:1427–1442. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Yee-Lin V, Pooi-Fong W and Soo-Beng AK: Nutlin-3, A p53-Mdm2 antagonist for nasopharyngeal carcinoma treatment. Mini Rev Med Chem. 18:173–183. 2018. View Article : Google Scholar : PubMed/NCBI

149 

Meijer A, Kruyt FA, van der Zee AG, Hollema H, Le P, ten Hoor KA, Groothuis GM, Quax WJ, de Vries EG and de Jong S: Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL. Br J Cancer. 109:2685–2695. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Lee DM, Kim IY, Seo MJ, Kwon MR and Choi KS: Nutlin-3 enhances the bortezomib sensitivity of p53-defective cancer cells by inducing paraptosis. Exp Mol Med. 49:e3652017. View Article : Google Scholar : PubMed/NCBI

151 

Endo S, Yamato K, Hirai S, Moriwaki T, Fukuda K, Suzuki H, Abei M, Nakagawa I and Hyodo I: Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells. Cancer Sci. 102:605–613. 2011. View Article : Google Scholar : PubMed/NCBI

152 

Wei YS and Adachi I: Inhibitory effect of triptolide on colony formation of breast and stomach cancer cell lines. Zhongguo Yao Li Xue Bao. 12:406–410. 1991.PubMed/NCBI

153 

Jiang XH, Wong BC, Lin MC, Zhu GH, Kung HF, Jiang SH, Yang D and Lam SK: Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappaB activation in gastric cancer cells. Oncogene. 20:8009–8018. 2001. View Article : Google Scholar : PubMed/NCBI

154 

Wang BY, Cao J, Chen JW and Liu QY: Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2. Med Oncol. 31:2702014. View Article : Google Scholar : PubMed/NCBI

155 

Choi HS, Seo HS, Kim JH, Um JY, Shin YC and Ko SG: Ethanol extract of paeonia suffruticosa Andrews (PSE) induced AGS human gastric cancer cell apoptosis via fas-dependent apoptosis and MDM2-p53 pathways. J Biomed Sci. 19:822012. View Article : Google Scholar : PubMed/NCBI

156 

Lan H, Tang Z, Jin H and Sun Y: Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep. 6:242182016. View Article : Google Scholar : PubMed/NCBI

157 

Eto K, Iwatsuki M, Watanabe M, Ishimoto T, Ida S, Imamura Y, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, et al: The sensitivity of gastric cancer to trastuzumab is regulated by the miR-223/FBXW7 pathway. Int J Cancer. 136:1537–1545. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Schneekloth JS Jr and Crews CM: Natural product inhibitors of the ubiquitin-proteasome pathway. Curr Drug Targets. 12:1581–1594. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang M, Dai W, Ke Z and Li Y: Functional roles of E3 ubiquitin ligases in gastric cancer (Review). Oncol Lett 20: 22, 2020.
APA
Wang, M., Dai, W., Ke, Z., & Li, Y. (2020). Functional roles of E3 ubiquitin ligases in gastric cancer (Review). Oncology Letters, 20, 22. https://doi.org/10.3892/ol.2020.11883
MLA
Wang, M., Dai, W., Ke, Z., Li, Y."Functional roles of E3 ubiquitin ligases in gastric cancer (Review)". Oncology Letters 20.4 (2020): 22.
Chicago
Wang, M., Dai, W., Ke, Z., Li, Y."Functional roles of E3 ubiquitin ligases in gastric cancer (Review)". Oncology Letters 20, no. 4 (2020): 22. https://doi.org/10.3892/ol.2020.11883
Copy and paste a formatted citation
x
Spandidos Publications style
Wang M, Dai W, Ke Z and Li Y: Functional roles of E3 ubiquitin ligases in gastric cancer (Review). Oncol Lett 20: 22, 2020.
APA
Wang, M., Dai, W., Ke, Z., & Li, Y. (2020). Functional roles of E3 ubiquitin ligases in gastric cancer (Review). Oncology Letters, 20, 22. https://doi.org/10.3892/ol.2020.11883
MLA
Wang, M., Dai, W., Ke, Z., Li, Y."Functional roles of E3 ubiquitin ligases in gastric cancer (Review)". Oncology Letters 20.4 (2020): 22.
Chicago
Wang, M., Dai, W., Ke, Z., Li, Y."Functional roles of E3 ubiquitin ligases in gastric cancer (Review)". Oncology Letters 20, no. 4 (2020): 22. https://doi.org/10.3892/ol.2020.11883
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team