Open Access

MicroRNA‑150 suppresses p27Kip1 expression and promotes cell proliferation in HeLa human cervical cancer cells

  • Authors:
    • Wataru Oboshi
    • Keisuke Hayashi
    • Hiroaki Takeuchi
    • Katsuhide Ikeda
    • Yoshitaka Yamaguchi
    • Asako Kimura
    • Takehiro Nakamura
    • Nobuyasu Yukimasa
  • View Affiliations

  • Published online on: September 8, 2020     https://doi.org/10.3892/ol.2020.12073
  • Article Number: 210
  • Copyright: © Oboshi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) exert critical roles in the majority of biological and pathological processes. Recent studies have associated miR‑150 with a number of different cancer types. However, little is known about miR‑150 targets in cervical cancer. In the present study, the HeLa human cervical cancer cell line was transfected with hsa‑miR‑150‑5p mimics, hsa‑miR‑150‑5p inhibitors or miRNA controls. miR‑150 was predicted to bind the 3'untranslated region (3'UTR) of the CDKN1B gene, which encodes the cyclin‑dependent kinase inhibitor 1B (p27Kip1). The direct binding between miR‑150 and the 3'UTR of CDKN1B was confirmed using dual‑luciferase reporter assays. The effects of miR‑150 on CDKN1B mRNA expression, p27Kip1 protein expression, cell cycle and cell proliferation were determined using reverse‑transcription quantitative PCR, western blot analysis, flow cytometry and WST‑8 assays, respectively. miR‑150 was demonstrated to directly target the 3'UTR of CDKN1B in transfected HeLa cells. The expression of CDKN1B mRNA and p27Kip1 protein was reduced by miR‑150 mimics, and increased by miR‑150 inhibitors. Moreover, the overexpression of miR‑150 promoted cell cycle progression from the G0/G1 to the S phase and led to a significant increase in HeLa cell proliferation. The results of the present study indicated that miR‑150 promotes HeLa cell cycle progression and proliferation via the suppression of p27Kip1 expression.
View Figures
View References

Related Articles

Journal Cover

November-2020
Volume 20 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Oboshi W, Hayashi K, Takeuchi H, Ikeda K, Yamaguchi Y, Kimura A, Nakamura T and Yukimasa N: MicroRNA‑150 suppresses p27<sup>Kip1</sup> expression and promotes cell proliferation in HeLa human cervical cancer cells. Oncol Lett 20: 210, 2020
APA
Oboshi, W., Hayashi, K., Takeuchi, H., Ikeda, K., Yamaguchi, Y., Kimura, A. ... Yukimasa, N. (2020). MicroRNA‑150 suppresses p27<sup>Kip1</sup> expression and promotes cell proliferation in HeLa human cervical cancer cells. Oncology Letters, 20, 210. https://doi.org/10.3892/ol.2020.12073
MLA
Oboshi, W., Hayashi, K., Takeuchi, H., Ikeda, K., Yamaguchi, Y., Kimura, A., Nakamura, T., Yukimasa, N."MicroRNA‑150 suppresses p27<sup>Kip1</sup> expression and promotes cell proliferation in HeLa human cervical cancer cells". Oncology Letters 20.5 (2020): 210.
Chicago
Oboshi, W., Hayashi, K., Takeuchi, H., Ikeda, K., Yamaguchi, Y., Kimura, A., Nakamura, T., Yukimasa, N."MicroRNA‑150 suppresses p27<sup>Kip1</sup> expression and promotes cell proliferation in HeLa human cervical cancer cells". Oncology Letters 20, no. 5 (2020): 210. https://doi.org/10.3892/ol.2020.12073