
Circulating microRNAs and their role in the immune response in triple‑negative breast cancer (Review)
- Authors:
- Patricia Piña‑Sánchez
- Hilda-Alicia Valdez‑Salazar
- Martha-Eugenia Ruiz‑Tachiquín
-
Affiliations: Oncological Diseases Medical Research Unit, Oncology Hospital, XXI Century National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico, Infectious and Parasitic Diseases Medical Research Unit, Pediatrics Hospital ‘Dr. Silvestre Frenk Freund’, XXI Century National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico - Published online on: September 11, 2020 https://doi.org/10.3892/ol.2020.12087
- Article Number: 224
-
Copyright: © Piña‑Sánchez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and Bray F: Global cancer observatory: Cancer today. Lyon France: International Agency for Research on Cancer. https://gco.iarc.fr/todayApril 29–2019 | |
Bellanger M, Zeinomar N, Tehranifar P and Terry MB: Are global breast cancer incidence and mortality patterns related to country-specific economic development and prevention strategies? J Glob Oncol. 4:1–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ, Estève J, et al: Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI | |
Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, et al: American Joint Committee on Cancer: Cancer Staging Manual AJCC. 8th. Springer; New York, NY: 2017 | |
Makki J: Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin Med Insights Pathol. 8:23–31. 2015. View Article : Google Scholar : PubMed/NCBI | |
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vieira AF and Schmitt F: An update on breast cancer multigene prognostic tests-emergent clinical biomarkers. Front Med (Lausanne). 5:2482018. View Article : Google Scholar : PubMed/NCBI | |
Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, et al: Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7:e10002792010. View Article : Google Scholar : PubMed/NCBI | |
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B and Senn HJ; Panel members, : Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 22:1736–1747. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, Sledge GW and Carey LA: Triple-negative breast cancer: Risk factors to potential targets. Clin Cancer Res. 14:8010–8018. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yeh J, Chun J, Schwartz S, Wang A, Kern E, Guth AA, Axelrod D, Shapiro R and Schnabel F: Clinical characteristics in patients with triple negative breast cancer. Int J Breast Cancer. 2017:17961452017. View Article : Google Scholar : PubMed/NCBI | |
Pareja F, Geyer FC, Marchiò C, Burke KA, Weigelt B and Reis-Filho JS: Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2:160362016. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves H Jr, Guerra MR, Duarte CJR, Fayer VA, Brum IV and Bustamante Teixeira MT: Survival study of triple-negative and non-triple-negative breast cancer in a Brazilian cohort. Clin Med Insights Oncol. 12:11795549187905632018. View Article : Google Scholar : PubMed/NCBI | |
Omarini C, Guaitoli G, Pipitone S, Moscetti L, Cortesi L, Cascinu S and Piacentini F: Neoadjuvant treatments in triple-negative breast cancer patients: Where we are now and where we are going. Cancer Manag Res. 10:91–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gass P, Lux MP, Rauh C, Hein A, Bani MR, Fiessler C, Hartmann A, Häberle L, Pretscher J, Erber R, et al: Prediction of pathological complete response and prognosis in patients with neoadjuvant treatment for triple-negative breast cancer. BMC Cancer. 18:10512018. View Article : Google Scholar : PubMed/NCBI | |
Von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S, Gerber B, et al: Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 15:747–756. 2014. View Article : Google Scholar : PubMed/NCBI | |
James M, Dixit A, Robinson B, Frampton C and Davey V: Outcomes for patients with non-metastatic triple-negative breast cancer in New Zealand. Clin Oncol (R Coll Radiol). 31:17–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vikas P, Borcherding N and Zhang W: The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res. 10:6823–6833. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 121:2750–2767. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME and Pietenpol JA: Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One. 16:e01573682016. View Article : Google Scholar | |
Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, et al: Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 21:1688–1698. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H and Horiguchi J: Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet. 62:15–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kolesnikov NN, Veryaskina YA, Titov SE, Rodionov VV, Gening TP, Abakumova TV, Kometova VV, Torosyan MK and Zhimulev IF: Expression of micrornas in molecular genetic breast cancer subtypes. Cancer Treat Res Commun. 20:10000262019. | |
Søkilde R, Persson H, Ehinger A, Pirona AC, Fernö M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, et al: Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 20:5032019. View Article : Google Scholar : PubMed/NCBI | |
Tan W, Liu B, Qu S, Liang G, Luo W and Gong C: MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett. 15:2735–2742. 2018.PubMed/NCBI | |
Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
Masud Karim SM, Liu L, Le TD and Li J: Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics. 17 (Suppl 1):S72016. View Article : Google Scholar | |
Chang CY, Lai MT, Chen Y, Yang CW, Chang HW, Lu CC, Chen CM, Chan C, Chung C, Tseng CC, et al: Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression. Oncotarget. 7:76713–76725. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kozomara A, Birgaoanu M and Griffiths JS: miRBase: From microRNA sequences to function. Nucleic Acids Res. 47D:D155–D162. 2019. View Article : Google Scholar | |
Svoronos AA, Engelman DM and Slack FJ: OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khordadmehr M, Shahbazi R, Ezzati H, Jigari-Asl F, Sadreddini S and Baradaran B: Key microRNAs in the biology of breast cancer; emerging evidence in the last decade. J Cell Physiol. 234:8316–8326. 2019. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW, Klijn JG, Wiemer EA and Martens JW: Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA. 105:13021–13026. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bar I, Merhi A, Abdel-Sater F, Ben Addi A, Sollennita S, Canon JL and Delrée P: The MicroRNA miR-210 is expressed by cancer cells but also by the tumor microenvironment in triple-negative breast cancer. J Histochem Cytochem. 65:335–346. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li HY, Liang JL, Kuo YL, Lee H-H, Calkins MJ, Chang HT, Lin FC, Chen YC, Hsu TI, Hsiao M, et al: miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res. 19:1332017. View Article : Google Scholar : PubMed/NCBI | |
Yuan N, Zhang G, Bie F, Ma M, Ma Y, Jiang X, Wang Y and Hao X: Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. OncoTargets Ther. 10:5883–5897. 2017. View Article : Google Scholar | |
Yang L, Cai Y, Zhang D, Sun J, Xu C, Zhao W, Jiang W and Pan C: miR-195/miR-497 regulate CD274 expression of immune regulatory ligands in triple-negative breast cancer. J Breast Cancer. 21:371–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu A, Chen Y, Liu Y, Lai Y and Liu D: miR-199b-5p inhibits triple negative breast cancer cell proliferation, migration and invasion by targeting DDR1. Oncol Lett. 16:4889–4896. 2018.PubMed/NCBI | |
Mokhlis HA, Bayraktar R, Kabil NN, Caner A, Kahraman N, Rodriguez-Aguayo C, Zambalde EP, Sheng J, Karagoz K, Abdel Aziz AAH, et al: The modulatory role of microRNA-873 in the progression of KRAS-driven cancers. Mol The Nucleic Acids. 14:301–317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meng D, Lei M, Han Y, Zhao D, Zhang X, Yang Y and Liu R: MicroRNA-645 targets urokinase plasminogen activator and decreases the invasive growth of MDA-MB-231 triple-negative breast cancer cells. Onco Targets Ther. 11:7733–7743. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hajalirezay Yazdi S, Paryan M and Mohammadi-Yeganeh S: An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer. Cell Mol Biol Lett. 23:512018. View Article : Google Scholar : PubMed/NCBI | |
Bayraktar R, Ivan C, Bayraktar E, Kanlikilicer P, Kabil NN, Kahraman N, Mokhlis HA, Karakas D, Rodriguez-Aguayo C, Arslan A, et al: Dual suppressive effect of miR-34a on the FOXM1/eEF2-kinase axis regulates triple-negative breast cancer growth and invasion. Clin Cancer Res. 24:4225–4241. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo SJ, Zeng HX, Huang P, Wang S, Xie CH and Li SJ: MiR-508-3p inhibits cell invasion and epithelial-mesenchymal transition by targeting ZEB1 in triple-negative breast cancer. Eur Rev Med Pharmacol Sci. 22:6379–6385. 2018.PubMed/NCBI | |
Jinesh GG, Flores ER and Brohl AS: Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One. 13:e02060082018. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Xing L, Wang M, Chi H, Zhang L and Chen J: Comprehensive analysis of differentially expressed profiles of lncRNAs/mRNAs and miRNAs with associated ceRNA networks in triple-negative breast cancer. Cell Physiol Biochem. 50:473–488. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song H, Li D, Wu T, Xie D, Hua K, Hu J, Deng X, Ji C, Deng Y and Fang L: MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep. 51:602–607. 2018. View Article : Google Scholar : PubMed/NCBI | |
Romero-Cordoba SL, Rodriguez-Cuevas S, Bautista-Pina V, Maffuz-Aziz A, D'Ippolito E, Cosentino G, Baroni S, Iorio MV and Hidalgo-Miranda A: Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep. 8:122522018. View Article : Google Scholar : PubMed/NCBI | |
Razaviyan J, Hadavi R, Tavakoli R, Kamani F, Paknejad M and Mohammadi YS: Expression of miRNAs targeting mTOR and S6K1 genes of mTOR signaling pathway including miR-96, miR-557, and miR-3182 in triple-negative breast cancer. Appl Biochem Biotechnol. 186:1074–1089. 2018. View Article : Google Scholar : PubMed/NCBI | |
García-Vázquez R, Marchat LA, Ruíz-García E, Astudillo-de la Vega H, Meneses-García A, Arce-Salinas C, Bargallo-Rocha E, Carlos-Reyes Á, López-González JS, Pérez-Plasencia C, et al: MicroRNA-143 is associated with pathological complete response and regulates multiple signaling proteins in breast cancer. Technol Cancer Res Treat. 18:15330338198273092019. View Article : Google Scholar : PubMed/NCBI | |
Schwarzenbacher D, Klec C, Pasculli B, Cerk S, Rinner B, Karbiener M, Ivan C, Barbano R, Ling H, Wulf- Goldenberg A, et al: MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 21:202019. View Article : Google Scholar : PubMed/NCBI | |
Wang DY, Gendoo DMA, Ben-David Y, Woodgett JR and Zacksenhaus E: A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling. Breast Cancer Res. 21:182019. View Article : Google Scholar : PubMed/NCBI | |
Cantini L, Bertoli G, Cava C, Dubois T, Zinovyev A, Caselle M, Castiglioni I, Barillot E and Martignetti L: Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res. 47:2205–2215. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wong CK, Gromisch C, Ozturk S, Papageorgis P, Abdolmaleky HM, Reinhard BM, Thiagalingam A and Thiagalingam S: MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biol Ther. 20:1113–1120. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li L, Du P, Ma L, Zhang W, Zheng L, Lan B, Zhang B, Ma F, Xu B, et al: Transcriptional downregulation of miR-4306 serves as a new therapeutic target for triple negative breast cancer. Theranostics. 9:1401–1416. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Xu C, Niu R, Hu G, Gu Z and Zhuang Z: MiR-890 inhibits proliferation and invasion and induces apoptosis in triple-negative breast cancer cells by targeting CD147. BMC Cancer. 19:5772019. View Article : Google Scholar : PubMed/NCBI | |
Liang F, Fu X and Wang L: miR-5590-3p-YY1 feedback loop promotes the proliferation and migration of triple-negative breast cancer cells. J Cell Biochem. 120:18415–18424. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen T, Zhang Y, Zhang N, Li C, Li Y, Liu Y, Zhang H, Zhao W, Chen B, et al: Long noncoding RNA Linc00339 promotes triple-negative breast cancer progression through miR-377-3p/HOXC6 signaling pathway. J Cell Physiol. 234:13303–13317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Son D, Kim Y, Lim S, Kang HG, Kim DH, Park JW, Cheong W, Kong HK, Han W, Park WY, et al: miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer. Cancer Lett. 454:224–233. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tormo E, Ballester S, Adam-Artigues A, Burgués O, Alonso E, Bermejo B, Menéndez S, Zazo S, Madoz-Gúrpide J, Rovira A, et al: The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci Rep. 9:53162019. View Article : Google Scholar : PubMed/NCBI | |
Shi P, Chen C, Li X, Wei Z, Liu Z and Liu Y: MicroRNA-124 suppresses cell proliferation and invasion of triple negative breast cancer cells by targeting STAT3. Mol Med Rep. 19:3667–3675. 2019.PubMed/NCBI | |
Liu X, Wang J and Zhang G: miR-4458 regulates cell proliferation and apoptosis through targeting SOCS1 in triple-negative breast cancer. J Cell Biochem. 120:12943–12948. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koduru SV, Tiwari AK, Leberfinger A, Hazard SW, Kawasawa YI, Mahajan M and Ravnic DJ: A comprehensive NGS data analysis of differentially regulated miRNAs, piRNAs, lncRNAs and sn/snoRNAs in triple negative breast cancer. J Cancer. 8:578–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Ouyang H, He D, Yu C and Tang G: MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. Artif Cells Nanomed Biotechnol. 47:2800–2809. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naorem LD, Muthaiyan M and Venkatesan A: Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach. J Cell Physiol. 234:11768–11779. 2019. View Article : Google Scholar : PubMed/NCBI | |
Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, Natrajan R and Reis-Filho JS: β-catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 24:209–231. 2011. View Article : Google Scholar : PubMed/NCBI | |
Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, et al: RAS/MAPK activation is associated with reduced tumor infiltrating lymphocytes in triple negative breast cancer: Therapeutic cooperation between MEK and PD1/PDL1 immune checkpoint inhibitors. Clin Cancer Res. 22:1499–1509. 2016. View Article : Google Scholar : PubMed/NCBI | |
Piasecka D, Braun M, Kordek R, Sadej R and Romanska H: MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol. 144:1401–1411. 2018. View Article : Google Scholar : PubMed/NCBI | |
Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang TM and Dahlsveen IK: Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 59:S1–S6. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, et al: Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI | |
Chim SSC, Shing TKF, Hung ECW, Leung TY, Lau TK, Chiu RW and Lo YM: Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 54:482–490. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Odenthal M and Fries JW: Exosomes as miRNA carriers: Formation-function-future. Int J Mol Sci. 17:20282016. View Article : Google Scholar | |
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Jiang T and Kang X: Circulating microRNAs in cancer: Origin, function and application. J Exp Clin Cancer Res. 31:382012. View Article : Google Scholar : PubMed/NCBI | |
Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Børresen-Dale AL and Santarpia L: A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res. 21:1207–1214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kahraman M, Röske A, Laufer T, Fehlmann T, Backes C, Kern F, Kohlhaas J, Schrörs H, Saiz A, Zabler C, et al: MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep. 8:115842018. View Article : Google Scholar : PubMed/NCBI | |
Braicu C, Raduly L, Morar-Bolba G, Cojocneanu R, Jurj A, Pop LA, Pileczki V, Ciocan C, Moldovan A, Irimie A, et al: Aberrant miRNAs expressed in HER-2 negative breast cancers patient. J Exp Clin Cancer Res. 37:2572018. View Article : Google Scholar : PubMed/NCBI | |
Madhavan D, Peng C, Wallwiener M, Zucknick M, Nees J, Schott S, Rudolph A, Riethdorf S, Trumpp A, Pantel K, et al: Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis. 37:461–470. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heneghan HM, Miller N, Kelly R, Newell J and Kerin MJ: Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 15:673–682. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zeng RC, Zhang W, Yan XQ, Ye ZQ, Chen ED, Huang DP, Zhang XH and Huang GL: Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med Oncol. 30:4772013. View Article : Google Scholar : PubMed/NCBI | |
Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K and Schwarzenbach H: Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem. 59:1489–1496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, Pantel K and Schwarzenbach H: Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 5:9650–9663. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shin VY, Siu JM, Cheuk I, Ng EK and Kwong A: Circulating cell-free miRNAs as biomarker for triple-negative breast cancer. Br J Cancer. 112:1751–1759. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mishra S, Srivastava AK, Suman S, Kumar V and Shukla Y: Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer. Cancer Lett. 369:67–75. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huo D, Clayton WM, Yoshimatsu TF, Chen J and Olopade OI: Identification of a circulating microRNA signature to distinguish recurrence in breast cancer patients. Oncotarget. 7:55231–55248. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Shin VY, Siu MT, Ho JC, Cheuk I and Kwong A: miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC Cancer. 16:8872016. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Wang Y, Wang M, Li Z, Zhao Z, Wang RX, Wu R, Yuan Z, Cui R, Jiao K, et al: MicroRNA-155, induced by FOXP3 through transcriptional repression of BRCA1, is associated with tumor initiation in human breast cancer. Oncotarget. 8:41451–41464. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Chen X, Zhu D, Luo Z and Yang M: Low expression of circulating MicroRNA-34c is associated with poor prognosis in triple-negative breast cancer. Yonsei Med J. 58:697–702. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T and Amer SB: Robust expression of tumor suppressor miRNA's let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer. 17:7992017. View Article : Google Scholar : PubMed/NCBI | |
Swellam M, Mahmoud MS, Hashim M, Hassan NM, Sobeih ME and Nageeb AM: Clinical aspects of circulating miRNA-335 in breast cancer patients: A prospective study. J Cell Biochem. 120:8975–8982. 2019. View Article : Google Scholar : PubMed/NCBI | |
Niedźwiecki S, Piekarski J, Szymańska B, Pawłowska Z and Jeziorski A: Serum levels of circulating miRNA-21, miRNA-10b and miRNA-200c in triple-negative breast cancer patients. Ginekol Pol. 89:415–420. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Han G, Liu Y, Jiang H and He Q: MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed Pharmacother. 103:1482–1489. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gorer PA: Some recent work on tumor immunity. Adv Cancer Res. 4:149–186. 1956. View Article : Google Scholar : PubMed/NCBI | |
Barrette M: Some observations on the nature of the ‘antigen’ in ‘tumor immunity’. Acta Unio Int Contra Cancrum. 15:940–942. 1959.PubMed/NCBI | |
Zilber LA: Specific tumor antigens. Adv Cancer Res. 5:291–329. 1958. View Article : Google Scholar : PubMed/NCBI | |
Klein E, Becker S, Svedmyr E, Jondal M and Vánky F: Tumor infiltrating lymphocytes. Ann N Y Acad Sci. 276:207–216. 1976. View Article : Google Scholar : PubMed/NCBI | |
Richters A and Kaspersky CL: Surface immunoglobulin positive lymphocytes in human breast cancer tissue and homolateral axillary lymph nodes. Cancer. 35:129–133. 1975. View Article : Google Scholar : PubMed/NCBI | |
Svennevig JL, Lövik M and Svaar H: Isolation and characterization of lymphocytes and macrophages from solid, malignant human tumours. Int J Cancer. 23:626–631. 1979. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Conforti F, Pala L, Bagnardi V, De Pas T, Martinetti M, Viale G, Gelber RD and Goldhirsch A: Cancer immunotherapy efficacy and patients' sex: A systematic review and meta-analysis. Lancet Oncol. 19:737–746. 2018. View Article : Google Scholar : PubMed/NCBI | |
Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, et al: Cancer classification using the Immunoscore: A worldwide task force. J Transl Med. 10:2052012. View Article : Google Scholar : PubMed/NCBI | |
Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an international TILs working group 2014. Ann Oncol. 26:259–271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al: Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 28:105–113. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim EM, Al-Foheidi ME, Al-Mansour MM and Kazkaz GA: The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: A meta-analysis. Breast Cancer Res Treat. 148:467–476. 2014. View Article : Google Scholar : PubMed/NCBI | |
Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, et al: Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 32:2959–2966. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ruan M, Tian T, Rao J, Xu X, Yu B, Yang W and Shui R: Predictive value of tumor-infiltrating lymphocytes to pathological complete response in neoadjuvant treated triple-negative breast cancers. Diagn Pathol. 13:662018. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD, et al: Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 33:983–991. 2015. View Article : Google Scholar : PubMed/NCBI | |
Poggio F, Bruzzone M, Ceppi M, Pondé NF, La Valle G, Del Mastro L, de Azambuja E and Lambertini M: Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Ann Oncol. 29:1497–1508. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karn T, Pusztai L, Rody A, Holtrich U and Becker S: The influence of host factors on the prognosis of breast cancer: Stroma and immune cell components as cancer biomarkers. Curr Cancer Drug targets. 15:652–664. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adélaïde J, Debono S, Houvenaeghel G, Maraninchi D, Viens P, et al: Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 66:4636–4644. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nathan MR and Schmid P: The emerging world of breast cancer immunotherapy. Breast. 37:200–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food and Drug Administration: FDA Approves Atezolizumab For PD-L1 Positive Unresectable Locally Adva. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negativeAugust 17–2020 | |
Brockwell NK, Owen KL, Zanker D, Spurling A, Rautela J, Duivenvoorden HM, Baschuk N, Caramia F, Loi S, Darcy PK, et al: Neoadjuvant Interferons: Critical for effective PD-1-based immunotherapy in TNBC. Cancer Immunol Res. 5:871–884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Romano G and Kwong LN: Diagnostic and therapeutic applications of miRNA-based strategies to cancer immunotherapy. Cancer Metastasis Rev. 37:45–53. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kamimura N, Wolf AM and Iwai Y: Development of CANCER IMMUNOTHERAPY TARGeting the PD-1 pathway. J Nippon Med Sch. 86:10–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bally AP, Austin JW and Boss JM: Genetic and epigenetic regulation of PD-1 expression. J Immunol. 196:2431–2437. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Guo L, Wang Q, Miao J, Kwok HF and Yao Lin: Targeting PD-L1 protein: Translation, modification and transport. Curr Protein Pept Sci. 20:82–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yee D, Shah KM, Coles MC, Sharp TV and Lagos D: MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem. 292:20683–20693. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Mao Y, Sun Q, Liu F, Lin JS, Liu Y, Cui J and Jiang Y: Branched rolling circle amplification method for measuring serum circulating microRNA levels for early breast cancer detection. Cancer Sci. 109:2897–2906. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ling V, Wu PW, Finnerty HF, Sharpe AH, Gray GS and Collins M: Complete sequence determination of the mouse and human CTLA4 gene loci: Cross-species DNA sequence similarity beyond exon borders. Genomics. 60:341–355. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chikuma S: CTLA-4, an essential immune-checkpoint for T-cell activation. Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity. Current Topics in Microbiology and Immunology. Yoshimura A: Springer; pp. 99–126. 2017, https://www.springer.com/gp/book/9783319689289 View Article : Google Scholar |