|
1
|
Ferlay J, Ervik M, Lam F, Colombet M, Mery
L, Piñeros M, Znaor A, Soerjomataram I and Bray F: Global cancer
observatory: Cancer today. Lyon France: International Agency for
Research on Cancer. https://gco.iarc.fr/todayApril 29–2019
|
|
2
|
Bellanger M, Zeinomar N, Tehranifar P and
Terry MB: Are global breast cancer incidence and mortality patterns
related to country-specific economic development and prevention
strategies? J Glob Oncol. 4:1–16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Allemani C, Matsuda T, Di Carlo V,
Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ,
Estève J, et al: Global surveillance of trends in cancer survival
2000–14 (CONCORD-3): Analysis of individual records for 37 513 025
patients diagnosed with one of 18 cancers from 322 population-based
registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Amin MB, Edge S, Greene F, Byrd DR,
Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR,
Sullivan DC, et al: American Joint Committee on Cancer: Cancer
Staging Manual AJCC. 8th. Springer; New York, NY: 2017
|
|
5
|
Makki J: Diversity of breast carcinoma:
Histological subtypes and clinical relevance. Clin Med Insights
Pathol. 8:23–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Perou CM, Sørlie T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vieira AF and Schmitt F: An update on
breast cancer multigene prognostic tests-emergent clinical
biomarkers. Front Med (Lausanne). 5:2482018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Blows FM, Driver KE, Schmidt MK, Broeks A,
van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO,
Blomqvist C, et al: Subtyping of breast cancer by
immunohistochemistry to investigate a relationship between subtype
and short and long term survival: A collaborative analysis of data
for 10,159 cases from 12 studies. PLoS Med. 7:e10002792010.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Goldhirsch A, Wood WC, Coates AS, Gelber
RD, Thürlimann B and Senn HJ; Panel members, : Strategies for
subtypes-dealing with the diversity of breast cancer: Highlights of
the St. Gallen international expert consensus on the primary
therapy of early breast cancer 2011. Ann Oncol. 22:1736–1747. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Schneider BP, Winer EP, Foulkes WD, Garber
J, Perou CM, Richardson A, Sledge GW and Carey LA: Triple-negative
breast cancer: Risk factors to potential targets. Clin Cancer Res.
14:8010–8018. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yeh J, Chun J, Schwartz S, Wang A, Kern E,
Guth AA, Axelrod D, Shapiro R and Schnabel F: Clinical
characteristics in patients with triple negative breast cancer. Int
J Breast Cancer. 2017:17961452017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pareja F, Geyer FC, Marchiò C, Burke KA,
Weigelt B and Reis-Filho JS: Triple-negative breast cancer: The
importance of molecular and histologic subtyping, and recognition
of low-grade variants. NPJ Breast Cancer. 2:160362016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gonçalves H Jr, Guerra MR, Duarte CJR,
Fayer VA, Brum IV and Bustamante Teixeira MT: Survival study of
triple-negative and non-triple-negative breast cancer in a
Brazilian cohort. Clin Med Insights Oncol. 12:11795549187905632018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Omarini C, Guaitoli G, Pipitone S,
Moscetti L, Cortesi L, Cascinu S and Piacentini F: Neoadjuvant
treatments in triple-negative breast cancer patients: Where we are
now and where we are going. Cancer Manag Res. 10:91–103. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gass P, Lux MP, Rauh C, Hein A, Bani MR,
Fiessler C, Hartmann A, Häberle L, Pretscher J, Erber R, et al:
Prediction of pathological complete response and prognosis in
patients with neoadjuvant treatment for triple-negative breast
cancer. BMC Cancer. 18:10512018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Von Minckwitz G, Schneeweiss A, Loibl S,
Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S,
Gerber B, et al: Neoadjuvant carboplatin in patients with
triple-negative and HER2-positive early breast cancer (GeparSixto;
GBG 66): A randomised phase 2 trial. Lancet Oncol. 15:747–756.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
James M, Dixit A, Robinson B, Frampton C
and Davey V: Outcomes for patients with non-metastatic
triple-negative breast cancer in New Zealand. Clin Oncol (R Coll
Radiol). 31:17–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Vikas P, Borcherding N and Zhang W: The
clinical promise of immunotherapy in triple-negative breast cancer.
Cancer Manag Res. 10:6823–6833. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lehmann BD, Jovanović B, Chen X, Estrada
MV, Johnson KN, Shyr Y, Moses HL, Sanders ME and Pietenpol JA:
Refinement of triple-negative breast cancer molecular subtypes:
Implications for neoadjuvant chemotherapy selection. PLoS One.
16:e01573682016. View Article : Google Scholar
|
|
21
|
Burstein MD, Tsimelzon A, Poage GM,
Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK,
Hilsenbeck SG, Chang JC, et al: Comprehensive genomic analysis
identifies novel subtypes and targets of triple-negative breast
cancer. Clin Cancer Res. 21:1688–1698. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira
M, Matsumoto H and Horiguchi J: Recent trends in microRNA research
into breast cancer with particular focus on the associations
between microRNAs and intrinsic subtypes. J Hum Genet. 62:15–24.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kolesnikov NN, Veryaskina YA, Titov SE,
Rodionov VV, Gening TP, Abakumova TV, Kometova VV, Torosyan MK and
Zhimulev IF: Expression of micrornas in molecular genetic breast
cancer subtypes. Cancer Treat Res Commun. 20:10000262019.
|
|
24
|
Søkilde R, Persson H, Ehinger A, Pirona
AC, Fernö M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, et
al: Refinement of breast cancer molecular classification by miRNA
expression profiles. BMC Genomics. 20:5032019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tan W, Liu B, Qu S, Liang G, Luo W and
Gong C: MicroRNAs and cancer: Key paradigms in molecular therapy.
Oncol Lett. 15:2735–2742. 2018.PubMed/NCBI
|
|
26
|
Gebert LFR and MacRae IJ: Regulation of
microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Masud Karim SM, Liu L, Le TD and Li J:
Identification of miRNA-mRNA regulatory modules by exploring
collective group relationships. BMC Genomics. 17 (Suppl 1):S72016.
View Article : Google Scholar
|
|
28
|
Chang CY, Lai MT, Chen Y, Yang CW, Chang
HW, Lu CC, Chen CM, Chan C, Chung C, Tseng CC, et al: Up-regulation
of ribosome biogenesis by MIR196A2 genetic variation promotes
endometriosis development and progression. Oncotarget.
7:76713–76725. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lee RC, Feinbaum RL and Ambros V: The
C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell. 75:843–854. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kozomara A, Birgaoanu M and Griffiths JS:
miRBase: From microRNA sequences to function. Nucleic Acids Res.
47D:D155–D162. 2019. View Article : Google Scholar
|
|
31
|
Svoronos AA, Engelman DM and Slack FJ:
OncomiR or tumor suppressor? The duplicity of microRNAs in cancer.
Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Khordadmehr M, Shahbazi R, Ezzati H,
Jigari-Asl F, Sadreddini S and Baradaran B: Key microRNAs in the
biology of breast cancer; emerging evidence in the last decade. J
Cell Physiol. 234:8316–8326. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Foekens JA, Sieuwerts AM, Smid M, Look MP,
de Weerd V, Boersma AW, Klijn JG, Wiemer EA and Martens JW: Four
miRNAs associated with aggressiveness of lymph node-negative,
estrogen receptor-positive human breast cancer. Proc Natl Acad Sci
USA. 105:13021–13026. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bar I, Merhi A, Abdel-Sater F, Ben Addi A,
Sollennita S, Canon JL and Delrée P: The MicroRNA miR-210 is
expressed by cancer cells but also by the tumor microenvironment in
triple-negative breast cancer. J Histochem Cytochem. 65:335–346.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li HY, Liang JL, Kuo YL, Lee H-H, Calkins
MJ, Chang HT, Lin FC, Chen YC, Hsu TI, Hsiao M, et al:
miR-105/93-3p promotes chemoresistance and circulating
miR-105/93-3p acts as a diagnostic biomarker for triple negative
breast cancer. Breast Cancer Res. 19:1332017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yuan N, Zhang G, Bie F, Ma M, Ma Y, Jiang
X, Wang Y and Hao X: Integrative analysis of lncRNAs and miRNAs
with coding RNAs associated with ceRNA crosstalk network in triple
negative breast cancer. OncoTargets Ther. 10:5883–5897. 2017.
View Article : Google Scholar
|
|
38
|
Yang L, Cai Y, Zhang D, Sun J, Xu C, Zhao
W, Jiang W and Pan C: miR-195/miR-497 regulate CD274 expression of
immune regulatory ligands in triple-negative breast cancer. J
Breast Cancer. 21:371–381. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu A, Chen Y, Liu Y, Lai Y and Liu D:
miR-199b-5p inhibits triple negative breast cancer cell
proliferation, migration and invasion by targeting DDR1. Oncol
Lett. 16:4889–4896. 2018.PubMed/NCBI
|
|
40
|
Mokhlis HA, Bayraktar R, Kabil NN, Caner
A, Kahraman N, Rodriguez-Aguayo C, Zambalde EP, Sheng J, Karagoz K,
Abdel Aziz AAH, et al: The modulatory role of microRNA-873 in the
progression of KRAS-driven cancers. Mol The Nucleic Acids.
14:301–317. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Meng D, Lei M, Han Y, Zhao D, Zhang X,
Yang Y and Liu R: MicroRNA-645 targets urokinase plasminogen
activator and decreases the invasive growth of MDA-MB-231
triple-negative breast cancer cells. Onco Targets Ther.
11:7733–7743. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hajalirezay Yazdi S, Paryan M and
Mohammadi-Yeganeh S: An integrated approach of bioinformatic
prediction and in vitro analysis identified that miR-34a targets
MET and AXL in triple-negative breast cancer. Cell Mol Biol Lett.
23:512018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bayraktar R, Ivan C, Bayraktar E,
Kanlikilicer P, Kabil NN, Kahraman N, Mokhlis HA, Karakas D,
Rodriguez-Aguayo C, Arslan A, et al: Dual suppressive effect of
miR-34a on the FOXM1/eEF2-kinase axis regulates triple-negative
breast cancer growth and invasion. Clin Cancer Res. 24:4225–4241.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Guo SJ, Zeng HX, Huang P, Wang S, Xie CH
and Li SJ: MiR-508-3p inhibits cell invasion and
epithelial-mesenchymal transition by targeting ZEB1 in
triple-negative breast cancer. Eur Rev Med Pharmacol Sci.
22:6379–6385. 2018.PubMed/NCBI
|
|
45
|
Jinesh GG, Flores ER and Brohl AS:
Chromosome 19 miRNA cluster and CEBPB expression specifically mark
and potentially drive triple negative breast cancers. PLoS One.
13:e02060082018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang R, Xing L, Wang M, Chi H, Zhang L and
Chen J: Comprehensive analysis of differentially expressed profiles
of lncRNAs/mRNAs and miRNAs with associated ceRNA networks in
triple-negative breast cancer. Cell Physiol Biochem. 50:473–488.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Song H, Li D, Wu T, Xie D, Hua K, Hu J,
Deng X, Ji C, Deng Y and Fang L: MicroRNA-301b promotes cell
proliferation and apoptosis resistance in triple-negative breast
cancer by targeting CYLD. BMB Rep. 51:602–607. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Romero-Cordoba SL, Rodriguez-Cuevas S,
Bautista-Pina V, Maffuz-Aziz A, D'Ippolito E, Cosentino G, Baroni
S, Iorio MV and Hidalgo-Miranda A: Loss of function of miR-342-3p
results in MCT1 over-expression and contributes to oncogenic
metabolic reprogramming in triple negative breast cancer. Sci Rep.
8:122522018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Razaviyan J, Hadavi R, Tavakoli R, Kamani
F, Paknejad M and Mohammadi YS: Expression of miRNAs targeting mTOR
and S6K1 genes of mTOR signaling pathway including miR-96, miR-557,
and miR-3182 in triple-negative breast cancer. Appl Biochem
Biotechnol. 186:1074–1089. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
García-Vázquez R, Marchat LA, Ruíz-García
E, Astudillo-de la Vega H, Meneses-García A, Arce-Salinas C,
Bargallo-Rocha E, Carlos-Reyes Á, López-González JS,
Pérez-Plasencia C, et al: MicroRNA-143 is associated with
pathological complete response and regulates multiple signaling
proteins in breast cancer. Technol Cancer Res Treat.
18:15330338198273092019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Schwarzenbacher D, Klec C, Pasculli B,
Cerk S, Rinner B, Karbiener M, Ivan C, Barbano R, Ling H, Wulf-
Goldenberg A, et al: MiR-1287-5p inhibits triple negative breast
cancer growth by interaction with phosphoinositide 3-kinase CB,
thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer
Res. 21:202019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang DY, Gendoo DMA, Ben-David Y, Woodgett
JR and Zacksenhaus E: A subgroup of microRNAs defines
PTEN-deficient, triple-negative breast cancer patients with poorest
prognosis and alterations in RB1, MYC, and Wnt signaling. Breast
Cancer Res. 21:182019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cantini L, Bertoli G, Cava C, Dubois T,
Zinovyev A, Caselle M, Castiglioni I, Barillot E and Martignetti L:
Identification of microRNA clusters cooperatively acting on
epithelial to mesenchymal transition in triple negative breast
cancer. Nucleic Acids Res. 47:2205–2215. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wong CK, Gromisch C, Ozturk S, Papageorgis
P, Abdolmaleky HM, Reinhard BM, Thiagalingam A and Thiagalingam S:
MicroRNA-4417 is a tumor suppressor and prognostic biomarker for
triple-negative breast cancer. Cancer Biol Ther. 20:1113–1120.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhao Z, Li L, Du P, Ma L, Zhang W, Zheng
L, Lan B, Zhang B, Ma F, Xu B, et al: Transcriptional
downregulation of miR-4306 serves as a new therapeutic target for
triple negative breast cancer. Theranostics. 9:1401–1416. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang C, Xu C, Niu R, Hu G, Gu Z and Zhuang
Z: MiR-890 inhibits proliferation and invasion and induces
apoptosis in triple-negative breast cancer cells by targeting
CD147. BMC Cancer. 19:5772019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liang F, Fu X and Wang L: miR-5590-3p-YY1
feedback loop promotes the proliferation and migration of
triple-negative breast cancer cells. J Cell Biochem.
120:18415–18424. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang X, Chen T, Zhang Y, Zhang N, Li C, Li
Y, Liu Y, Zhang H, Zhao W, Chen B, et al: Long noncoding RNA
Linc00339 promotes triple-negative breast cancer progression
through miR-377-3p/HOXC6 signaling pathway. J Cell Physiol.
234:13303–13317. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Son D, Kim Y, Lim S, Kang HG, Kim DH, Park
JW, Cheong W, Kong HK, Han W, Park WY, et al: miR-374a-5p promotes
tumor progression by targeting ARRB1 in triple negative breast
cancer. Cancer Lett. 454:224–233. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tormo E, Ballester S, Adam-Artigues A,
Burgués O, Alonso E, Bermejo B, Menéndez S, Zazo S, Madoz-Gúrpide
J, Rovira A, et al: The miRNA-449 family mediates doxorubicin
resistance in triple-negative breast cancer by regulating cell
cycle factors. Sci Rep. 9:53162019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shi P, Chen C, Li X, Wei Z, Liu Z and Liu
Y: MicroRNA-124 suppresses cell proliferation and invasion of
triple negative breast cancer cells by targeting STAT3. Mol Med
Rep. 19:3667–3675. 2019.PubMed/NCBI
|
|
62
|
Liu X, Wang J and Zhang G: miR-4458
regulates cell proliferation and apoptosis through targeting SOCS1
in triple-negative breast cancer. J Cell Biochem. 120:12943–12948.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Koduru SV, Tiwari AK, Leberfinger A,
Hazard SW, Kawasawa YI, Mahajan M and Ravnic DJ: A comprehensive
NGS data analysis of differentially regulated miRNAs, piRNAs,
lncRNAs and sn/snoRNAs in triple negative breast cancer. J Cancer.
8:578–596. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tang Q, Ouyang H, He D, Yu C and Tang G:
MicroRNA-based potential diagnostic, prognostic and therapeutic
applications in triple-negative breast cancer. Artif Cells Nanomed
Biotechnol. 47:2800–2809. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Naorem LD, Muthaiyan M and Venkatesan A:
Identification of dysregulated miRNAs in triple negative breast
cancer: A meta-analysis approach. J Cell Physiol. 234:11768–11779.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Geyer FC, Lacroix-Triki M, Savage K,
Arnedos M, Lambros MB, MacKay A, Natrajan R and Reis-Filho JS:
β-catenin pathway activation in breast cancer is associated with
triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol.
24:209–231. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Loi S, Dushyanthen S, Beavis PA, Salgado
R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV,
et al: RAS/MAPK activation is associated with reduced tumor
infiltrating lymphocytes in triple negative breast cancer:
Therapeutic cooperation between MEK and PD1/PDL1 immune checkpoint
inhibitors. Clin Cancer Res. 22:1499–1509. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Piasecka D, Braun M, Kordek R, Sadej R and
Romanska H: MicroRNAs in regulation of triple-negative breast
cancer progression. J Cancer Res Clin Oncol. 144:1401–1411. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Blondal T, Jensby Nielsen S, Baker A,
Andreasen D, Mouritzen P, Wrang TM and Dahlsveen IK: Assessing
sample and miRNA profile quality in serum and plasma or other
biofluids. Methods. 59:S1–S6. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hunter MP, Ismail N, Zhang X, Aguda BD,
Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, et al:
Detection of microRNA expression in human peripheral blood
microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chim SSC, Shing TKF, Hung ECW, Leung TY,
Lau TK, Chiu RW and Lo YM: Detection and characterization of
placental microRNAs in maternal plasma. Clin Chem. 54:482–490.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yu X, Odenthal M and Fries JW: Exosomes as
miRNA carriers: Formation-function-future. Int J Mol Sci.
17:20282016. View Article : Google Scholar
|
|
73
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR,
Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant
KC, Allen A, et al: Circulating microRNAs as stable blood-based
markers for cancer detection. Proc Natl Acad Sci USA.
105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ma R, Jiang T and Kang X: Circulating
microRNAs in cancer: Origin, function and application. J Exp Clin
Cancer Res. 31:382012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sahlberg K, Bottai G, Naume B, Burwinkel
B, Calin GA, Børresen-Dale AL and Santarpia L: A serum microRNA
signature predicts tumor relapse and survival in triple-negative
breast cancer patients. Clin Cancer Res. 21:1207–1214. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kahraman M, Röske A, Laufer T, Fehlmann T,
Backes C, Kern F, Kohlhaas J, Schrörs H, Saiz A, Zabler C, et al:
MicroRNA in diagnosis and therapy monitoring of early-stage
triple-negative breast cancer. Sci Rep. 8:115842018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Braicu C, Raduly L, Morar-Bolba G,
Cojocneanu R, Jurj A, Pop LA, Pileczki V, Ciocan C, Moldovan A,
Irimie A, et al: Aberrant miRNAs expressed in HER-2 negative breast
cancers patient. J Exp Clin Cancer Res. 37:2572018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Madhavan D, Peng C, Wallwiener M, Zucknick
M, Nees J, Schott S, Rudolph A, Riethdorf S, Trumpp A, Pantel K, et
al: Circulating miRNAs with prognostic value in metastatic breast
cancer and for early detection of metastasis. Carcinogenesis.
37:461–470. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Heneghan HM, Miller N, Kelly R, Newell J
and Kerin MJ: Systemic miRNA-195 differentiates breast cancer from
other malignancies and is a potential biomarker for detecting
noninvasive and early stage disease. Oncologist. 15:673–682. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zeng RC, Zhang W, Yan XQ, Ye ZQ, Chen ED,
Huang DP, Zhang XH and Huang GL: Down-regulation of miRNA-30a in
human plasma is a novel marker for breast cancer. Med Oncol.
30:4772013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Eichelser C, Flesch-Janys D, Chang-Claude
J, Pantel K and Schwarzenbach H: Deregulated serum concentrations
of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and
miR-373 in human breast cancer development and progression. Clin
Chem. 59:1489–1496. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Eichelser C, Stückrath I, Müller V,
Milde-Langosch K, Wikman H, Pantel K and Schwarzenbach H: Increased
serum levels of circulating exosomal microRNA-373 in
receptor-negative breast cancer patients. Oncotarget. 5:9650–9663.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shin VY, Siu JM, Cheuk I, Ng EK and Kwong
A: Circulating cell-free miRNAs as biomarker for triple-negative
breast cancer. Br J Cancer. 112:1751–1759. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mishra S, Srivastava AK, Suman S, Kumar V
and Shukla Y: Circulating miRNAs revealed as surrogate molecular
signatures for the early detection of breast cancer. Cancer Lett.
369:67–75. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Huo D, Clayton WM, Yoshimatsu TF, Chen J
and Olopade OI: Identification of a circulating microRNA signature
to distinguish recurrence in breast cancer patients. Oncotarget.
7:55231–55248. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chen J, Shin VY, Siu MT, Ho JC, Cheuk I
and Kwong A: miR-199a-5p confers tumor-suppressive role in
triple-negative breast cancer. BMC Cancer. 16:8872016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gao S, Wang Y, Wang M, Li Z, Zhao Z, Wang
RX, Wu R, Yuan Z, Cui R, Jiao K, et al: MicroRNA-155, induced by
FOXP3 through transcriptional repression of BRCA1, is associated
with tumor initiation in human breast cancer. Oncotarget.
8:41451–41464. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zeng Z, Chen X, Zhu D, Luo Z and Yang M:
Low expression of circulating MicroRNA-34c is associated with poor
prognosis in triple-negative breast cancer. Yonsei Med J.
58:697–702. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Qattan A, Intabli H, Alkhayal W, Eltabache
C, Tweigieri T and Amer SB: Robust expression of tumor suppressor
miRNA's let-7 and miR-195 detected in plasma of Saudi female breast
cancer patients. BMC Cancer. 17:7992017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Swellam M, Mahmoud MS, Hashim M, Hassan
NM, Sobeih ME and Nageeb AM: Clinical aspects of circulating
miRNA-335 in breast cancer patients: A prospective study. J Cell
Biochem. 120:8975–8982. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Niedźwiecki S, Piekarski J, Szymańska B,
Pawłowska Z and Jeziorski A: Serum levels of circulating miRNA-21,
miRNA-10b and miRNA-200c in triple-negative breast cancer patients.
Ginekol Pol. 89:415–420. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bai X, Han G, Liu Y, Jiang H and He Q:
MiRNA-20a-5p promotes the growth of triple-negative breast cancer
cells through targeting RUNX3. Biomed Pharmacother. 103:1482–1489.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gorer PA: Some recent work on tumor
immunity. Adv Cancer Res. 4:149–186. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Barrette M: Some observations on the
nature of the ‘antigen’ in ‘tumor immunity’. Acta Unio Int Contra
Cancrum. 15:940–942. 1959.PubMed/NCBI
|
|
95
|
Zilber LA: Specific tumor antigens. Adv
Cancer Res. 5:291–329. 1958. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Klein E, Becker S, Svedmyr E, Jondal M and
Vánky F: Tumor infiltrating lymphocytes. Ann N Y Acad Sci.
276:207–216. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Richters A and Kaspersky CL: Surface
immunoglobulin positive lymphocytes in human breast cancer tissue
and homolateral axillary lymph nodes. Cancer. 35:129–133. 1975.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Svennevig JL, Lövik M and Svaar H:
Isolation and characterization of lymphocytes and macrophages from
solid, malignant human tumours. Int J Cancer. 23:626–631. 1979.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Conforti F, Pala L, Bagnardi V, De Pas T,
Martinetti M, Viale G, Gelber RD and Goldhirsch A: Cancer
immunotherapy efficacy and patients' sex: A systematic review and
meta-analysis. Lancet Oncol. 19:737–746. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Galon J, Pagès F, Marincola FM, Angell HK,
Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, et al:
Cancer classification using the Immunoscore: A worldwide task
force. J Transl Med. 10:2052012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Salgado R, Denkert C, Demaria S, Sirtaine
N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL,
Penault-Llorca F, et al: The evaluation of tumor-infiltrating
lymphocytes (TILs) in breast cancer: Recommendations by an
international TILs working group 2014. Ann Oncol. 26:259–271. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Denkert C, Loibl S, Noske A, Roller M,
Müller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R,
Hanusch C, et al: Tumor-associated lymphocytes as an independent
predictor of response to neoadjuvant chemotherapy in breast cancer.
J Clin Oncol. 28:105–113. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ibrahim EM, Al-Foheidi ME, Al-Mansour MM
and Kazkaz GA: The prognostic value of tumor-infiltrating
lymphocytes in triple-negative breast cancer: A meta-analysis.
Breast Cancer Res Treat. 148:467–476. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Adams S, Gray RJ, Demaria S, Goldstein L,
Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, et
al: Prognostic value of tumor-infiltrating lymphocytes in
triple-negative breast cancers from two phase III randomized
adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin
Oncol. 32:2959–2966. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ruan M, Tian T, Rao J, Xu X, Yu B, Yang W
and Shui R: Predictive value of tumor-infiltrating lymphocytes to
pathological complete response in neoadjuvant treated
triple-negative breast cancers. Diagn Pathol. 13:662018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Denkert C, von Minckwitz G, Brase JC, Sinn
BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD,
et al: Tumor-infiltrating lymphocytes and response to neoadjuvant
chemotherapy with or without carboplatin in human epidermal growth
factor receptor 2-positive and triple-negative primary breast
cancers. J Clin Oncol. 33:983–991. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Poggio F, Bruzzone M, Ceppi M, Pondé NF,
La Valle G, Del Mastro L, de Azambuja E and Lambertini M:
Platinum-based neoadjuvant chemotherapy in triple-negative breast
cancer: A systematic review and meta-analysis. Ann Oncol.
29:1497–1508. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Karn T, Pusztai L, Rody A, Holtrich U and
Becker S: The influence of host factors on the prognosis of breast
cancer: Stroma and immune cell components as cancer biomarkers.
Curr Cancer Drug targets. 15:652–664. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bertucci F, Finetti P, Cervera N,
Charafe-Jauffret E, Mamessier E, Adélaïde J, Debono S, Houvenaeghel
G, Maraninchi D, Viens P, et al: Gene expression profiling shows
medullary breast cancer is a subgroup of basal breast cancers.
Cancer Res. 66:4636–4644. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Nathan MR and Schmid P: The emerging world
of breast cancer immunotherapy. Breast. 37:200–206. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
U.S. Food and Drug Administration: FDA
Approves Atezolizumab For PD-L1 Positive Unresectable Locally Adva.
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negativeAugust
17–2020
|
|
113
|
Brockwell NK, Owen KL, Zanker D, Spurling
A, Rautela J, Duivenvoorden HM, Baschuk N, Caramia F, Loi S, Darcy
PK, et al: Neoadjuvant Interferons: Critical for effective
PD-1-based immunotherapy in TNBC. Cancer Immunol Res. 5:871–884.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Romano G and Kwong LN: Diagnostic and
therapeutic applications of miRNA-based strategies to cancer
immunotherapy. Cancer Metastasis Rev. 37:45–53. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kamimura N, Wolf AM and Iwai Y:
Development of CANCER IMMUNOTHERAPY TARGeting the PD-1 pathway. J
Nippon Med Sch. 86:10–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Bally AP, Austin JW and Boss JM: Genetic
and epigenetic regulation of PD-1 expression. J Immunol.
196:2431–2437. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wei R, Guo L, Wang Q, Miao J, Kwok HF and
Yao Lin: Targeting PD-L1 protein: Translation, modification and
transport. Curr Protein Pept Sci. 20:82–91. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yee D, Shah KM, Coles MC, Sharp TV and
Lagos D: MicroRNA-155 induction via TNF-α and IFN-γ suppresses
expression of programmed death ligand-1 (PD-L1) in human primary
cells. J Biol Chem. 292:20683–20693. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fan T, Mao Y, Sun Q, Liu F, Lin JS, Liu Y,
Cui J and Jiang Y: Branched rolling circle amplification method for
measuring serum circulating microRNA levels for early breast cancer
detection. Cancer Sci. 109:2897–2906. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ling V, Wu PW, Finnerty HF, Sharpe AH,
Gray GS and Collins M: Complete sequence determination of the mouse
and human CTLA4 gene loci: Cross-species DNA sequence similarity
beyond exon borders. Genomics. 60:341–355. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Rowshanravan B, Halliday N and Sansom DM:
CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chikuma S: CTLA-4, an essential
immune-checkpoint for T-cell activation. Emerging Concepts
Targeting Immune Checkpoints in Cancer and Autoimmunity. Current
Topics in Microbiology and Immunology. Yoshimura A: Springer; pp.
99–126. 2017, https://www.springer.com/gp/book/9783319689289
View Article : Google Scholar
|