|
1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Robert C, Thomas L, Bondarenko I, O'Day S,
Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al:
Ipilimumab plus dacarbazine for previously untreated metastatic
melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Borghaei H, Paz-Ares L, Horn L, Spigel DR,
Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al:
Nivolumab versus docetaxel in advanced nonsquamous non-small-cell
lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok
JD, Kefford R, Joshua AM, Patnaik A, Hwu WJ, Weber JS, et al:
Association of pembrolizumab with tumor response and survival among
patients with advanced melanoma. JAMA. 315:1600–1609. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lee L, Gupta M and Sahasranaman S: Immune
Checkpoint inhibitors: An introduction to the next-generation
cancer immunotherapy. J Clin Pharmacol. 56:157–169. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shui L, Yang X, Li J, Yi C, Sun Q and Zhu
H: Gut microbiome as a potential factor for modulating resistance
to cancer immunotherapy. Front Immunol. 10:29892020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pardoll D: Cancer and the immune system:
Basic concepts and targets for intervention. Semin Oncol.
42:523–538. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gagliani N, Hu B, Huber S, Elinav E and
Flavell RA: The fire within: Microbes inflame tumors. Cell.
157:776–783. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pleguezuelos-Manzano C, Puschhof J,
Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C,
Manders F, Dalmasso G, Stege PB, et al: Mutational signature in
colorectal cancer caused by genotoxic pks+ E.
coli. Nature. 580:269–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yu LX and Schwabe RF: The gut microbiome
and liver cancer: Mechanisms and clinical translation. Nat Rev
Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li W, Deng Y, Chu Q and Zhang P: Gut
microbiome and cancer immunotherapy. Cancer Lett. 447:41–47. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen D, Wu J, Jin D, Wang B and Cao H:
Fecal microbiota transplantation in cancer management: Current
status and perspectives. Int J Cancer. 145:2021–2031. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pickard JM, Zeng MY, Caruso R and Núñez G:
Gut microbiota: Role in pathogen colonization, immune responses,
and inflammatory disease. Immunol Rev. 279:70–89. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Round JL and Mazmanian SK: Inducible
Foxp3+ regulatory T-cell development by a commensal
bacterium of the intestinal microbiota. Proc Natl Acad Sci USA.
107:12204–12209. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cebula A, Seweryn M, Rempala GA, Pabla SS,
McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P and Ignatowicz L:
Thymus-derived regulatory T cells contribute to tolerance to
commensal microbiota. Nature. 497:258–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yi M, Jiao D, Qin S, Chu Q, Li A and Wu K:
Manipulating gut microbiota composition to enhance the therapeutic
effect of cancer immunotherapy. Integr Cancer Ther.
18:15347354198763512019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang HY, Lee DA, Peng G, Guo Z, Li Y,
Kiniwa Y, Shevach EM and Wang RF: Tumor-specific human
CD4+ regulatory T cells and their ligands: Implications
for immunotherapy. Immunity. 20:107–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sharma P and Allison JP: The future of
immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Picardo SL, Coburn B and Hansen AR: The
microbiome and cancer for clinicians. Crit Rev Oncol Hematol.
141:1–12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Vétizou M, Pitt JM, Daillère R, Lepage P,
Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong
CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on
the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chaput N, Lepage P, Coutzac C, Soularue E,
Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et
al: Baseline gut microbiota predicts clinical response and colitis
in metastatic melanoma patients treated with ipilimumab. Ann Oncol.
28:1368–1379. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dubin K, Callahan MK, Ren B, Khanin R,
Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, et
al: Intestinal microbiome analyses identify melanoma patients at
risk for checkpoint-blockade-induced colitis. Nat Commun.
7:103912016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Matson V, Fessler J, Bao R, Chongsuwat T,
Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome
is associated with anti-PD-1 efficacy in metastatic melanoma
patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Iida N, Dzutsev A, Stewart CA, Smith L,
Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S,
et al: Commensal bacteria control cancer response to therapy by
modulating the tumor microenvironment. Science. 342:967–970. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Elkrief A, El Raichani L, Richard C,
Messaoudene M, Belkaid W, Malo J, Belanger K, Miller W, Jamal R,
Letarte N, et al: Antibiotics are associated with decreased
progression-free survival of advanced melanoma patients treated
with immune checkpoint inhibitors. Oncoimmunology. 8:e15688122019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Frankel AE, Coughlin LA, Kim J, Froehlich
TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing
and unbiased metabolomic profiling identify specific human gut
microbiota and metabolites associated with immune checkpoint
therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Maia MC, Poroyko V, Won H, Almeida L,
Bergerot PG, Dizman N, Hsu J, Jones J, Salgia R and Pal SK:
Association of microbiome and plasma cytokine dynamics to nivolumab
response in metastatic renal cell carcinoma (mRCC). J Clin Oncol.
36 (6_suppl):S6562018. View Article : Google Scholar
|
|
28
|
Sivan A, Corrales L, Hubert N, Williams
JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B,
Alegre M, et al: Commensal Bifidobacterium promotes antitumor
immunity and facilitates anti-PD-L1 efficacy. Science.
350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gopalakrishnan V, Spencer CN, Nezi L,
Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman
K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1
immunotherapy in melanoma patients. Science. 359:97–103. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tanoue T, Morita S, Plichta DR, Skelly AN,
Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et
al: A defined commensal consortium elicits CD8 T cells and
anti-cancer immunity. Nature. 565:600–605. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Frankel AE, Deshmukh S, Reddy A, Lightcap
J, Hayes M, McClellan S, Singh S, Rabideau B, Glover TG, Roberts B
and Koh AY: Cancer immune checkpoint inhibitor therapy and the Gut
microbiota. Integr Cancer Ther. 18:15347354198463792019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Roy S and Trinchieri G: Microbiota: A key
orchestrator of cancer therapy. Nat Rev Cancer. 17:271–285. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Teply BA and Lipson EJ: Identification and
management of toxicities from immune checkpoint-blocking drugs.
Oncology (Williston Park). 28 (Suppl 3):S30–S38. 2014.
|
|
34
|
Bashiardes S, Tuganbaev T, Federici S and
Elinav E: The microbiome in anti-cancer therapy. Semin Immunol.
32:74–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Helmink BA, Khan MAW, Hermann A,
Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer
therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Vivarelli S, Salemi R, Candido S, Falzone
L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra
M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers
(Basel). 11:382019. View Article : Google Scholar
|
|
37
|
Nagano T, Otoshi T, Hazama D, Kiriu T,
Umezawa K, Katsurada N and Nishimura Y: Novel cancer therapy
targeting microbiome. Onco Targets Ther. 12:3619–3624. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Van Nood E, Vrieze A, Nieuwdorp M, Fuentes
S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF,
Tijssen JG, et al: Duodenal infusion of donor feces for recurrent
Clostridium difficile. N Engl J Med. 368:407–415. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bakken JS, Borody T, Brandt LJ, Brill JV,
Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP,
et al: Treating Clostridium difficile infection with fecal
microbiota transplantation. Clin Gastroenterol Hepatol.
9:1044–1049. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Routy B, Le Chatelier E, Derosa L, Duong
CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C and
Roberti MP: Gut microbiome influences efficacy of PD-1-based
immunotherapy against epithelial tumors. Science. 359:91–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang Y, Wiesnoski DH, Helmink BA,
Gopalakrishnan V, Choi K, DuPont HL, Jiang ZD, Abu-Sbeih H, Sanchez
CA and Chang CC: Fecal microbiota transplantation for refractory
immune checkpoint inhibitor-associated colitis. Nat Med.
24:1804–1808. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hekmatshoar Y, Rahbar Saadat Y,
Hosseiniyan Khatibi SM, Ozkan T, Zununi Vahed F, Nariman-Saleh-Fam
Z, Pourghassem Gargari B, Sunguroglu A and Zununi Vahed S: The
impact of tumor and gut microbiotas on cancer therapy: Beneficial
or detrimental? Life Sci. 233:1166802019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Olivas AD, Shogan BD, Valuckaite V,
Zaborin A, Belogortseva N, Much M, Meyer F, Trimble WL, An G,
Gilbert J, et al: Intestinal tissues induce an SNP mutation in
Pseudomonas aeruginosa that enhances its virulence: Possible role
in anastomotic leak. PLoS One. 7:e443262012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ashraf SQ, Burns EM, Jani A, Altman S,
Young JD, Cunningham C, Faiz O and Mortensen NJ: The economic
impact of anastomotic leakage after anterior resections in E nglish
NHS hospitals: Are we adequately remunerating them? Colorectal Dis.
15:e190–e198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bose M and Mukherjee P: Role of microbiome
in modulating immune responses in cancer. Mediators Inflamm.
2019:41079172019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gough E, Shaikh H and Manges AR:
Systematic review of intestinal microbiota transplantation (fecal
bacteriotherapy) for recurrent Clostridium difficile
infection. Clin Infect Dis. 53:994–1002. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH,
Yu FJ, Hu HM, Hsu PI, Wang JY and Wu DC: Fecal microbiota
transplantation: Review and update. J Formos Med Assoc. 118 (Suppl
1):S23–S31. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rossen NG, MacDonald JK, de Vries EM,
D'Haens GR, de Vos WM, Zoetendal EG and Ponsioen CY: Fecal
microbiota transplantation as novel therapy in gastroenterology: A
systematic review. World J Gastroenterol. 21:5359–5371. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Guven DC, Aktas BY, Simsek C and Aksoy S:
Gut microbiota and cancer immunotherapy: Prognostic and therapeutic
implications. Future Oncol. 16:497–506. 2020.PubMed/NCBI
|
|
50
|
Huemer F, Rinnerthaler G, Westphal T,
Hackl H, Hutarew G, Gampenrieder SP, Weiss L and Greil R: Impact of
antibiotic treatment on immune-checkpoint blockade efficacy in
advanced non-squamous non-small cell lung cancer. Oncotarget.
9:16512–16520. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Elkrief A, Derosa L, Kroemer G, Zitvogel L
and Routy B: The negative impact of antibiotics on outcomes in
cancer patients treated with immunotherapy: A new independent
prognostic factor? Ann Oncol. 30:1572–1579. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ahmed J, Kumar A, Parikh K, Anwar A, Knoll
BM, Puccio C, Chun H, Fanucchi M and Lim SH: Use of broad-spectrum
antibiotics impacts outcome in patients treated with immune
checkpoint inhibitors. Oncoimmunology. 7:e15076702018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hakozaki T, Okuma Y, Omori M and Hosomi Y:
Impact of prior antibiotic use on the efficacy of nivolumab for
non-small cell lung cancer. Oncol Lett. 17:2946–2952.
2019.PubMed/NCBI
|
|
54
|
Derosa L, Routy B, Enot D, Baciarello G,
Massard C, Loriot Y, Fizazi K, Escudier BJ, Zitvogel L and Albiges
L: Impact of antibiotics on outcome in patients with metastatic
renal cell carcinoma treated with immune checkpoint inhibitors. J
Clin Oncol. 35 (6_suppl):S4622017. View Article : Google Scholar
|
|
55
|
Morgun A, Dzutsev A, Dong X, Greer RL,
Sexton DJ, Ravel J, Schuster M, Hsiao W, Matzinger P and Shulzhenko
N: Uncovering effects of antibiotics on the host and microbiota
using transkingdom gene networks. Gut. 64:1732–1743. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Doron S and Snydman DR: Risk and safety of
probiotics. Clin Infect Dis. 60 (Suppl 2):S129–S134. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jiang C, Wang H, Xia C, Dong Q, Chen E,
Qiu Y, Su Y, Xie H, Zeng L, Kuang J, et al: A randomized,
double-blind, placebo-controlled trial of probiotics to reduce the
severity of oral mucositis induced by chemoradiotherapy for
patients with nasopharyngeal carcinoma. Cancer. 125:1081–1090.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Panebianco C, Andriulli A and Pazienza V:
Pharmaco microbiomics: Exploiting the drug-microbiota interactions
in anticancer therapies. Microbiome. 6:922018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pandey KR, Naik SR and Vakil BV:
Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol.
52:7577–7587. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gibson GR and Roberfroid MB: Dietary
modulation of the human colonic microbiota: Introducing the concept
of prebiotics. J Nutr. 125:1401–1412. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
McLoughlin RF, Berthon BS, Jensen ME,
Baines KJ and Wood LG: Short-chain fatty acids, prebiotics,
synbiotics, and systemic inflammation: A systematic review and
meta-analysis. Am J Clin Nutr. 106:930–945. 2017.PubMed/NCBI
|
|
62
|
Brouns F, Kettlitz B and Arrigoni E:
Resistant starch and ‘the butyrate revolution’. Trends Food Sci
Technol. 13:251–261. 2002. View Article : Google Scholar
|
|
63
|
Ashcraft KA, Warner AB, Jones LW and
Dewhirst MW: Exercise as adjunct therapy in cancer. Semin Radiat
Oncol. 29:16–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Clarke SF, Murphy EF, O'Sullivan O, Lucey
AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB,
Wood-Martin R, et al: Exercise and associated dietary extremes
impact on gut microbial diversity. Gut. 63:1913–1920. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu
B, Yang M, Cao W, Wang L and Wu Z: Tumor cell-derived lactate
induces TAZ-dependent upregulation of PD-L1 through GPR81 in human
lung cancer cells. Oncogene. 36:5829–5839. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Seth P, Csizmadia E, Hedblom A, Vuerich M,
Xie H, Li M, Longhi MS and Wegiel B: Deletion of lactate
dehydrogenase-A in myeloid cells triggers antitumor immunity.
Cancer Res. 77:3632–3643. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bibbò S, Ianiro G, Giorgio V, Scaldaferri
F, Masucci L, Gasbarrini A and Cammarota G: The role of diet on gut
microbiota composition. Eur Rev Med Pharmacol Sci. 20:4742–4749.
2016.PubMed/NCBI
|
|
68
|
Conlon MA and Bird AR: The impact of diet
and lifestyle on gut microbiota and human health. Nutrients.
7:17–44. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M and
Hooper LV: The intestinal microbiota regulates body composition
through NFIL3 and the circadian clock. Science. 357:912–916. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Anderson JR, Carroll I, Azcarate-Peril MA,
Rochette AD, Heinberg LJ, Peat C, Steffen K, Manderino LM, Mitchell
J and Gunstad J: A preliminary examination of gut microbiota,
sleep, and cognitive flexibility in healthy older adults. Sleep
Med. 38:104–107. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Poroyko VA, Carreras A, Khalyfa A, Khalyfa
AA, Leone V, Peris E, Almendros I, Gileles-Hillel A, Qiao Z, Hubert
N, et al: Chronic sleep disruption alters gut microbiota, induces
systemic and adipose tissue inflammation and insulin resistance in
mice. Sci Rep. 6:354052016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lv J, Jia Y, Li J, Kuai W, Li Y, Guo F, Xu
X, Zhao Z, Lv J and Li Z: Gegen Qinlian decoction enhances the
effect of PD-1 blockade in colorectal cancer with microsatellite
stability by remodelling the gut microbiota and the tumour
microenvironment. Cell Death Dis. 10:4152019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhen H, Qian X, Fu X, Chen Z, Zhang A and
Shi L: Regulation of shaoyao ruangan mixture on intestinal flora in
mice with primary liver cancer. Integr Cancer Ther.
18:15347354198431782019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
McFadden RM, Larmonier CB, Shehab KW,
Midura-Kiela M, Ramalingam R, Harrison CA, Besselsen DG, Chase JH,
Caporaso JG, Jobin C, et al: The role of curcumin in modulating
colonic microbiota during colitis and colon cancer prevention.
Inflamm Bowel Dis. 21:2483–2494. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang G, Khan I, Li X, Chen L, Leong W, Ho
LT and Hsiao WLW: Ginsenosides Rb3 and Rd reduce polyps formation
while reinstate the dysbiotic gut microbiota and the intestinal
microenvironment in Apc min/+mice. Sci Rep. 7:125522017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chen H, Zhang F, Li R, Liu Y, Wang X,
Zhang X, Xu C, Li Y, Guo Y and Yao Q: Berberine regulates fecal
metabolites to ameliorate 5-fluorouracil induced intestinal
mucositis through modulating gut microbiota. Biomed Pharmacother.
124:1098292020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chassaing B, Etienne-Mesmin L and Gewirtz
AT: Microbiota-liver axis in hepatic disease. Hepatology.
59:328–339. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Giuffrè M, Campigotto M, Campisciano G,
Comar M and Crocè LS: A story of liver and gut microbes: How does
the intestinal flora affect liver disease? A review of the
literature. Am J Physiol Gastrointest Liver Physiol. 318:G889–G906.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gopalakrishnan V, Helmink BA, Spencer CN,
Reuben A and Wargo JA: The influence of the gut microbiome on
cancer, immunity, and cancer immunotherapy. Cancer Cell.
33:570–580. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fukuoka S, Daisuke M, Togashi Y, Sugiyama
E, Udagawa H, Kirita K, Kamada T, Kawazoe A, Goto K, Doi T, et al:
Association of gut microbiome with immune status and clinical
response in solid tumor patients who received on anti-PD-1
therapies. J Clin Oncol. 36 (Suppl 15):S30112018. View Article : Google Scholar
|