|
1
|
Krantz BA, Dave N, Komatsubara KM, Marr BP
and Carvajal RD: Uveal melanoma: Epidemiology, etiology, and
treatment of primary disease. Clin Ophthalmol. 11:279–289. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Brantley MA Jr and Harbour JW:
Deregulation of the Rb and p53 pathways in uveal melanoma. Am J
Pathol. 157:1795–1801. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Weber A, Hengge UR, Urbanik D, Markwart A,
Mirmohammadsaegh A, Reichel MB, Wittekind C, Wiedemann P and
Tannapfel A: Absence of mutations of the BRAF gene and constitutive
activation of extracellular-regulated kinase in malignant melanomas
of the uvea. Lab Invest. 83:1771–1776. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kuk D, Shoushtari AN, Barker CA, Panageas
KS, Munhoz RR, Momtaz P, Ariyan CE, Brady MS, Coit DG, Bogatch K,
et al: Prognosis of mucosal, uveal, acral, nonacral cutaneous, and
unknown primary melanoma from the time of first metastasis.
Oncologist. 21:848–854. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Andreoli MT, Mieler WF and Leiderman YI:
Epidemiological trends in uveal melanoma. Br J Ophthalmol.
99:1550–1553. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Damato EM and Damato BE: Detection and
time to treatment of uveal melanoma in the United Kingdom: An
evaluation of 2,384 patients. Ophthalmology. 119:1582–1589. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
McLaughlin CC, Wu X, Jemal A, Martin HJ,
Roche LM and Chen VW: Incidence of Noncutaneous Melanomas in the
U.S. Cancer. 103:1000–1007. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Virgili G, Gatta G, Ciccolallo L,
Capocaccia R, Biggeri A, Crocetti E, Lutz JM and Paci E; EUROCARE
Working Group, : Incidence of uveal melanoma in Europe.
Ophthalmology. 114:2309–2315. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hu DN, Yu GP, Mccormick SA, Schneider S
and Finger PT: Population-based incidence of uveal melanoma in
various races and ethnic groups. Am J Ophthalmol. 140:612–617.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nayman T, Bostan C, Logan P and Burnier MN
Jr: Uveal melanoma risk factors: A systematic review of
meta-analyses. Curr Eye Res. 42:1085–1093. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kaliki S, Shields CL and Shields JA: Uveal
melanoma: Estimating prognosis. Indian J Ophthalmol. 63:93–102.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Weis E, Shah CP, Lajous M, Shields JA and
Shields CL: The association of cutaneous and iris nevi with uveal
melanoma: A meta-analysis. Ophthalmology. 116:536–543.e2. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gendron P, Desgarnier MD, Mallet JD and
Rochette PJ: Implication of ultraviolet light in the etiology of
uveal melanoma (Review). Photochem Photobiol. 90:15–21. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mallet JD and Rochette PJ: Themed issue:
Interaction of UV radiation with DNA. Photochem Photobiol Sci.
12:1245–1246. 2013.
|
|
15
|
Mallet JD, Gendron SP, Drigeard Desgarnier
MC and Rochettes PJ: Implication of ultraviolet light in the
etiology of uveal melanoma: A review. Photochem Photobiol.
90:15–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shields CL, Materin MA, Shields JA,
Gershenbaum E, Singh sAD and Smith A: Factors associated with
elevated intraocular pressure in eyes with iris melanoma. Br J
Ophthalmol. 85:666–669. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Onken MD, Worley LA, Char DH, Augsburger
JJ, Correa ZM, Nudleman E, Aaberg TM Jr, Altaweel MM, Bardenstein
DS, Finger PT, et al: Collaborative Ocular Oncology Group report
number 1: prospective validation of a multi-gene prognostic assay
in uveal melanoma. Ophthalmology. 119:1596–1603. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Coupland SE, Lake SL, Zeschnigk M and
Damato BE: Molecular pathology of uveal melanoma. Eye (Lond).
27:230–242. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sisley K, Rennie IG, Parsons MA, Jacques
R, Hammond DW, Bell SM, Potter AM and Rees RC: Abnormalities of
chromosomes 3 and 8 in posterior uveal melanoma correlate with
prognosis. Genes Chromosomes Cancer. 19:22–28. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Versluis M, de Lange MJ, van Pelt SI,
Ruivenkamp CA, Kroes WG, Cao J, Jager MJ, Luyten GP and van der
Velden PA: Digital PCR validates 8q dosage as prognostic tool in
uveal melanoma. PLoS One. 10:e01163712015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Harbour JW, Onken MD, Roberson EDO, Duan
S, Cao L, Worley LA, Council ML, Matatall KA, Helms C and Bowcock
AM: Frequent mutation of BAP1 in metastasizing uveal melanomas.
Science. 330:1410–1413. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Laíns I, Bartosch C, Mondim V, Healy B,
Kim IK, Husain D and Miller JW: Second primary neoplasms in
patients with uveal melanoma: A SEER Database Analysis. Am J
Ophthalmol. 165:54–64. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
van der Weyden L and Adams DJ: The
Ras-association domain family (RASSF) members and their role in
human tumourigenesis. Biochim Biophys Acta. 1776:58–85.
2007.PubMed/NCBI
|
|
24
|
Babchia N, Calipel A, Mouriaux F, Faussat
AM and Mascarelli F: The PI3K/Akt and mTOR/P70S6K signaling
pathways in human uveal melanoma cells: Interaction with B-Raf/ERK.
Invest Ophthalmol Vis Sci. 51:421–429. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rodríguez A, Dueñas-Gonzalez A and
Delgado-Pelayo S: Clinical presentation and management of uveal
melanoma. Mol Clin Oncol. 5:675–677. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ewens KG, Kanetsky PA, Richards-yutz J,
Al-Dahmash S, De Luca MC, Bianciotto CG, Shields CL and Ganguly A:
Genomic profile of 320 uveal melanoma cases: Chromosome 8p-loss and
metastatic outcome. Invest Ophthalmol Vis Sci. 54:5721–5729. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
van Gils W, Mensink HW, Kilic E, Vaarwater
J, Verbiest MM, Paridaens D, Luyten GP, de Klein A and Brüggenwirth
HT: Expression of APITD1 is not related to copy number changes of
chromosomal region 1p36 or the prognosis of uveal melanoma. Invest
Ophthalmol Vis Sci. 48:4919–4923. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
van Gils W, Kilic E, Brüggenwirth HT,
Vaarwater J, Verbiest MM, Beverloo B, van Til-Berg ME, Paridaens D,
Luyten GP and de Klein A: Regional deletion and amplification on
chromosome 6 in a uveal melanoma case without abnormalities on
chromosomes 1p, 3 and 8. Melanoma Res. 18:10–15. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Parrella P, Sidransky D and Merbs SL:
Allelotype of posterior uveal melanoma: Implications for a
bifurcated tumor progression pathway. Cancer Res. 59:3032–3037.
1999.PubMed/NCBI
|
|
30
|
Tschentscher F, Hüsing J, Hölter T, Kruse
E, Dresen IG, Jöckel KH, Anastassiou G, Schilling H, Bornfeld N,
Horsthemke B, et al: Tumor classification based on gene expression
profiling shows that uveal melanomas with and without monosomy 3
represent two distinct entities. Cancer Res. 63:2578–2584.
2003.PubMed/NCBI
|
|
31
|
Harbour JW: The genetics of uveal
melanoma: An emerging framework for targeted therapy. Pigment Cell
Melanoma Res. 25:171–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kim JW, Choi EJ and Joe CO: Activation of
death-inducing signaling complex (DISC) by pro-apoptotic C-terminal
fragment of RIP. Oncogene. 19:4491–4499. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tummers B and Green DR: Caspase-8:
Regulating life and death. Immunol Rev. 277:76–89. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wong RSY: Apoptosis in cancer: From
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang RA, Li QL, Li ZS, Zheng PJ, Zhang HZ,
Huang XF, Chi SM, Yang AG and Cui R: Apoptosis drives cancer cells
proliferate and metastasize. J Cell Mol Med. 17:205–211. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pistritto G, Trisciuoglio D, Ceci C,
Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function
and dysfunction of its modulators and targeted therapeutic
strategies. Aging (Albany NY). 8:603–619. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wiman KG: Strategies for therapeutic
targeting of the p53 pathway in cancer. Cell Death Differ.
13:921–926. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Parrish AB, Freel CD and Kornbluth S:
Cellular mechanisms controlling caspase activation and function.
Cold Spring Harb Perspect Biol. 5:52013. View Article : Google Scholar
|
|
40
|
Cancer Genome Atlas Network, . Genomic
Classification of cutaneous melanoma. Cell. 161:1681–1696. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kalinec G, Nazarali AJ, Hermouet S, Xu N
and Gutkind JS: Mutated alpha subunit of the Gq protein induces
malignant transformation in NIH 3T3 cells. Mol Cell Biol.
12:4687–4693. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Urtatiz O and Van Raamsdonk CD: Gnaq and
Gna11 in the endothelin signaling pathway and melanoma. Front
Genet. 7:592016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Croce M, Ferrini S, Pfeffer U and Gangemi
R: Targeted therapy of uveal melanoma: Recent failures and new
perspectives. Cancers (Basel). 11:8462019. View Article : Google Scholar
|
|
44
|
Rozengurt E: Mitogenic signaling pathways
induced by G protein-coupled receptors. J Cell Physiol.
213:589–602. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Landreville S, Agapova OA and Harbour JW:
Emerging insights into the molecular pathogenesis of uveal
melanoma. Future Oncol. 4:629–636. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Van Raamsdonk CD, Bezrookove V, Green G,
Bauer J, Gaugler L, O'Brien JM, Simpson EM, Barsh GS and Bastian
BC: Frequent somatic mutations of GNAQ in uveal melanoma and blue
naevi. Nature. 457:599–602. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ceraudo E, Horioka M, Mattheisen J,
Hitchman TD, Moore AR, Kazmi MA, Chi P, Chen Y, Sakmar TP and Huber
T: Uveal melanoma oncogene CYSLTR2 encodes a constitutively active
GPCR highly biased toward Gq signaling. bioRxiv. Jun 6–2019.(Epub
ahead of print). doi: org/10.1101/663153.
|
|
48
|
Chua V, Lapadula D, Randolph C, Benovic
JL, Wedegaertner PB and Aplin AE: Dysregulated GPCR signaling and
therapeutic options in uveal melanoma. Mol Cancer Res. 15:501–506.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pandiani C, Béranger GE, Leclerc J,
Ballotti R and Bertolotto C: Focus on cutaneous and uveal melanoma
specificities. Genes Dev. 31:724–743. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zenonos K and Kyprianou K: RAS signaling
pathways, mutations and their role in colorectal cancer. World J
Gastrointest Oncol. 5:97–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zuidervaart W, van Nieuwpoort F, Stark M,
Dijkman R, Packer L, Borgstein AM, Pavey S, van der Velden P, Out
C, Jager MJ, et al: Activation of the MAPK pathway is a common
event in uveal melanomas although it rarely occurs through mutation
of BRAF or RAS. Br J Cancer. 92:2032–2038. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fernández-Medarde A and Santos E: Ras in
cancer and developmental diseases. Genes Cancer. 2:344–358. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Prior IA, Lewis PD and Mattos C: A
comprehensive survey of Ras mutations in cancer. Cancer Res.
72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Muñoz-Maldonado C, Zimmer Y and Medová M:
A comparative analysis of individual RAS mutations in cancer
biology. Front Oncol. 9:10882019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mooy CM, Van der Helm MJ, Van der Kwast
TH, De Jong PT, Ruiter DJ and Zwarthoff EC: No N-ras mutations in
human uveal melanoma: The role of ultraviolet light revisited. Br J
Cancer. 64:411–413. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Soparker CN, O'Brien JM and Albert DM:
Investigation of the role of the ras protooncogene point mutation
in human uveal melanomas. Invest Ophthalmol Vis Sci. 34:2203–2209.
1993.PubMed/NCBI
|
|
57
|
Wennerberg K, Rossman KL and Der CJ: The
Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kolch W: Meaningful relationships: The
regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.
Biochem J. 351:289–305. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Castellano E and Downward J: RAS
interaction with PI3K: More than just another effector pathway.
Genes Cancer. 2:261–274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu P, Cheng H, Roberts TM and Zhao JJ:
Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev
Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
O'Donnell JS, Massi D, Teng MW and Mandala
M: PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin
Cancer Biol. 48:91–103. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Saraiva VS, Caissie AL, Segal L, Edelstein
C and Burnier MN Jr: Immunohistochemical expression of phospho-Akt
in uveal melanoma. Melanoma Res. 15:245–250. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cardone MH, Roy N, Stennicke HR, Salvesen
GS, Franke TF, Stanbridge E, Frisch S and Reed JC: Regulation of
cell death protease caspase-9 by phosphorylation. Science.
282:1318–1321. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Milella M, Falcone I, Conciatori F, Cesta
Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S,
Cognetti F, et al: PTEN: Multiple functions in human malignant
tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chang H, Cai Z and Roberts TM: The
mechanisms underlying PTEN loss in human tumors suggest potential
therapeutic opportunities. Biomolecules. 9:7132019. View Article : Google Scholar
|
|
66
|
Woodman SE: Metastatic uveal melanoma:
Biology and emerging treatments. Cancer J. 18:148–152. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Abdel-Rahman MH, Yang Y, Zhou XP, Craig
EL, Davidorf FH and Eng C: High frequency of submicroscopic
hemizygous deletion is a major mechanism of loss of expression of
PTEN in uveal melanoma. J Clin Oncol. 24:288–295. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dhillon AS, Hagan S, Rath O and Kolch W:
MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Burotto M, Chiou VL, Lee JM and Kohn EC:
The MAPK pathway across different malignancies: A new perspective.
Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cohen C, Zavala-Pompa A, Sequeira JH,
Shoji M, Sexton DG, Cotsonis G, Cerimele F, Govindarajan B, Macaron
N and Arbiser JL: Mitogen-actived protein kinase activation is an
early event in melanoma progression. Clin Cancer Res. 8:3728–3733.
2002.PubMed/NCBI
|
|
71
|
Leicht DT, Balan V, Kaplun A, Singh-Gupta
V, Kaplun L, Dobson M and Tzivion G: Raf kinases: Function,
regulation and role in human cancer. Biochim Biophys Acta.
1773:1196–1212. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Barras D: BRAF mutation in colorectal
cancer: An update. Biomark Cancer. 7 (Suppl 1):9–12.
2015.PubMed/NCBI
|
|
73
|
Zaman A, Wu W and Bivona TG: Targeting
oncogenic BRAF: Past, present, and future. Cancers (Basel).
11:11972019. View Article : Google Scholar
|
|
74
|
Gaudi S and Messina JL: Molecular bases of
cutaneous and uveal melanomas. Pathol Res Int. 2011:1594212011.
View Article : Google Scholar
|
|
75
|
Glitza IC and Davies MA: Genotyping of
cutaneous melanoma. Chin Clin Oncol. 3:272014.PubMed/NCBI
|
|
76
|
Brose MS, Volpe P, Feldman M, Kumar M,
Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et
al: Mutations in Human Lung Cancer and Melanoma. Cancer Res.
62:6997–7000. 2002.PubMed/NCBI
|
|
77
|
Shinozaki M, Fujimoto A, Morton DL and
Hoon DS: Incidence of BRAF oncogene mutation and clinical relevance
for primary cutaneous melanomas. Clin Cancer Res. 10:1753–1757.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Harbour JW: Genomic, prognostic, and
cell-signaling advances in uveal melanoma. Am Soc Clin Oncol Educ
book Am Soc Clin Oncol Annu Meet. 2013:388–391. 2013. View Article : Google Scholar
|
|
79
|
Mooy CM, Luyten GP, de Jong PT, Luider TM,
Stijnen T, van de Ham F, van Vroonhoven CC and Bosman FT:
Immunohistochemical and prognostic analysis of apoptosis and
proliferation in uveal melanoma. Am J Pathol. 147:1097–1104.
1995.PubMed/NCBI
|
|
80
|
Merhavi E, Cohen Y, Avraham BC, Frenkel S,
Chowers I, Pe'er J and Goldenberg-Cohen N: Promoter methylation
status of multiple genes in uveal melanoma. Invest Ophthalmol Vis
Sci. 48:4403–4406. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shivakumar L, Minna J, Sakamaki T, Pestell
R and White MA: The RASSF1A tumor suppressor blocks cell cycle
progression and inhibits cyclin D1 accumulation. Mol Cell Biol.
22:4309–4318. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kiliç E, Brüggenwirth HT, Verbiest MM,
Zwarthoff EC, Mooy NM, Luyten GP and de Klein A: The RAS-BRAF
kinase pathway is not involved in uveal melanoma. Melanoma Res.
14:203–205. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Helgadottir H and Höiom V: The genetics of
uveal melanoma: Current insights. Appl Clin Genet. 9:147–155. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu H, Du S, Lei T, Wang H, He X, Tong R
and Wang Y: Multifaceted regulation and functions of YAP/TAZ in
tumors (Review). Oncol Rep. 40:16–28. 2018.PubMed/NCBI
|
|
85
|
Meng Z, Moroishi T and Guan KL: Mechanisms
of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Plouffe SW, Hong AW and Guan KL: Disease
implications of the Hippo/YAP pathway. Trends Mol Med. 21:212–222.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Totaro A, Panciera T and Piccolo S:
YAP/TAZ upstream signals and downstream responses. Nat Cell Biol.
20:888–899. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gumbiner BM and Kim NG: The Hippo-YAP
signaling pathway and contact inhibition of growth. J Cell Sci.
127:709–717. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Field MG and Harbour JW: GNAQ/11 mutations
in uveal melanoma: Is YAP the key to targeted therapy? Cancer Cell.
25:714–715. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Feng X, Degese MS, Iglesias-Bartolome R,
Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino
G, Sodhi A, et al: Hippo-independent activation of YAP by the GNAQ
uveal melanoma oncogene through a trio-regulated rho GTPase
signaling circuitry. Cancer Cell. 25:831–845. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Warren JS, Xiao Y and Lamar JM: YAP/TAZ
activation as a target for treating metastatic Cancer. Cancers
(Basel). 10:102018. View Article : Google Scholar
|
|
92
|
Zanconato F, Battilana G, Cordenonsi M and
Piccolo S: YAP/TAZ as therapeutic targets in cancer. Curr Opin
Pharmacol. 29:26–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Moroishi T, Hansen CG and Guan KL: The
emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 15:73–79.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Feng X, Rigiracciolo D, Lee JS, Yeerna H,
Arang N, Lubrano S, Schlaepfer DD, Tamayo P, Ruppin E and Gutkind
JS: Abstract 968: Targeting FAK inhibits YAP-dependent tumor growth
in uveal melanoma. Cancer Res. 78:9682018.
|
|
95
|
Liu H and Zhou M: Evaluation of p53 gene
expression and prognosis characteristics in uveal melanoma cases.
OncoTargets Ther. 10:3429–3434. 2017. View Article : Google Scholar
|
|
96
|
Hajkova N, Hojny J, Nemejcova K, Dundr P,
Ulrych J, Jirsova K, Glezgova J and Ticha I: Germline mutation in
the TP53 gene in uveal melanoma. Sci Rep. 8:76182018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sun Y, Tran BN, Worley LA, Delston RB and
Harbour JW: Functional analysis of the p53 pathway in response to
ionizing radiation in uveal melanoma. Invest Ophthalmol Vis Sci.
46:1561–1564. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shi D and Gu W: Dual Roles of MDM2 in the
regulation of p53: Ubiquitination dependent and ubiquitination
independent mechanisms of MDM2 tepression of p53 sctivity. Genes
Cancer. 3:240–248. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hussein MR: The relationships between p53
protein expression and the clinicopathological features in the
uveal melanomas. Cancer Biol Ther. 4:57–59. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Evan GI, Wyllie AH, Gilbert CS, Littlewood
TD, Land H, Brooks M, Waters CM, Penn LZ and Hancock DC: Induction
of apoptosis in fibroblasts by c-myc protein. Cell. 69:119–128.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Schwartz LH, Ferrand R, Boelle PY, Maylin
C and D'Hermies F, Virmont J and D'Hermies F: Lack of correlation
between the location of choroidal melanoma and
ultraviolet-radiation dose distribution. Radiat Res. 147:451–456.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lim S and Kaldis P: Cdks, cyclins and
CKIs: roles beyond cell cycle regulation. Development.
140:3079–3093, 20132. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao
H, Yu M, Lin J and Cui Q: The roles of cyclin-dependent kinases in
cell-cycle progression and therapeutic strategies in human breast
cancer. Int J Mol Sci. 21:19602020. View Article : Google Scholar
|
|
104
|
Ando K, Ajchenbaum-Cymbalista F and
Griffin JD: Regulation of G1/S transition by cyclins D2 and D3 in
hematopoietic cells. Proc Natl Acad Sci USA. 90:9571–9575. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bartkova J, Lukas J, Strauss M and Bartek
J: Cyclin D3: Requirement for G1/S transition and high abundance in
quiescent tissues suggest a dual role in proliferation and
differentiation. Oncogene. 17:1027–1037. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bonelli P, Tuccillo FM, Borrelli A,
Schiattarella A and Buonaguro FM: CDK/CCN and CDKI alterations for
cancer prognosis and therapeutic predictivity. BioMed Res Int.
2014:3610202014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li J, Poi MJ and Tsai MD: Regulatory
mechanisms of tumor suppressor P16(INK4A) and their relevance to
cancer. Biochemistry. 50:5566–5582. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
McConnell BB, Gregory FJ, Stott FJ, Hara E
and Peters G: Induced expression of p16(INK4a) inhibits both CDK4-
and CDK2-associated kinase activity by reassortment of
cyclin-CDK-inhibitor complexes. Mol Cell Biol. 19:1981–1989. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Satyanarayana A and Rudolph KL: p16 and
ARF: Activation of teenage proteins in old age. J Clin Invest.
114:1237–1240. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Macleod KF, Sherry N, Hannon G, Beach D,
Tokino T, Kinzler K, Vogelstein B and Jacks T: p53-dependent and
independent expression of p21 during cell growth, differentiation,
and DNA damage. Genes Dev. 9:935–944. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Mouriaux F, Maurage CA, Labalette P,
Sablonnière B, Malecaze F and Darbon JM: Cyclin-dependent kinase
inhibitory protein expression in human choroidal melanoma tumors.
Invest Ophthalmol Vis Sci. 41:2837–2843. 2000.PubMed/NCBI
|
|
112
|
Abbas T and Dutta A: p21 in cancer:
Intricate networks and multiple activities. Nat Rev Cancer.
9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Abukhdeir AM and Park BH: P21 and p27:
Roles in carcinogenesis and drug resistance. Expert Rev Mol Med.
10:e192008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Blain SW, Scher HI, Cordon-Cardo C and
Koff A: p27 as a target for cancer therapeutics. Cancer Cell.
3:111–115. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Mouriaux F, Casagrande F, Pillaire MJ,
Manenti S, Malecaze F and Darbon JM: Differential expression of G1
cyclins and cyclin-dependent kinase inhibitors in normal and
transformed melanocytes. Invest Ophthalmol Vis Sci. 39:876–884.
1998.PubMed/NCBI
|
|
116
|
Narasimha AM, Kaulich M, Shapiro GS, Choi
YJ, Sicinski P and Dowdy SF: Cyclin D activates the Rb tumor
suppressor by mono-phosphorylation. eLife. 3:e028722014. View Article : Google Scholar
|
|
117
|
Rayess H, Wang MB and Srivatsan ES:
Cellular senescence and tumor suppressor gene p16. Int J Cancer.
130:1715–1725. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Nagarkatti-Gude N, Wang Y, Ali MJ, Honavar
SG, Jager MJ and Chan CC: Genetics of primary intraocular tumors.
Ocul Immunol Inflamm. 20:244–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Bartek J, Bartkova J and Lukas J: The
retinoblastoma protein pathway in cell cycle control and cancer.
Exp Cell Res. 237:1–6. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Brantley MA Jr and Harbour JW:
Inactivation of retinoblastoma protein in uveal melanoma by
phosphorylation of sites in the COOH-terminal region. Cancer Res.
60:4320–4323. 2000.PubMed/NCBI
|
|
121
|
Pollock PM, Harper UL, Hansen KS, Yudt LM,
Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J,
et al: High frequency of BRAF mutations in nevi. Nat Genet.
33:19–20. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
122
|
Hollern DP, Honeysett J, Cardiff RD and
Andrechek ER: The E2F transcription factors regulate tumor
development and metastasis in a mouse model of metastatic breast
cancer. Mol Cell Biol. 34:3229–3243. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Timmers C, Sharma N, Opavsky R, Maiti B,
Wu L, Wu J, Orringer D, Trikha P, Saavedra HI and Leone G: E2f1,
E2f2, and E2f3 control E2F target expression and cellular
proliferation via a p53-dependent negative feedback loop. Mol Cell
Biol. 27:65–78. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lundberg AS and Weinberg RA: Functional
inactivation of the retinoblastoma protein requires sequential
modification by at least two distinct cyclin-cdk complexes. Mol
Cell Biol. 18:753–761. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Calipel A, Abonnet V, Nicole O, Mascarelli
F, Coupland SE, Damato B and Mouriaux F: Status of RASSF1A in uveal
melanocytes and melanoma cells. Mol Cancer Res. 9:1187–1198. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Yang ZK, Yang JY, Xu ZZ and Yu WH: DNA
Methylation and Uveal Melanoma. Chin Med J (Engl). 131:845–851.
2018. View Article : Google Scholar : PubMed/NCBI
|