|
1
|
Lam S, Chari R, Lockwood W, Lam W,
MacAulay C, Sin D, Gazdar A, Khoury J, Yao RS and You M: Progress
in lung cancer chemoprevention. Cancer Epidem Biomar. 4:46–52.
2006.
|
|
2
|
Wang P, Yang D, Zhang H, Wei X, Ma T,
Cheng Z, Hong Q, Hu J, Zhou H, Song Y, et al: Early detection of
lung cancer in serum by a panel of microRNA biomarkers. Clin Lung
Cancer. 16:313–319.e1. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhu X, Li H, Long L, Hui L, Chen H, Wang
X, Shen H and Xu W: MiR-126 enhances the sensitivity of non-small
cell lung cancer cells to anticancer agents by targeting vascular
endothelial growth factor A. Acta Biochim Biophys Sin (Shanghai).
44:519–526. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Latronico MV, Catalucci D and Condorelli
G: Emerging role of microRNAs in cardiovascular biology. Circ Res.
101:1225–1236. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang C: MicroRNomics: A newly emerging
approach for disease biology. Physiol Genomics. 33:139–147. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Peng Y, Chao FF, Cai YP, Teng W and Qiu
CG: MiR-126 inhibits the proliferation of myocardial fibroblasts by
regulating EGFL7-mediated EGFR signal pathway. Int J Clin Exp Med.
10:6158–6166. 2017.
|
|
7
|
Liu F, Zhang H, Lu S, Wu Z, Zhou L, Cheng
Z, Bai Y, Zhao J, Zhang Q and Mao H: Quantitative assessment of
gene promoter methylation in non-small cell lung cancer using
methylation-sensitive high-resolution melting. Oncol Lett.
15:7639–7648. 2018.PubMed/NCBI
|
|
8
|
Saito Y, Friedman JM, Chihara Y, Egger G,
Chuang JC and Liang G: Epigenetic therapy upregulates the tumor
suppressor microRNA-126 and its host gene EGFL7 in human cancer
cells. Biochem Biophys Res Commun. 379:726–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wei L, Chen Z, Cheng N, Li X, Chen J, Wu
D, Dong M and Wu X: MicroRNA-126 inhibit viability of colorectal
cancer cell by repressing mTOR induced apoptosis and autophagy.
Onco Targets Ther. 13:2459–2468. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Song L, Li D, Gu Y, Wen ZM, Jie J, Zhao D
and Peng LP: MicroRNA-126 targeting PIK3R2 inhibits NSCLC A549 cell
proliferation, migration, and invasion by regulation of
PTEN/PI3K/AKT pathway. Clin Lung Cancer. 17:e65–e75. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Świtlik WZ, Karbownik MS, Suwalski M,
Kozak J and Szemraj J: Serum miR-210-3p as a potential noninvasive
biomarker of lung adenocarcinoma: A preliminary study. Genet Test
Mol Biomarkers. 23:353–358. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Świtlik W, Karbownik MS, Suwalski M, Kozak
J and Szemraj J: MiR-30a-5p together with miR-210-3p as a promising
biomarker for non-small cell lung cancer: A preliminary study.
Cancer Biomark. 21:479–488. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zheng W, Zhou Y, Lu J, Xu H, Lei L, Chen
C, Zhao J and Xu L: The prognostic value of miR-126 expression in
non-small-cell lung cancer: A meta-analysis. Cancer Cell Int.
17:712017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kim JE, Eom JS, Kim WY, Jo EJ, Mok J, Lee
K, Kim KU, Park HK, Lee MK and Kim MH: Diagnostic value of
microRNAs derived from exosomes in bronchoalveolar lavage fluid of
early-stage lung adenocarcinoma: A pilot study. Thorac Cancer.
9:911–915. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen P, Gu YY, Ma FC, He RQ, Li ZY, Zhai
GQ, Lin X, Hu XH, Pan LJ and Chen G: Expression levels and
co-targets of miRNA-126-3p and miRNA-126-5p in lung adenocarcinoma
tissues: An exploration with RT-qPCR, microarray and bioinformatic
analyses. Oncol Rep. 41:939–953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang Z, Wang J, Cheng J and Yu X: Effects
of miR-126 on the STAT3 signaling pathway and the regulation of
malignant behavior in lung cancer cells. Oncol Lett. 15:8412–8416.
2018.PubMed/NCBI
|
|
17
|
Shi H, Bi H, Sun X, Dong H, Jiang Y, Mu H,
Liu G, Kong W, Gao R and Su J: Antitumor effects of Tubeimoside-1
in NCI-H1299 cells are mediated by microRNA-126-5p-induced
inactivation of VEGF-A/VEGFR-2/ERK signaling pathway. Mol Med Rep.
17:4327–4336. 2018.PubMed/NCBI
|
|
18
|
Chen M, Peng W, Hu S and Deng J:
MiR-126/VCAM-1 regulation by naringin suppresses cell growth of
human non-small cell lung cancer. Oncol Lett. 16:4754–4760.
2018.PubMed/NCBI
|
|
19
|
Song F, Xuan Z, Yang X, Ye X, Pan Z and
Fang Q: Identification of key microRNAs and hub genes in
non-small-cell lung cancer using integrative bioinformatics and
functional analyses. J Cell Biochem. 121:2690–2703. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu R, Zhang YS, Zhang S, Cheng ZM, Yu JL,
Zhou S and Song J: MiR-126-3p suppresses the growth, migration and
invasion of NSCLC via targeting CCR1. Eur Rev Med Pharmacol Sci.
23:679–689. 2019.PubMed/NCBI
|
|
21
|
Wang J, Ding M, Zhu H, Cao Y and Zhao W:
Up-regulation of long noncoding RNA MINCR promotes non-small cell
of lung cancer growth by negatively regulating miR-126/SLC7A5 axis.
Biochem Biophys Res Commun. 508:780–784. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Crawford M, Brawner E, Batte K, Yu L,
Hunter MG, Otterson GA, Nuovo G, Marsh CB and Nana-Sinkam SP:
MicroRNA-126 inhibits invasion in non-small cell lung carcinoma
cell lines. Biochem Biophys Res Commun. 373:607–612. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Saintigny P, Ren H, Zou XC and Mao L:
MicroRNA (miRNA) species differentially expressed between
immortalized normal bronchial epithelial cells and non-small cell
lung. Cancer Res. 373:607–612. 2008.
|
|
24
|
Song L, Li XX, Liu XY, Wang Z, Yu Y, Shi
M, Jiang B and He XP: EFEMP2 suppresses the invasion of lung cancer
cells by inhibiting epithelial-mesenchymal transition (EMT) and
down-regulating MMPs. Onco Targets Ther. 13:1375–1396. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen J, Tong W, Liao M and Chen D:
Inhibition of arachidonate lipoxygenase12 targets lung cancer
through inhibiting EMT and suppressing RhoA and NF-κB activity.
Biochem Biophys Res Commun. 524:803–809. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tao L, Shu-Ling W, Jing-Bo H, Ying Z, Rong
H, Xiang-Qun L, Wen-Jie C and Lin-Fu Z: MiR-451a attenuates
doxorubicin resistance in lung cancer via suppressing epithelial
mesenchymal transition (EMT) through targeting c-Myc. Biomed
Pharmacother. 125:1099622020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jia Z, Zhang Y, Xu Q, Guo W and Guo A:
MiR-126 suppresses epithelial-to-mesenchymal transition and
metastasis by targeting PI3K/AKT/Snail signaling of lung cancer
cells. Oncol Lett. 15:7369–7375. 2018.PubMed/NCBI
|
|
28
|
Yang X, Chen BB, Zhang MH and Wang XR:
MicroRNA-126 inhibits the proliferation of lung cancer cell line
A549. Asian Pac J Trop Med. 8:239–242. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ren G and Kang Y: A one-two punch of
miR-126/126* against metastasis. Nat Cell Biol. 15:231–233. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang Z, Lu B, Sun L, Yan X and Xu J:
Identification of candidate genes or microRNAs associated with the
lymph node metastasis of SCLC. Cancer Cell Int. 18:1612018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang J, Chen J, Guo Y, Wang B and Chu H:
Strategies targeting angiogenesis in advanced non-small cell lung
cancer. Oncotarget. 8:53854–53872. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li FJ, Huang J, Ji D, Meng Q, Wang C, Chen
S, Wang X, Zhu Z, Jiang C, Shi Y, et al: Azithromycin effectively
inhibits tumor angiogenesis by suppressing vascular endothelial
growth factor receptor 2-mediated signaling pathways in lung
cancer. Oncol Lett. 14:89–96. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lauridant G, Kotecki N, Pannier D and
Dansin E: The role of angiogenesis inhibitors in the treatment of
lung cancer. Oncologie. 18:409–418. 2016. View Article : Google Scholar
|
|
34
|
Tian RH, Wu X, Liu X, Yang JW, Ji HL and
Yan YJ: The role of angiogenesis inhibitors in the treatment of
elderly patients with advanced non-small-cell lung cancer: A
meta-analysis of eleven randomized controlled trials. J Cancer Res
Ther. 12:571–575. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The
endothelial-specific microRNA miR-126 governs vascular integrity
and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hong G, Kuek V, Shi J, Zhou L, Han X, He
W, Tickner J, Qiu H, Wei Q and Xu J: EGFL7: Master regulator of
cancer pathogenesis, angiogenesis and an emerging mediator of bone
homeostasis. J Cell Physiol. 233:8526–8537. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Johnson L, Huseni M, Smyczek T, Lima A,
Yeung S, Cheng JH, Molina R, Kan D, De Mazière A, Klumperman J, et
al: Anti-EGFL7 antibodies enhance stress-induced endothelial cell
death and anti-VEGF efficacy. J Clin Invest. 123:3997–4009. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Usuba R, Pauty J, Soncin F and Matsunaga
YT: EGFL7 regulates sprouting angiogenesis and endothelial
integrity in a human blood vessel model. Biomaterials. 197:305–316.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Monaco F, Gaetani S, Alessandrini F,
Tagliabracci A, Bracci M, Valentino M, Neuzil J, Amati M, Bovenzi
M, Tomasetti M and Santarelli L: Exosomal transfer of miR-126
promotes the anti-tumour response in malignant mesothelioma: Role
of miR-126 in cancer-stroma communication. Cancer Lett. 463:27–36.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sun Y, Bai Y, Zhang F, Wang Y, Guo Y and
Guo L: MiR-126 inhibits non-small cell lung cancer cells
proliferation by targeting EGFL7. Biochem Biophys Res Commun.
391:1483–1489. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shen X, Zhi Q, Wang Y, Li Z, Zhou J and
Huang J: Hypoxia induces multidrug resistance via enhancement of
epidermal growth Factor-like domain 7 expression in non-small lung
cancer cells. Chemotherapy. 62:172–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Caporali S, Amaro A, Levati L, Alvino E,
Lacal PM, Mastroeni S, Ruffini F, Bonmassar L, Antonini Cappellini
GC, Felli N, et al: MiR-126-3p down-regulation contributes to
dabrafenib acquired resistance in melanoma by up-regulating ADAM9
and VEGF-A. J Exp Clin Cancer Res. 38:2722019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Di Martino S, Acierno C and Licito A:
Experimental study on the prevention of liver cancer angiogenesis
via miR-126. Promising results for targeted therapy. Eur Rev Med
Pharmacol Sci. 22:853–855. 2018.PubMed/NCBI
|
|
44
|
Pishavar E and Behravan J: MiR-126 as a
therapeutic agent for diabetes mellitus. Curr Pharm Des.
23:3309–3314. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou F, Jia X, Yang Y, Yang Q, Gao C, Hu
S, Zhao Y, Fan Y and Yuan X: Nanofiber-mediated microRNA-126
delivery to vascular endothelial cells for blood vessel
regeneration. Acta Biomater. 43:303–313. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dong G, Lin XH, Liu HH, Gao DM, Cui JF,
Ren ZG and Chen RX: Intermittent hypoxia alleviates increased VEGF
and Pro-angiogenic potential in liver cancer cells. Oncol Lett.
18:1831–1839. 2019.PubMed/NCBI
|
|
47
|
Gu C, Zou S, He C, Zhou J, Qu R, Wang Q,
Qi J, Zhou M, Yan S and Ye Z: Long non-coding RNA CCAT1 promotes
colorectal cancer cell migration, invasiveness and viability by
upregulating VEGF via negative modulation of microRNA-218. Exp Ther
Med. 19:2543–2550. 2020.PubMed/NCBI
|
|
48
|
Yoon NA, Jung SJ, Choi SH, Ryu JH, Mani M,
Lee UH, Vo MT, Jeon DY, Chung SW, Ju Lee B, et al: DRG2 supports
the growth of primary tumors and metastases of melanoma by
enhancing VEGF-A expression. FEBS J. 287:2070–2086. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Boudria A, Abou Faycal C, Jia T, Gout S,
Keramidas M, Didier C, Lemaître N, Manet S, Coll JL, Toffart AC, et
al: VEGF165b, a splice variant of VEGF-A, promotes lung
tumor progression and escape from anti-angiogenic therapies through
a β1 integrin/VEGFR autocrine loop. Oncogene. 38:1050–1066. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fish JE, Santoro MM, Morton SU, Yu S, Yeh
RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY and Srivastava D:
MiR-126 regulates angiogenic signaling and vascular integrity. Dev
Cell. 15:272–284. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Qu Y, Wu J, Deng JX, Zhang YP, Liang WY,
Jiang ZL, Yu QH and Li J: MicroRNA-126 affects rheumatoid arthritis
synovial fibroblast proliferation and apoptosis by targeting PIK3R2
and regulating PI3K-AKT signal pathway. Oncotarget. 7:74217–74226.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ye L, Peng Y, Mo J and Yao Y: MiR-126
enhances VEGF expression in induced pluripotent stem cell-derived
retinal neural stem cells by targeting spred-1. Int J Clin Exp
Pathol. 11:1023–1030. 2018.PubMed/NCBI
|
|
53
|
Yücel EI and Sahin M: Fenretinide reduces
angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and
suppressing microRNA-10b. Mol Biol Rep. 47:1649–1658. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu X, Tufman A, Behr J, Kiefl R, Goldmann
T and Huber RM: Role of the erythropoietin receptor in lung cancer
cells: Erythropoietin exhibits angiogenic potential. J Cancer.
11:6090–6100. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shang AQ, Xie YN, Wang J, Sun L, Wei J, Lu
WY, Lan JY, Wang WW, Wang L and Wang LL: Predicative values of
serum microRNA-22 and microRNA-126 levels for non-small cell lung
cancer development and metastasis: A case-control study. Neoplasma.
64:453–459. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang Y, Hu Z, Zhou Y, Zhao G, Lei Y, Li G,
Chen S, Chen K, Shen Z, Chen X, et al: The clinical use of
circulating microRNAs as non-invasive diagnostic biomarkers for
lung cancers. Oncotarget. 8:90197–90214. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Santarelli L, Gaetani S, Monaco F, Bracci
M, Valentino M, Amati M, Rubini C, Sabbatini A, Pasquini E, Zanotta
N, et al: Four-miRNA signature to identify asbestos-related lung
malignancies. Cancer Epidemiol Biomarkers Prev. 28:119–126. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wu Q, Yu L, Lin X, Zheng Q, Zhang S, Chen
D, Pan X and Huang Y: Combination of serum miRNAs with serum
exosomal miRNAs in early diagnosis for non-small-cell lung cancer.
Cancer Manag Res. 12:485–495. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhu W, Zhou K, Zha Y, Chen D, He J, Ma H,
Liu X, Le H and Zhang Y: Diagnostic value of serum miR-182,
miR-183, miR-210, and miR-126 levels in patients with early-stage
non-small cell lung cancer. PLoS One. 11:e01530462016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang W, Ding M, Duan X, Feng X, Wang P,
Jiang Q, Cheng Z, Zhang W, Yu S, Yao W, et al: Diagnostic value of
plasma microRNAs for lung cancer using support vector machine
model. J Cancer. 10:5090–5098. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bagheri A, Khorshid HRK, Tavallaie M,
Mowla SJ, Sherafatian M, Rashidi M, Zargari M, Boroujeni ME and
Hosseini SM: A panel of noncoding RNAs in non-small-cell lung
cancer. J Cell Biochem. Nov;28.2018.doi: 10.1002/jcb.28111 (Epub
ahead of print).
|
|
62
|
Kim MH, Jo EJ, Eom JS, Mok JH, Ki KL, Kim
U, Park HK and Lee MK: Diagnostic value of microRNAs derived
exosomes from bronchoalveolar lavage fluid in early stage lung
adenocarcinoma. Chest. 150:703A2016. View Article : Google Scholar
|
|
63
|
Ulivi P, Petracci E, Marisi G, Baglivo S,
Chiari R, Billi M, Canale M, Pasini L, Racanicchi S, Vagheggini A,
et al: Prognostic role of circulating miRNAs in early-stage
non-small cell lung cancer. J Clin Med. 8:1312019. View Article : Google Scholar
|
|
64
|
Chen SW, Wang TB, Tian YH and Zheng YG:
Down-regulation of microRNA-126 and microRNA-133b acts as novel
predictor biomarkers in progression and metastasis of non small
cell lung cancer. Int J Clin Exp Pathol. 8:14983–14988.
2015.PubMed/NCBI
|
|
65
|
Donnem T, Lonvik K, Eklo K, Berg T, Sorbye
SW, Al-Shibli K, Al-Saad S, Andersen S, Stenvold H, Bremnes RM and
Busund LT: Independent and tissue-specific prognostic impact of
miR-126 in nonsmall cell lung cancer: Coexpression with vascular
endothelial growth factor-A predict poor survival. Cancer.
117:3193–3200. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xu X, Zhu S, Tao Z and Ye S: High
circulating miR-18a, miR-20a, and miR-92a expression correlates
with poor prognosis in patients with Non-small cell lung cancer.
Cancer Med. 7:21–31. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kim MK, Jung SB, Kim JS, Roh MS, Lee JH,
Lee EH and Lee HW: Expression of microRNA miR-126 and miR-200c is
associated with prognosis in patients with non-small cell lung
cancer. Virchows Arch. 465:463–471. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jusufovic E, Rijavec M, Keser D, Korošec
P, Sodja E, Iljazović E, Radojević Z and Košnik M: Let-7b and
miR-126 are down-regulated in tumor tissue and correlate with
microvessel density and survival outcomes in non-small-cell lung
cancer. PLoS One. 7:e455772012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lønvik K, Sørbye SW, Nilsen MN and
Paulssen RH: Prognostic value of the MicroRNA regulators Dicer and
Drosha in non-small-cell lung cancer: Co-expression of Drosha and
miR-126 predicts poor survival. BMC Clin Pathol. 14:452014.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shi H, Bi H, Sun X, Dong H, Jiang Y, Mu H,
Li W, Liu G, Gao R and Su J: Tubeimoside-1 inhibits the
proliferation and metastasis by promoting miR-126-5p expression in
non-small cell lung cancer cells. Oncol Lett. 16:3126–3134.
2018.PubMed/NCBI
|
|
71
|
Rai MK, Goyal R, Bhutani MK, Kaneria J,
Mahendru K and Sharma N: Efficacy and safety profile of combined
targeted therapy against Egfr and Vegf in patients with previously
treated advanced non-small-cell lung cancer: A systematic review
and meta-analysis. Value Health. 18:A4302015. View Article : Google Scholar
|
|
72
|
Yin W, Zhu J, Gonzalez-Rivas D, Okumura M,
Rocco G, Pass H, Jiang G and Yang Y: Construction of a novel
bispecific antibody to enhance antitumor activity against lung
cancer. Adv Mater. 30:e18054372018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Leung DW, Cachianes G, Kuang WJ, Goeddel
DV and Ferrara N: Vascular endothelial growth factor is a secreted
angiogenic mitogen. Science. 246:1306–1309. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sheikh AM, Yano S, Mitaki S, Haque MA,
Yamaguchi S and Nagai A: A Mesenchymal stem cell line (B10)
increases angiogenesis in a rat MCAO model. Exp Neurol.
311:182–193. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kong Z, Hong Y, Zhu J, Cheng X and Liu Y:
Endothelial progenitor cells improve functional recovery in focal
cerebral ischemia of rat by promoting angiogenesis via VEGF. J Clin
Neurosci. 55:116–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ruan W, Zhao F, Zhao S, Zhang L, Shi L and
Pang T: Knockdown of long noncoding RNA MEG3 impairs
VEGF-stimulated endothelial sprouting angiogenesis via modulating
VEGFR2 expression in human umbilical vein endothelial cells. Gene.
649:32–39. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Melincovici CS, Boşca AB, Şuşman S,
Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM:
Vascular endothelial growth factor (VEGF)-key factor in normal and
pathological angiogenesis. Rom J Morphol Embryol. 59:455–467.
2018.PubMed/NCBI
|
|
78
|
Li L, Liu H, Xu C, Deng M, Song M, Yu X,
Xu S and Zhao X: VEGF promotes endothelial progenitor cell
differentiation and vascular repair through connexin 43. Stem Cell
Res Ther. 8:2372017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Long L, Zhang X, Bai J, Li Y, Wang X and
Zhou Y: Tissue-specific and exosomal miRNAs in lung cancer
radiotherapy: From regulatory mechanisms to clinical implications.
Cancer Manag Res. 11:4413–4424. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang XC, Du LQ, Tian LL, Wu HL, Jiang XY,
Zhang H, Li DG, Wang YY, Wu HY, She Y, et al: Expression and
function of miRNA in postoperative radiotherapy sensitive and
resistant patients of non-small cell lung cancer. Lung Cancer.
72:92–99. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li H, Chen S, Liu J, Guo X, Xiang X, Dong
T, Ran P, Li Q, Zhu B, Zhang X, et al: Long non-coding RNA PVT1-5
promotes cell proliferation by regulating miR-126/SLC7A5 axis in
lung cancer. Biochem Biophys Res Commun. 495:2350–2355. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Fortunato O, Gasparini P, Boeri M and
Sozzi G: Exo-miRNAs as a new tool for liquid biopsy in lung cancer.
Cancers (Basel). 11:8882019. View Article : Google Scholar
|
|
83
|
Kibria G, Ramos EK, Wan Y, Gius DR and Liu
H: Exosomes as a drug delivery system in cancer therapy: Potential
and challenges. Mol Pharm. 15:3625–3633. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kobayashi M, Sawada K, Miyamoto M, Shimizu
A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto
K and Kimura T: Exploring the potential of engineered exosomes as
delivery systems for tumor-suppressor microRNA replacement therapy
in ovarian cancer. Biochem Biophys Res Commun. 527:153–161. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nie H, Xie X, Zhang D, Zhou Y, Li B, Li F,
Li F, Cheng Y, Mei H, Meng H and Jia L: Use of lung-specific
exosomes for miRNA-126 delivery in non-small cell lung cancer.
Nanoscale. 12:877–887. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Qi P, Li Y, Liu X, Jafari FA, Zhang X, Sun
Q and Ma Z: Cryptotanshinone suppresses non-Small cell lung cancer
via microRNA-146a-5p/EGFR Axis. Int J Biol Sci. 15:1072–1079. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang H, Zhang Y, Zhang Y, Liu W and Wang
J: Cryptotanshinone inhibits lung cancer invasion via
microRNA-133a/matrix metalloproteinase 14 regulation. Oncol Lett.
18:2554–2559. 2019.PubMed/NCBI
|
|
88
|
Hu X, Zhang F, Liu XR, Wu YT and Ni YM:
Efficacy and potential MicroRNA mechanism for computed
tomography-guided percutaneous radiofrequency ablation of primary
lung cancer and lung metastasis from liver cancer. Cell Physiol
Biochem. 33:1261–1271. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Barshack I, Meiri E, Rosenwald S, Lebanony
D, Bronfeld M, Aviel-Ronen S, Rosenblatt K, Polak-Charcon S,
Leizerman I, Ezagouri M, et al: Differential diagnosis of
hepatocellular carcinoma from metastatic tumors in the liver using
microRNA expression. Int J Biochem Cell Bio. 42:1355–1362. 2010.
View Article : Google Scholar
|
|
90
|
Tafsiri E, Darbouy M, Shadmehr MB,
Zagryazhskaya A, Alizadeh J and Karimipoor M: Expression of miRNAs
in non-small-cell lung carcinomas and their association with
clinicopathological features. Tumour Biol. 36:1603–1612. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen Q, Hu H, Jiao D, Yan J, Xu W, Tang X,
Chen J and Wang J: MiR-126-3p and miR-451a correlate with
clinicopathological features of lung adenocarcinoma: The underlying
molecular mechanisms. Oncol Rep. 36:909–917. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kontarakis Z, Rossi A, Ramas S, Dellinger
MT and Stainier DYR: Mir-126 is a conserved modulator of lymphatic
development. Dev Biol. 437:120–130. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Agudo J, Ruzo A, Tung N, Salmon H, Leboeuf
M, Hashimoto D, Becker C, Garrett-Sinha LA, Baccarini A, Merad M
and Brown BD: The miR-126-VEGFR2 axis controls the innate response
to pathogen-associated nucleic acids. Nat Immunol. 15:54–62. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ferretti C and La Cava A: MiR-126, a new
modulator of innate immunity. Cell Mol Immunol. 11:215–217. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Peng J, Yu Z, Xue L, Wang JB, Li J, Liu D,
Yang Q and Lin Y: The effect of foxp3-overexpressing Treg cells on
non-small cell lung cancer cells. Mol Med Rep. 17:5860–5868.
2018.PubMed/NCBI
|
|
96
|
Qin A, Wen Z, Zhou Y, Li Y, Li Y, Luo J,
Ren T and Xu L: MicroRNA-126 regulates the induction and function
of CD4(+) Foxp3(+) regulatory T cells through PI3K/AKT pathway. J
Cell Mol Med. 17:252–264. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chu F, Hu Y, Zhou Y, Guo M, Lu J, Zheng W,
Xu H, Zhao J and Xu L: MicroRNA-126 deficiency enhanced the
activation and function of CD4+T cells by elevating
IRS-1 pathway. Clin Exp Immunol. 191:166–179. 2018. View Article : Google Scholar : PubMed/NCBI
|