|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen WQ, Li H, Sun KX, Zheng RS, Zhang SW,
Zeng HM, Zou XN, Gu XY and He J: Report of cancer incidence and
mortality in China, 2014. Zhonghua Zhong Liu Za Zhi. 40:5–13.
2018.(In Chinese). PubMed/NCBI
|
|
3
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Islami F, Goding Sauer A, Miller KD,
Siegel RL, Fedewa SA, Jacobs EJ, McCullough ML, Patel AV, Ma J,
Soerjomataram I, et al: Proportion and number of cancer cases and
deaths attributable to potentially modifiable risk factors in the
United States. CA Cancer J Clin. 68:31–54. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Khan M, Maryam A, Qazi JI and Ma T:
Targeting apoptosis and multiple signaling pathways with icariside
II in cancer cells. Int J Biol Sci. 11:1100–1112. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Millimouno FM, Dong J, Yang L, Li J and Li
X: Targeting apoptosis pathways in cancer and perspectives with
natural compounds from mother nature. Cancer Prev Res (Phila).
7:1081–1107. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Khan M, Maryam A, Zhang H, Mehmood T and
Ma T: Killing cancer with platycodin D through multiple mechanisms.
J Cell Mol Med. 20:389–402. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Faivre S, Djelloul S and Raymond E: New
paradigms in anticancer therapy: Targeting multiple signaling
pathways with kinase inhibitors. Semin Oncol. 33:407–420. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shu L, Cheung KL, Khor TO, Chen C and Kong
AN: Phytochemicals: Cancer chemoprevention and suppression of tumor
onset and metastasis. Cancer Metastasis Rev. 29:483–502. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ye B, Li J, Li Z, Yang J, Niu T and Wang
S: Anti-tumor activity and relative mechanism of ethanolic extract
of Marsdenia tenacissima (Asclepiadaceae) against human hematologic
neoplasm in vitro and in vivo. J Ethnopharmacol. 153:258–267. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yan Y, Xu Z, Dai S, Qian L, Sun L and Gong
Z: Targeting autophagy to sensitive glioma to temozolomide
treatment. J Exp Clin Cancer Res. 35:232016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rengarajan T, Nandakumar N, Rajendran P,
Haribabu L, Nishigaki I and Balasubramanian MP: D-pinitol promotes
apoptosis in MCF-7 cells via induction of p53 and Bax and
inhibition of Bcl-2 and NF-κB. Asian Pac J Cancer Prev.
15:1757–1762. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Montaser R and Luesch H: Marine natural
products: A new wave of drugs? Future Med Chem. 3:1475–1489. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Efferth T: From ancient herb to modern
drug: Artemisia annua and artemisinin for cancer therapy. Semin
Cancer Biol. 46:65–83. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cheng CS, Chen J, Tan HY, Wang N, Chen Z
and Feng Y: Scutellaria baicalensis and cancer treatment: Recent
progress and perspectives in biomedical and clinical studies. Am J
Chin Med. 46:25–54. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shanmugam MK, Dai X, Kumar AP, Tan BK,
Sethi G and Bishayee A: Oleanolic acid and its synthetic
derivatives for the prevention and therapy of cancer: Preclinical
and clinical evidence. Cancer Lett. 346:206–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Salvador JAR, Leal AS, Valdeira AS,
Gonçalves BMF, Alho DPS, Figueiredo SAC, Silvestre SM and Mendes
VIS: Oleanane-, ursane-, and quinone methide friedelane-type
triterpenoid derivatives: Recent advances in cancer treatment. Eur
J Med Chem. 142:95–130. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pisha E, Chai H, Lee IS, Chagwedera TE,
Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown
DM, et al: Discovery of betulinic acid as a selective inhibitor of
human melanoma that functions by induction of apoptosis. Nat Med.
1:1046–1051. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Knowles J and Gromo G: A guide to drug
discovery: Target selection in drug discovery. Nat Rev Drug Discov.
2:63–69. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Strüh CM, Jäger S, Schempp CM, Scheffler A
and Martin SF: A novel triterpene extract from mistletoe induces
rapid apoptosis in murine B16.F10 melanoma cells. Phytother Res.
26:1507–1512. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhao Y, He J, Li J, Peng X, Wang X, Dong
Z, Zhao E, Liu Y, Wu Z and Cui H: Demethylzeylasteral inhibits cell
proliferation and induces apoptosis through suppressing MCL1 in
melanoma cells. Cell Death Dis. 8:e31332017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu W, Liu X, Pan Z, Wang D, Li M, Chen X,
Zhou L, Xu M, Li D and Zheng Q: Ailanthone induces cell cycle
arrest and apoptosis in melanoma B16 and A375 cells. Biomolecules.
9:2752019. View Article : Google Scholar
|
|
23
|
Tiwari R, Puthli A, Balakrishnan S, Sapra
BK and Mishra KP: Betulinic acid-induced cytotoxicity in human
breast tumor cell lines MCF-7 and T47D and its modification by
tocopherol. Cancer Invest. 32:402–408. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mullauer FB, van Bloois L, Daalhuisen JB,
Ten Brink MS, Storm G, Medema JP, Schiffelers RM and Kessler JH:
Betulinic acid delivered in liposomes reduces growth of human lung
and colon cancers in mice without causing systemic toxicity.
Anticancer Drugs. 22:223–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fulda S, Jeremias I, Steiner HH, Pietsch T
and Debatin KM: Betulinic acid: A new cytotoxic agent against
malignant brain-tumor cells. Int J Cancer. 82:435–441. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sivakumar G, Vail DR, Nair V,
Medina-Bolivar F and Lay JO Jr: Plant-based corosolic acid: Future
anti-diabetic drug? Biotechnol J. 4:1704–1711. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang J, Leng J, Li JJ, Tang JF, Li Y, Liu
BL and Wen XD: Corosolic acid inhibits adipose tissue inflammation
and ameliorates insulin resistance via AMPK activation in high-fat
fed mice. Phytomedicine. 23:181–190. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ulbricht C, Dam C, Milkin T, Seamon E,
Weissner W and Woods J: Banaba (Lagerstroemia
speciosa L.): An evidence-based systematic review by the
natural standard research collaboration. J Herb Pharmacother.
7:99–113. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Park C and Lee JS: Banaba: The natural
remedy as antidiabetic drug. Biomed Res. 22:127–131. 2011.
|
|
30
|
Kim E, Sy-Cordero A, Graf TN, Brantley SJ,
Paine MF and Oberlies NH: Isolation and identification of
intestinal CYP3A inhibitors from cranberry (Vaccinium
macrocarpon) using human intestinal microsomes. Planta Med.
77:265–270. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Aguirre MC, Delporte C, Backhouse N, Erazo
S, Letelier ME, Cassels BK, Silva X, Alegría S and Negrete R:
Topical anti-inflammatory activity of 2alpha-hydroxy pentacyclic
triterpene acids from the leaves of Ugni molinae. Bioorg Med Chem.
14:5673–5677. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen
L and Wei Y: Triterpene acids isolated from Lagerstroemia
speciosa leaves as alpha-glucosidase inhibitors. Phytother Res.
23:614–618. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hu C, Chen L, Xin Y and Cai Q:
Determination of corosolic acid in Eriobotrya japonica leaves by
reversed-phase high performance liquid chromatography. Se Pu.
24:492–494. 2006.(In Chinese). PubMed/NCBI
|
|
34
|
Lv H, Chen J, Li WL and Zhang HQ: Studies
on the triterpenes from loquat leaf (Eriobotrya japonica). Zhong
Yao Cai. 31:1351–1354. 2008.(In Chinese). PubMed/NCBI
|
|
35
|
Lu H, Xi C, Chen J and Li W: Determination
of triterpenoid acids in leaves of Eriobotrya japonica collected at
in different seasons. Zhongguo Zhong Yao Za Zhi. 34:2353–2355.
2009.(In Chinese). PubMed/NCBI
|
|
36
|
Rollinger JM, Kratschmar DV, Schuster D,
Pfisterer PH, Gumy C, Aubry EM, Brandstötter S, Stuppner H, Wolber
G and Odermatt A: 11beta-Hydroxysteroid dehydrogenase 1 inhibiting
constituents from Eriobotrya japonica revealed by
bioactivity-guided isolation and computational approaches. Bioorg
Med Chem. 18:1507–1515. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Banno N, Akihisa T, Tokuda H, Yasukawa K,
Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa J and
Nishino H: Triterpene acids from the leaves of Perilla frutescens
and their anti-inflammatory and antitumor-promoting effects. Biosci
Biotechnol Biochem. 68:85–90. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kim DH, Han KM, Chung IS, Kim DK, Kim SH,
Kwon BM, Jeong TS, Park MH, Ahn EM and Baek NI: Triterpenoids from
the flower of Campsis grandiflora K. Schum. as human acyl-CoA:
Cholesterol acyltransferase inhibitors. Arch Pharm Res. 28:550–556.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Na M, Yang S, He L, Oh H, Kim BS, Oh WK,
Kim BY and Ahn JS: Inhibition of protein tyrosine phosphatase 1B by
ursane-type triterpenes isolated from Symplocos paniculata. Planta
Med. 72:261–263. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Thuong PT, Min BS, Jin W, Na M, Lee J,
Seong R, Lee YM, Song K, Seong Y, Lee HK, et al: Anti-complementary
activity of ursane-type triterpenoids from Weigela subsessilis.
Biol Pharm Bull. 29:830–833. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee MS and Thuong PT: Stimulation of
glucose uptake by triterpenoids from Weigela subsessilis. Phytother
Res. 24:49–53. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang NY, Duan JA, Li P and Qian SH:
Chemical Constituents of Glechoma longituba. Yao Xue Xue Bao.
41:431–434. 2006.PubMed/NCBI
|
|
43
|
Shen Y, Wang QH, Lin HW, Shu W, Zhou JB
and Li ZY: Study on chemical constituents of Potentilla chinensis
Ser. Zhong Yao Cai. 29:237–239. 2006.(In Chinese). PubMed/NCBI
|
|
44
|
Kang SH, Shi YQ and Yang CX: Triterpenoids
and steroids of root of Rubus biflorus. Zhong Yao Cai.
31:1669–1671. 2008.(In Chinese). PubMed/NCBI
|
|
45
|
Liu P, Teng J, Zhang YW, Takaishi Y and
Duan HQ: Chemical constituents from rhizome of Phlomis umbrosa. Yao
Xue Xue Bao. 42:401–404. 2007.(In Chinese). PubMed/NCBI
|
|
46
|
Li YL, Dai HN, Ma GX, Zhang W, Wu TY, Wang
YQ, Zou JM, Zhong XQ, Zhou YL, Yuan JQ, et al: A new triterpenic
acid from the roots of Rosa laevigata. Yao Xue Xue Bao. 52:425–429.
2017.(In Chinese). PubMed/NCBI
|
|
47
|
Huang XY, Ma GX, Zhong XQ, Zhou YL, Dai
HN, Wu HF, Zhu YD, Yang JS, Yuan JQ and Xu XD: Triterpene
constituents from Rosa cymosa Tratt. Zhongguo Zhong Yao Za Zhi.
39:4637–4641. 2014.(In Chinese). PubMed/NCBI
|
|
48
|
Ku CY, Wang YR, Lin HY, Lu SC and Lin JY:
Corosolic acid inhibits hepatocellular carcinoma cell migration by
targeting the VEGFR2/Src/FAK pathway. PLoS One. 10:e01267252015.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cheng QL, Li HL, Li YC, Liu ZW, Guo XH and
Cheng YJ: CRA(Crosolic Acid) isolated from Actinidia valvata Dunn.
Radix induces apoptosis of human gastric cancer cell line BGC823 in
vitro via down-regulation of the NF-κB pathway. Food Chem Toxicol.
105:475–485. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Manayi A, Saeidnia S, Ostad SN,
Hadjiakhoondi A, Ardekani MR, Vazirian M, Akhtar Y and Khanavi M:
Chemical constituents and cytotoxic effect of the main compounds of
Lythrum salicaria L. Z Naturforsch C J Biosci. 68:367–375. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim JH, Kim YH, Song GY, Kim DE, Jeong YJ,
Liu KH, Chung YH and Oh S: Ursolic acid and its natural derivative
corosolic acid suppress the proliferation of APC-mutated colon
cancer cells through promotion of β-catenin degradation. Food Chem
Toxicol. 67:87–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Horlad H, Fujiwara Y, Takemura K, Ohnishi
K, Ikeda T, Tsukamoto H, Mizuta H, Nishimura Y, Takeya M and
Komohara Y: Corosolic acid impairs tumor development and lung
metastasis by inhibiting the immunosuppressive activity of
myeloid-derived suppressor cells. Mol Nutr Food Res. 57:1046–1054.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yoo KH, Park JH, Lee DY, Hwang-Bo J, Baek
NI and Chung IS: Corosolic acid exhibits anti-angiogenic and
anti-lymphangiogenic effects on in vitro endothelial cells and on
an in vivo CT-26 colon carcinoma animal model. Phytother Res.
29:714–723. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang J, Wu R, Li W, Gao L, Yang Y, Li P
and Kong AN: The triterpenoid corosolic acid blocks transformation
and epigenetically reactivates Nrf2 in TRAMP-C1 prostate cells. Mol
Carcinog. 57:512–521. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yong QX, Jian HZ and Xing SY: Corosolic
acid induces potent anti-cancer effects in CaSki cervical cancer
cells through the induction of apoptosis, cell cycle arrest and
PI3K/Akt signalling pathway. Bangladesh J Pharmacol. 11:453–459.
2016. View Article : Google Scholar
|
|
56
|
National Cancer Institute (NIH), .
Surveillance, Epidemiology, and End Results (SEER) Program. NIH.
2016.simplehttps://seer.cancer.gov/
|
|
57
|
Baffy G: Hepatocellular carcinoma in
non-alcoholic fatty liver disease: Epidemiology, pathogenesis, and
prevention. J Clin Transl Hepatol. 1:131–137. 2013.PubMed/NCBI
|
|
58
|
Wong SW, Ting YW and Chan WK: Epidemiology
of non-alcoholic fatty liver disease-related hepatocellular
carcinoma and its implications. JGH Open. 2:235–241. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rinella ME: Nonalcoholic fatty liver
disease: A systematic review. JAMA. 313:2263–2273. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Starley BQ, Calcagno CJ and Harrison SA:
Nonalcoholic fatty liver disease and hepatocellular carcinoma: A
weighty connection. Hepatology. 51:1820–1832. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Welzel TM, Graubard BI, Zeuzem S, El-Serag
HB, Davila JA and Mcglynn KA: Metabolic syndrome increases the risk
of primary liver cancer in the United States: A study in the
SEER-medicare database. Hepatology. 54:463–471. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hotamisligil GS: Inflammation and
metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Stickel F and Hellerbrand C: Non-alcoholic
fatty liver disease as a risk factor for hepatocellular carcinoma:
Mechanisms and implications. Gut. 59:1303–1307. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Park EJ, Lee JH, Yu GY, He G, Ali SR,
Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and
genetic obesity promote liver inflammation and tumorigenesis by
enhancing IL-6 and TNF expression. Cell. 140:197–208. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ish-Shalom D, Christoffersen CT, Vorwerk
P, Sacerdoti-Sierra N, Shymko RM, Naor D and De Meyts P: Mitogenic
properties of insulin and insulin analogues mediated by the insulin
receptor. Diabetologia. 40 (Suppl 2):S25–S31. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Buzzelli G, Dattolo P, Pinzani M, Brocchi
A, Romano S and Gentilini P: Circulating growth hormone and
insulin-like growth factor-I in nonalcoholic liver cirrhosis with
or without superimposed hepatocarcinoma: Evidence of an altered
circadian rhythm. Am J Gastroenterol. 88:1744–1748. 1993.PubMed/NCBI
|
|
67
|
Hirosumi J, Tuncman G, Chang L, Görgün CZ,
Uysal KT, Maeda K, Karin M and Hotamisligil GS: A central role for
JNK in obesity and insulin resistance. Nature. 420:333–336. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chang Q, Zhang Y, Beezhold KJ, Bhatia D,
Zhao H, Chen J, Castranova V, Shi X and Chen F: Sustained JNK1
activation is associated with altered histone H3 methylations in
human liver cancer. J Hepatol. 50:323–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang S, Zhu H, Li Y, Lin H, Gabrielson K,
Trush MA and Diehl AM: Mitochondrial adaptations to obesity-related
oxidant stress. Arch Biochem Biophys. 378:259–268. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ikura Y, Mita E and Nakamori S:
Hepatocellular carcinomas can develop in simple fatty livers in the
setting of oxidative stress. Pathology. 43:167–168. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ma C, Kesarwala AH, Eggert T,
Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor
V, ElGindi M, et al: NAFLD causes selective CD4(+) T lymphocyte
loss and promotes hepatocarcinogenesis. Nature. 531:253–257. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wolf MJ, Adili A, Piotrowitz K, Abdullah
Z, Boege Y, Stemmer K, Ringelhan M, Simonavicius N, Egger M,
Wohlleber D, et al: Metabolic activation of intrahepatic CD8+ T
cells and NKT cells causes nonalcoholic steatohepatitis and liver
cancer via cross-talk with hepatocytes. Cancer Cell. 26:549–564.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Stohs SJ, Miller H and Kaats GR: A review
of the efficacy and safety of banaba (Lagerstroemia speciosa
L.) and corosolic acid. Phytother Res. 26:317–324. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sharma H, Kumar P, Deshmukh RR, Bishayee A
and Kumar S: Pentacyclic triterpenes: New tools to fight metabolic
syndrome. Phytomedicine. 50:166–177. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fife CM, McCarroll JA and Kavallaris M:
Movers and shakers: Cell cytoskeleton in cancer metastasis. Br J
Pharmacol. 171:5507–5523. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chiang AC and Massagué J: Molecular basis
of metastasis. N Engl J Med. 359:2814–2823. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang L, Wang JN, Tang JM, Kong X, Yang
JY, Zheng F, Guo LY, Huang YZ, Zhang L, Tian L, et al: VEGF is
essential for the growth and migration of human hepatocellular
carcinoma cells. Mol Biol Rep. 39:5085–5093. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lang SA, Brecht I, Moser C, Obed A, Batt
D, Schlitt HJ, Geissler EK and Stoeltzing O: Dual inhibition of Raf
and VEGFR2 reduces growth and vascularization of hepatocellular
carcinoma in an experimental model. Langenbecks Arch Surg.
393:333–341. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang C, Wu X, Zhang M, Zhu L, Zhao R, Xu
D, Lin Z, Liang C, Chen T, Chen L, et al: Small molecule R1498 as a
well-tolerated and orally active kinase inhibitor for
hepatocellular carcinoma and gastric cancer treatment via targeting
angiogenesis and mitosis pathways. PLoS One. 8:e652642013.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xu Y, Zhao Y, Xu Y, Guan Y, Zhang X, Chen
Y, Wu Q, Zhu G, Chen Y, Sun F, et al: Blocking inhibition to YAP by
ActinomycinD enhances anti-tumor efficacy of Corosolic acid in
treating liver cancer. Cell Signal. 29:209–217. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lee MS, Cha EY, Thuong PT, Kim JY, Ahn MS
and Sul JY: Down-regulation of human epidermal growth factor
receptor 2/neu oncogene by corosolic acid induces cell cycle arrest
and apoptosis in NCI-N87 human gastric cancer cells. Biol Pharm
Bull. 33:931–937. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lee MS, Lee CM, Cha EY, Thuong PT, Bae K,
Song IS, Noh SM and Sul JY: Activation of AMP-activated protein
kinase on human gastric cancer cells by apoptosis induced by
corosolic acid isolated from Weigela subsessilis. Phytother Res.
24:1857–1861. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sung B, Kang YJ, Kim DH, Hwang SY, Lee Y,
Kim M, Yoon JH, Kim CM, Chung HY and Kim ND: Corosolic acid induces
apoptotic cell death in HCT116 human colon cancer cells through a
caspase-dependent pathway. Int J Mol Med. 33:943–949. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ohta T, Iijima K, Miyamoto M, Nakahara I,
Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T,
et al: Loss of Keap1 function activates Nrf2 and provides
advantages for lung cancer cell growth. Cancer Res. 68:1303–1309.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
DeNicola GM, Karreth FA, Humpton TJ,
Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES,
et al: Oncogene-induced Nrf2 transcription promotes ROS
detoxification and tumorigenesis. Nature. 475:106–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mitsuishi Y, Taguchi K, Kawatani Y,
Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H: Nrf2
redirects glucose and glutamine into anabolic pathways in metabolic
reprogramming. Cancer Cell. 22:66–79. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jia Y, Wang H, Wang Q, Ding H, Wu H and
Pan H: Silencing Nrf2 impairs glioma cell proliferation via
AMPK-activated mTOR inhibition. Biochem Biophys Res Commun.
469:665–671. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y,
Kou HH, Zhai C, Nelson MB, Zhang Q, et al: An overview of chemical
inhibitors of the Nrf2-ARE signaling pathway and their potential
applications in cancer therapy. Free Radic Biol Med. 99:544–556.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ma B, Zhang H, Wang Y, Zhao A, Zhu Z, Bao
X, Sun Y, Li L and Zhang Q: Corosolic acid, a natural triterpenoid,
induces ER stress-dependent apoptosis in human castration resistant
prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and
TRIB3. J Exp Clin Cancer Res. 37:2102018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Woo SM, Seo SU, Min KJ, Im SS, Nam JO,
Chang JS, Kim S, Park JW and Kwon TK: Corosolic acid induces
non-apoptotic cell death through generation of lipid reactive
oxygen species production in human renal carcinoma caki cells. Int
J Mol Sci. 19:13092018. View Article : Google Scholar
|
|
91
|
Xu Y, Ge R, Du J, Xin H, Yi T, Sheng J,
Wang Y and Ling C: Corosolic acid induces apoptosis through
mitochondrial pathway and caspase activation in human cervix
adenocarcinoma HeLa cells. Cancer Lett. 284:229–237. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Takaishi K, Komohara Y, Tashiro H, Ohtake
H, Nakagawa T, Katabuchi H and Takeya M: Involvement of
M2-polarized macrophages in the ascites from advanced epithelial
ovarian carcinoma in tumor progression via Stat3 activation. Cancer
Sci. 101:2128–2136. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Komohara Y, Horlad H, Ohnishi K, Ohta K,
Makino K, Hondo H, Yamanaka R, Kajiwara K, Saito T, Kuratsu J and
Takeya M: M2 macrophage/microglial cells induce activation of Stat3
in primary central nervous system lymphoma. J Clin Exp Hematop.
51:93–99. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Komohara Y, Horlad H, Ohnishi K, Fujiwara
Y, Bai B, Nakagawa T, Suzu S, Nakamura H, Kuratsu J and Takeya M:
Importance of direct macrophage-tumor cell interaction on
progression of human glioma. Cancer Sci. 103:2165–2172. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fujiwara Y, Takaishi K, Nakao J, Ikeda T,
Katabuchi H, Takeya M and Komohara Y: Corosolic acid enhances the
antitumor effects of chemotherapy on epithelial ovarian cancer by
inhibiting signal transducer and activator of transcription 3
signaling. Oncol Lett. 6:1619–1623. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Fujiwara Y, Komohara Y, Ikeda T and Takeya
M: Corosolic acid inhibits glioblastoma cell proliferation by
suppressing the activation of signal transducer and activator of
transcription-3 and nuclear factor-kappa B in tumor cells and
tumor-associated macrophages. Cancer Sci. 102:206–211. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Cai X, Zhang H, Tong D, Tan Z, Han D, Ji F
and Hu W: Corosolic acid triggers mitochondria and
caspase-dependent apoptotic cell death in osteosarcoma MG-63 cells.
Phytother Res. 25:1354–1361. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jia Y, Yuan H, Shan S, Xu G, Yu J, Zhao C
and Mou X: Corosolic acid inhibits the proliferation of
osteosarcoma cells by inducing apoptosis. Oncol Lett. 12:4187–4194.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Nho KJ, Chun JM and Kim HK: Corosolic acid
induces apoptotic cell death in human lung adenocarcinoma A549
cells in vitro. Food Chem Toxicol. 56:8–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bahadori MB, Vandghanooni S, Dinparast L,
Eskandani M, Ayatollahi SA, Ata A and Nazemiyeh H: Triterpenoid
corosolic acid attenuates HIF-1 stabilization upon cobalt (II)
chloride-induced hypoxia in A549 human lung epithelial cancer
cells. Fitoterapia. 134:493–500. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang K, Zhu X, Yao Y, Yang M, Zhou F and
Zhu L: Corosolic acid induces cell cycle arrest and cell apoptosis
in human retinoblastoma Y-79 cells via disruption of MELK-FoxM1
signaling. Oncol Rep. 39:2777–2786. 2018.PubMed/NCBI
|
|
102
|
Fujiwara Y, Takeya M and Komohara Y: A
novel strategy for inducing the antitumor effects of triterpenoid
compounds: Blocking the protumoral functions of tumor-associated
macrophages via STAT3 inhibition. Biomed Res Int. 2014:3485392014.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tseng LM, Huang PI, Chen YR, Chen YC, Chou
YC, Chen YW, Chang YL, Hsu HS, Lan YT, Chen KH, et al: Targeting
signal transducer and activator of transcription 3 pathway by
cucurbitacin I diminishes self-renewing and radiochemoresistant
abilities in thyroid cancer-derived CD133+ cells. J Pharmacol Exp
Ther. 341:410–423. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang X, Liu P, Zhang B, Wang A and Yang
M: Role of STAT3 decoy oligodeoxynucleotides on cell invasion and
chemosensitivity in human epithelial ovarian cancer cells. Cancer
Genet Cytogenet. 197:46–53. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Page BD, Ball DP and Gunning PT: Signal
transducer and activator of transcription 3 inhibitors: A patent
review. Expert Opin Ther Pat. 21:65–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lee HS, Park JB, Lee MS, Cha EY, Kim JY
and Sul JY: Corosolic acid enhances 5-fluorouracil-induced
apoptosis against SNU-620 human gastric carcinoma cells by
inhibition of mammalian target of rapamycin. Mol Med Rep.
12:4782–4788. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Park JB, Lee JS, Lee MS, Cha EY, Kim S and
Sul JY: Corosolic acid reduces 5-FU chemoresistance in human
gastric cancer cells by activating AMPK. Mol Med Rep. 18:2880–2888.
2018.PubMed/NCBI
|
|
108
|
Nelson AT, Camelio AM, Claussen KR, Cho J,
Tremmel L, Digiovanni J and Siegel D: Synthesis of oxygenated
oleanolic and ursolic acid derivatives with anti-inflammatory
properties. Bioorg Med Chem Lett. 25:4342–4346. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yamaguchi Y, Yamada K, Yoshikawa N,
Nakamura K, Haginaka J and Kunitomo M: Corosolic acid prevents
oxidative stress, inflammation and hypertension in SHR/NDmcr-cp
rats, a model of metabolic syndrome. Life Sci. 79:2474–2479. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen H, Yang J, Zhang Q, Chen LH and Wang
Q: Corosolic acid ameliorates atherosclerosis in apolipoprotein
E-deficient mice by regulating the nuclear factor-κB signaling
pathway and inhibiting monocyte chemoattractant protein-1
expression. Circ J. 76:995–1003. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kim SJ, Cha JY, Kang HS, Lee JH, Ji YL,
Park JH, Bae JH, Song DK and Im SS: Corosolic acid ameliorates
acute inflammation through inhibition of IRAK-1 phosphorylation in
macrophages. BMB Rep. 49:276–281. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Festa A, D'Agostino R Jr, Howard G,
Mykkänen L, Tracy RP and Haffner SM: Chronic subclinical
inflammation as part of the insulin resistance syndrome: The
insulin resistance atherosclerosis study (IRAS). Circulation.
102:42–47. 2000. View Article : Google Scholar : PubMed/NCBI
|