Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation

  • Authors:
    • Hao Li
    • Xinglan An
    • Qi Li
    • Hao Yu
    • Ziyi Li
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 104
    |
    Published online on: December 10, 2020
       https://doi.org/10.3892/ol.2020.12365
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previous research has proven that 6‑thioguanine (6‑TG) inhibits the growth of MCF‑7 breast cancer cells. Accumulating evidence indicates that long non‑coding (lnc)RNAs are involved in the development of various cancer types as competitive endogenous (ce)RNA molecules. The present study was conducted to investigate the regulatory mechanism underlying the function of lncRNAs as ceRNA molecules in MCF‑7 cells and to identify more effective prognostic biomarkers for breast cancer treatment. The expression profiles of lncRNAs in untreated MCF‑7 cells and 6‑TG‑treated MCF‑7 cells were compared by RNA‑seq. The regulatory associations among lncRNAs, micro (mi)RNAs and mRNAs were analyzed and verified by the TargetScan, miRDB and miRTarBas databases. The ceRNA networks were constructed by Cytoscape. The expression levels of two lncRNAs and two miRNAs in the ceRNA network were measured by reverse transcription‑quantitative PCR. The OncoLnc and Kaplan‑Meier plotter network databases were utilized to determine the effects of lncRNA and miRNA expression on the survival of patients with breast cancer. A ceRNA network was constructed for MCF‑7 breast cancer cells treated with 6‑TG, and this network may provide valuable information for further research elucidating the molecular mechanism underlying the effects of 6‑TG on breast cancer. Moreover, LINC00324, MIR22HG, miR‑370‑3p and miR‑424‑5p were identified as potential prognostic and therapeutic biomarkers for breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Fahad Ullah M: Breast cancer: Current perspectives on the disease status. Adv Exp Med Biol. 1152:51–64. 2019. View Article : Google Scholar

2 

Jeong SB, Im JH, Yoon JH, Bui QT, Lim SC, Song JM, Shim Y, Yun J, Hong J and Kang KW: Essential role of polo-like kinase 1 (Plk1) oncogene in tumor growth and metastasis of tamoxifen-resistant breast cancer. Mol Cancer Ther. 17:825–837. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar

4 

Geng C, Tang P, Zhang Y and Gao W: Hyponatremia induced by low-dose cyclophosphamide in two patients with breast cancer. Breast J. 20:442–443. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Natori A, Ethier JL, Amir E and Cescon DW: Capecitabine in early breast cancer: A meta-analysis of randomised controlled trials. Eur J Cancer. 77:40–47. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, Marzouk A, El Habak K, Mostafa R, Ali MA and Ellithy M: A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother. 95:1209–1218. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Li C, Liang Y, Cao J, Zhang N, Wei X, Tu M, Xu F and Xu Y: The delivery of a Wnt pathway inhibitor toward CSCs requires stable liposome encapsulation and delayed drug release in tumor tissues. Mol Ther. 27:1558–1567. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Karran P and Attard N: Thiopurines in current medical practice: Molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 8:24–36. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Munshi PN, Lubin M and Bertino JR: 6-thioguanine: A drug with unrealized potential for cancer therapy. Oncologist. 19:760–765. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Dubinsky MC, Feldman EJ, Abreu MT, Targan SR and Vasiliauskas EA: Thioguanine: A potential alternate thiopurine for IBD patients allergic to 6-mercaptopurine or azathioprine. Am J Gastroenterol. 98:1058–1063. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Kim I, Choi YS, Song JH, Choi EA, Park S, Lee EJ, Rhee JK, Kim SC and Chang S: A drug-repositioning screen for primary pancreatic ductal adenocarcinoma cells identifies 6-thioguanine as an effective therapeutic agent for TPMT-low cancer cells. Mol Oncol. 12:1526–1539. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Li H, An X, Zhang D, Li Q, Zhang N, Yu H and Li Z: Transcriptomics analysis of the tumor-inhibitory pathways of 6-Thioguanine in MCF-7 cells via silencing DNMT1 activity. Onco Targets Ther. 13:1211–1223. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

14 

de Almeida RA, Fraczek MG, Parker S, Delneri D and O'Keefe RT: Non-coding RNAs and disease: The classical ncRNAs make a comeback. Biochem Soc Trans. 44:1073–1078. 2016. View Article : Google Scholar

15 

Dong Z, Zhang A, Liu S, Lu F, Guo Y, Zhang G, Xu F, Shi Y, Shen S, Liang J and Guo W: Aberrant methylation-mediated silencing of lncRNA MEG3 Functions as a ceRNA in esophageal cancer. Mol Cancer Res. 15:800–810. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Conte F, Fiscon G, Chiara M, Colombo T, Farina L and Paci P: Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One. 12:e01716612017. View Article : Google Scholar : PubMed/NCBI

17 

Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, Deng X, Jin H, Wang N, Wang C, et al: STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 16:1362017. View Article : Google Scholar : PubMed/NCBI

18 

Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, Cheng D, Chen H, Deng X, Peng C and Shen B: Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer. 16:1692017. View Article : Google Scholar : PubMed/NCBI

19 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, Shao T, Zhang J, Wang L and Li X: The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res. 43:8169–8182. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Wang H, Niu L, Jiang S, Zhai J, Wang P, Kong F and Jin X: Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in muscle-invasive bladder cancer. Oncotarget. 7:86174–86185. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Zheng L, Xiang C, Li X, Guo Q, Gao L, Ni H, Xia Y and Xi T: STARD13-correlated ceRNA network-directed inhibition on YAP/TAZ activity suppresses stemness of breast cancer via co-regulating Hippo and Rho-GTPase/F-actin signaling. J Hematol Oncol. 11:722018. View Article : Google Scholar : PubMed/NCBI

24 

Fan CN, Ma L and Liu N: Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA network identifies four-lncRNA signature as a prognostic biomarker for breast cancer. J Transl Med. 16:2642018. View Article : Google Scholar : PubMed/NCBI

25 

Karreth FA and Pandolfi PP: ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3:1113–1121. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Gao C, Li H, Zhuang J, Zhang H, Wang K, Yang J, Liu C, Liu L, Zhou C and Sun C: The construction and analysis of ceRNA networks in invasive breast cancer: A study based on the cancer genome atlas. Cancer Manag Res. 11:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Sui J, Li YH, Zhang YQ, Li CY, Shen X, Yao WZ, Peng H, Hong WW, Yin LH, Pu YP and Liang GY: Integrated analysis of long non-coding RNAassociated ceRNA network reveals potential lncRNA biomarkers in human lung adenocarcinoma. Int J Oncol. 49:2023–2036. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Xue WH, Fan ZR, Li LF, Lu JL, Ma BJ, Kan QC and Zhao J: Construction of an oesophageal cancer-specific ceRNA network based on miRNA, lncRNA, and mRNA expression data. World J Gastroenterol. 24:23–34. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Chu A, Liu J, Yuan Y and Gong Y: Comprehensive analysis of aberrantly expressed ceRNA network in gastric cancer with and without H. pylori infection. J Cancer. 10:853–863. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Jia X, Shi Y, Zhu Y, Meng W, He L, Jia Y and Tong Z: Integrated analysis of mRNA-miRNA-lncRNA ceRNA network in human HR+/Her-2-breast cancer and triple negative breast cancer. J Comput Biol. 27:1055–1066. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Yao Y, Zhang T, Qi L, Zhou C, Wei J, Feng F, Liu R and Sun C: Integrated analysis of co-expression and ceRNA network identifies five lncRNAs as prognostic markers for breast cancer. J Cell Mol Med. 23:8410–8419. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Li XL, Subramanian M, Jones MF, Chaudhary R, Singh DK, Zong X, Gryder B, Sindri S, Mo M, Schetter A, et al: Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer. Cell Rep. 20:2408–2423. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Fu X, Wang Y, Wu G, Zhang W, Xu S and Wang W: Long noncoding RNA PURPL promotes cell proliferation in liver cancer by regulating p53. Mol Med Rep. 19:4998–5006. 2019.PubMed/NCBI

34 

Pan ZH, Guo XQ, Shan J and Luo SX: LINC00324 exerts tumor-promoting functions in lung adenocarcinoma via targeting miR-615-5p/AKT1 axis. Eur Rev Med Pharmacol Sci. 22:8333–8342. 2018.PubMed/NCBI

35 

Zou Z, Ma T, He X, Zhou J, Ma H, Xie M, Liu Y, Lu D, Di S and Zhang Z: Long intergenic non-coding RNA 00324 promotes gastric cancer cell proliferation via binding with HuR and stabilizing FAM83B expression. Cell Death Dis. 9:7172018. View Article : Google Scholar : PubMed/NCBI

36 

Ni X, Xie JK, Wang H and Song HR: Knockdown of long non-coding RNA LINC00324 inhibits proliferation, migration and invasion of colorectal cancer cell via targeting miR-214-3p. Eur Rev Med Pharmacol Sci. 23:10740–10750. 2019.PubMed/NCBI

37 

Zhang DY, Zou XJ, Cao CH, Zhang T, Lei L, Qi XL, Liu L and Wu DH: Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics. 8:3751–3765. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Qin L, Luo JZ, Tang XL and Han CG: Identification of long noncoding RNA MIR22HG as a novel biomarker in thyroid cancer. Pathol Oncol Res. 25:703–710. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Su W, Feng S, Chen X, Yang X, Mao R, Guo C, Wang Z, Thomas DG, Lin J, Reddy RM, et al: Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res. 78:3207–3219. 2018.PubMed/NCBI

40 

Wu Y, Zhou Y, Huan L, Xu L, Shen M, Huang S and Liang L: LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Sci. 110:973–984. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI

42 

Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, Li C, Sui C, Jiang J, Lu H, et al: miR-424-5p promotes anoikis resistance and lung metastasis by inactivating Hippo signaling in thyroid cancer. Mol Ther Oncolytics. 15:248–260. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Dai W, Zhou J, Wang H, Zhang M, Yang X and Song W: miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathol Res Pract. 216:1527312020. View Article : Google Scholar : PubMed/NCBI

44 

Hou WZ, Chen XL, Wu W and Hang CH: MicroRNA-370-3p inhibits human vascular smooth muscle cell proliferation via targeting KDR/AKT signaling pathway in cerebral aneurysm. Eur Rev Med Pharmacol Sci. 21:1080–1087. 2017.PubMed/NCBI

45 

Lyu L, Yao J, Wang M, Zheng Y, Xu P, Wang S, Zhang D, Deng Y, Wu Y, Yang S, et al: Overexpressed pseudogene HLA-DPB2 promotes tumor immune infiltrates by regulating HLA-DPB1 and indicates a better prognosis in breast cancer. Front Oncol. 10:12452020. View Article : Google Scholar : PubMed/NCBI

46 

Salvador JM, Brown-Clay JD and Fornace AJ Jr: Gadd45 in stress signaling, cell cycle control, and apoptosis. Adv Exp Med Biol. 793:1–19. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Li T, Xu L, Teng J, Ma Y, Liu W, Wang Y, Chi X, Shao S, Dong Y, Zhan Q and Liu X: GADD45G Interacts with E-cadherin to suppress the migration and invasion of esophageal squamous cell carcinoma. Dig Dis Sci. 65:1032–1041. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Guo W, Zhu T, Dong Z, Cui L, Zhang M and Kuang G: Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Clin Exp Metastasis. 30:977–992. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Misiewicz-Krzeminska I, Sarasquete ME, Vicente-Dueñas C, Krzeminski P, Wiktorska K, Corchete LA, Quwaider D, Rojas EA, Corral R, Martín AA, et al: Post-transcriptional modifications contribute to the upregulation of cyclin D2 in multiple myeloma. Clin Cancer Res. 22:207–217. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li H, An X, Li Q, Yu H and Li Z: Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation. Oncol Lett 21: 104, 2021.
APA
Li, H., An, X., Li, Q., Yu, H., & Li, Z. (2021). Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation. Oncology Letters, 21, 104. https://doi.org/10.3892/ol.2020.12365
MLA
Li, H., An, X., Li, Q., Yu, H., Li, Z."Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation". Oncology Letters 21.2 (2021): 104.
Chicago
Li, H., An, X., Li, Q., Yu, H., Li, Z."Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation". Oncology Letters 21, no. 2 (2021): 104. https://doi.org/10.3892/ol.2020.12365
Copy and paste a formatted citation
x
Spandidos Publications style
Li H, An X, Li Q, Yu H and Li Z: Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation. Oncol Lett 21: 104, 2021.
APA
Li, H., An, X., Li, Q., Yu, H., & Li, Z. (2021). Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation. Oncology Letters, 21, 104. https://doi.org/10.3892/ol.2020.12365
MLA
Li, H., An, X., Li, Q., Yu, H., Li, Z."Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation". Oncology Letters 21.2 (2021): 104.
Chicago
Li, H., An, X., Li, Q., Yu, H., Li, Z."Construction and analysis of competing endogenous RNA network of MCF‑7 breast cancer cells based on the inhibitory effect of 6‑thioguanine on cell proliferation". Oncology Letters 21, no. 2 (2021): 104. https://doi.org/10.3892/ol.2020.12365
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team