Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2021 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms

  • Authors:
    • Mugdha Sharma
    • Chandra Bhavani
    • Srinag Bangalore Suresh
    • John Paul
    • Lokendra Yadav
    • Cecil Ross
    • Sweta Srivastava
  • View Affiliations / Copyright

    Affiliations: Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka 560034, India, Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
    Copyright: © Sharma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 204
    |
    Published online on: January 12, 2021
       https://doi.org/10.3892/ol.2021.12465
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myeloproliferative neoplasms (MPN) are clonal disorders characterized by the increased proliferation of hematopoietic stem cell precursors and mature blood cells. Mutations of Janus kinase 2 (JAK2), Calreticulin (CALR) and MPL (myeloproliferative leukemia virus) are key driver mutations in MPN. However, the molecular profile of triple negative MPN has been a subject of ambiguity over the past few years. Mutations of, methylcytosine dioxygenase TET2, polycomb group protein ASXL1 and histone‑lysine N‑methyltransferase EZH2 genes have accounted for certain subsets of triple negative MPNs but the driving cause for majority of cases is still unexplored. The present study performed a microarray‑based transcriptomic profile analysis of bone marrow‑derived CD34(+) cells from seven MPN samples. A total of 21,448 gene signatures were obtained, which were further filtered into 472 upregulated and 202 downregulated genes. Gene ontology and protein‑protein interaction (PPI) network analysis highlighted an upregulation of genes involved in cell cycle and chromatin modification in JAK2V617F negative vs. positive MPN samples. Out of the upregulated genes, seven were associated with the hematopoietic stem cell signature, while forty‑seven were associated with the embryonic stem cell signature. The majority of the genes identified were under the control of NANOG and E2F4 transcription factors. The PPI network indicated a strong interaction between chromatin modifiers and cell cycle genes, such as histone‑lysine N‑methyltransferase SUV39H1, SWI/SNF complex subunit SMARCC2, SMARCE2, chromatin remodeling complex subunit SS18, tubulin β (TUBB) and cyclin dependent kinase CDK1. Among the upregulated epigenetic markers, there was a ~10‑fold increase in MYB expression in JAK2V617F negative samples. A significant increase in total CD34 counts in JAK2V617F negative vs. positive samples (P<0.05) was also observed. Overall, the present data showed a distinct pattern of expression in JAK2V617F negative vs. positive samples with upregulated genes involved in epigenetic modification.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Dameshek W: Some speculations on the myeloproliferative syndromes. Blood. 6:372–375. 1951. View Article : Google Scholar : PubMed/NCBI

2 

Fialkow PJ, Gartler SM and Yoshida A: Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA. 58:1468–1471. 1967. View Article : Google Scholar : PubMed/NCBI

3 

Tefferi A: The history of myeloproliferative disorders: Before and after dameshek. Leukemia. 22:3–13. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U and Mesa RA: Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European union. Eur J Haematol. 92:289–297. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Mehta J, Wang H, Iqbal SU and Mesa R: Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma. 55:595–600. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, et al: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 365:1054–1061. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI

8 

James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 434:1144–1148. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, et al: JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 356:459–468. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Silver RT, Chow W, Orazi A, Arles SP and Goldsmith SJ: Evaluation of WHO criteria for diagnosis of polycythemia vera: A prospective analysis. Blood. 122:1881–1886. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O and Hubbard SR: Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol. 19:754–759. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Saharinen P, Takaluoma K and Silvennoinen O: Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol. 20:3387–3395. 2000. View Article : Google Scholar : PubMed/NCBI

14 

Vainchenker W and Constantinescu SN: JAK/STAT signaling in hematological malignancies. Oncogene. 32:2601–2613. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Vainchenker W and Kralovics R: Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 129:667–679. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U and Pfeffer K: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 93:397–409. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Staerk J and Constantinescu SN: The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAKSTAT. 1:184–190. 2012.PubMed/NCBI

18 

Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, et al: Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 93:385–395. 1998. View Article : Google Scholar : PubMed/NCBI

19 

de Freitas RM and da Costa Maranduba CM: Myeloproliferative neoplasms and the JAK/STAT signaling pathway: An overview. Rev Bras Hematol Hemoter. 37:348–353. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, Orazi A and Tefferi A: The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 8:152018. View Article : Google Scholar : PubMed/NCBI

21 

Tefferi A: Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 24:1128–1138. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Carvalho BS and Irizarry RA: A framework for oligonucleotide microarray preprocessing. Bioinformatics. 26:2363–2367. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Team RC: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2012

24 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar

26 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1):D607–D613. 2019. View Article : Google Scholar

27 

Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RS, Machado S, Pacheco-Leyva I, Duarte I and Futschik ME: StemChecker: A web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 43:W72–W77. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Metsalu T and Vilo J: ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 43:W566–W570. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Cilloni D and Saglio G: Molecular pathways: BCR-ABL. Clin Cancer Res. 18:930–937. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, et al: Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 107:323–337. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Schaniel C, Ang YS, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR and Paddison PJ: Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells. 27:2979–2991. 2009.PubMed/NCBI

33 

Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E and Mason CE: Epigenetic modifications in acute myeloid leukemia: Prognosis, treatment, and heterogeneity. Front Genet. 10:1332019. View Article : Google Scholar : PubMed/NCBI

34 

Lim WF, Inoue-Yokoo T, Tan KS, Lai MI and Sugiyama D: Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 4:712013. View Article : Google Scholar : PubMed/NCBI

35 

Blum B and Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 100:133–158. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lambert M, Jambon S, Depauw S and David-Cordonnier MH: Targeting transcription factors for cancer treatment. Molecules. 23:14792018. View Article : Google Scholar

37 

Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Hsu J and Sage J: Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle. 15:3183–3190. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Gawlik-Rzemieniewska N and Bednarek I: The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. Cancer Biol Ther. 17:1–10. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Son HJ, Kim JY, Hahn Y and Seo SB: Negative regulation of JAK2 by H3K9 methyltransferase G9a in leukemia. Mol Cell Biol. 32:3681–3694. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Sidney LE, Branch MJ, Dunphy SE, Dua HS and Hopkinson A: Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 32:1380–1389. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Shammo JM and Stein BL: Mutations in MPNs: Prognostic implications, window to biology, and impact on treatment decisions. Hematology Am Soc Hematol Educ Program. 2016:552–560. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Mead AJ and Mullally A: Myeloproliferative neoplasm stem cells. Blood. 129:1607–1616. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Aleem E and Arceci RJ: Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol. 3:162015. View Article : Google Scholar : PubMed/NCBI

45 

Bertoli C, Skotheim JM and de Bruin RA: Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 14:518–528. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Werwein E, Cibis H, Hess D and Klempnauer KH: Activation of the oncogenic transcription factor B-Myb via multisite phosphorylation and prolyl cis/trans isomerization. Nucleic Acids Res. 47:103–121. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Koseoglu MM, Dong J and Marzluff WF: Coordinate regulation of histone mRNA metabolism and DNA replication: Cyclin A/cdk1 is involved in inactivation of histone mRNA metabolism and DNA replication at the end of S phase. Cell Cycle. 9:3857–3863. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Zeng X, Chen S and Huang H: Phosphorylation of EZH2 by CDK1 and CDK2: A possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions. Cell Cycle. 10:579–583. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Yu Z, Zhou X, Wang W, Deng W, Fang J, Hu H, Wang Z, Li S, Cui L, Shen J, et al: Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell. 32:68–81. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Jiang PS, Chang JH and Yung BY: Different kinases phosphorylate nucleophosmin/B23 at different sites during G(2) and M phases of the cell cycle. Cancer Lett. 153:151–160. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G and Schneider C: The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function. J Biol Chem. 278:30356–30364. 2003. View Article : Google Scholar : PubMed/NCBI

52 

McPherson S, McMullin MF and Mills K: Epigenetics in myeloproliferative neoplasms. J Cell Mol Med. 21:1660–1667. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Black JC, Van Rechem C and Whetstine JR: Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol Cell. 48:491–507. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Nielsen HM, Andersen CL, Westman M, Kristensen LS, Asmar F, Kruse TA, Thomassen M, Larsen TS, Skov V, Hansen LL, et al: Publisher correction: Epigenetic changes in myelofibrosis: Distinct methylation changes in the myeloid compartments and in cases with ASXL1 mutations. Sci Rep. 8:173112018. View Article : Google Scholar : PubMed/NCBI

55 

Mi W, Guan H, Lyu J, Zhao D, Xi Y, Jiang S, Andrews FH, Wang X, Gagea M, Wen H, et al: YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nat Commun. 8:10882017. View Article : Google Scholar : PubMed/NCBI

56 

Panagopoulos I, Micci F, Thorsen J, Gorunova L, Eibak AM, Bjerkehagen B, Davidson B and Heim S: Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One. 7:e393542012. View Article : Google Scholar : PubMed/NCBI

57 

Battaglia S, Maguire O and Campbell MJ: Transcription factor co-repressors in cancer biology: Roles and targeting. Int J Cancer. 126:2511–2519. 2010.PubMed/NCBI

58 

Viiri KM, Korkeamaki H, Kukkonen MK, Nieminen LK, Lindfors K, Peterson P, Mäki M, Kainulainen H and Lohi O: SAP30L interacts with members of the Sin3A corepressor complex and targets Sin3A to the nucleolus. Nucleic Acids Res. 34:3288–3298. 2006. View Article : Google Scholar : PubMed/NCBI

59 

DeVilbiss AW, Boyer ME and Bresnick EH: Establishing a hematopoietic genetic network through locus-specific integration of chromatin regulators. Proc Natl Acad Sci USA. 110:E3398–3407. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Arteaga MF, Mikesch JH, Fung TK and So CW: Epigenetics in acute promyelocytic leukaemia pathogenesis and treatment response: A TRAnsition to targeted therapies. Br J Cancer. 112:413–418. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Crepaldi L, Policarpi C, Coatti A, Sherlock WT, Jongbloets BC, Down TA and Riccio A: Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet. 9:e10036992013. View Article : Google Scholar : PubMed/NCBI

62 

Malik P, Zuleger N, de las Heras JI, Saiz-Ros N, Makarov AA, Lazou V, Meinke P, Waterfall M, Kelly DA and Schirmer EC: NET23/STING promotes chromatin compaction from the nuclear envelope. PLoS One. 9:e1118512014. View Article : Google Scholar : PubMed/NCBI

63 

Thacker J and Zdzienicka MZ: The XRCC genes: Expanding roles in DNA double-strand break repair. DNA Repair (Amst). 3:1081–1090. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, et al: Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 152:1146–1159. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Krasteva V, Crabtree GR and Lessard JA: The BAF45a/PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance. Exp Hematol. 48:58–71 e15. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Kadoch C and Crabtree GR: Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 153:71–85. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Pattabiraman DR and Gonda TJ: Role and potential for therapeutic targeting of MYB in leukemia. Leukemia. 27:269–277. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Hu T, Chong Y, Cai B, Liu Y, Lu S and Cowell JK: DNA methyltransferase 1-mediated CpG methylation of the miR-150-5p promoter contributes to fibroblast growth factor receptor 1-driven leukemogenesis. J Biol Chem. 294:18122–18130. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Griffiths DS, Li J, Dawson MA, Trotter MW, Cheng YH, Smith AM, Mansfield W, Liu P, Kouzarides T, Nichols J, et al: LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nat Cell Biol. 13:13–21. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Langlois T, da Costa Reis Monte-Mor B, Lenglet G, Droin N, Marty C, Le Couédic JP, Almire C, Auger N, Mercher T, Delhommeau F, et al: TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells. Stem Cells. 32:2084–2097. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Mascarenhas J, Sandy L, Lu M, Yoon J, Petersen B, Zhang D, Ye F, Newsom C, Najfeld V, Hochman T, et al: A phase II study of panobinostat in patients with primary myelofibrosis (PMF) and post-polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). Leuk Res. 53:13–19. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Rambaldi A, Dellacasa CM, Finazzi G, Carobbio A, Ferrari ML, Guglielmelli P, Gattoni E, Salmoiraghi S, Finazzi MC, Di Tollo S, et al: A pilot study of the Histone-Deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol. 150:446–455. 2010.PubMed/NCBI

73 

Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL and Larson RA; Cancer Leukemia Group B, : Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: Studies 8421, 8921, and 9221 by the cancer and leukemia Group B. J Clin Oncol. 24:3895–3903. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Kantarjian HM, O'Brien S, Huang X, Garcia-Manero G, Ravandi F, Cortes J, Shan J, Davisson J, Bueso-Ramos CE and Issa JP: Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: Comparison with historical experience. Cancer. 109:1133–1137. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sharma M, Bhavani C, Suresh SB, Paul J, Yadav L, Ross C and Srivastava S: Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncol Lett 21: 204, 2021.
APA
Sharma, M., Bhavani, C., Suresh, S.B., Paul, J., Yadav, L., Ross, C., & Srivastava, S. (2021). Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncology Letters, 21, 204. https://doi.org/10.3892/ol.2021.12465
MLA
Sharma, M., Bhavani, C., Suresh, S. B., Paul, J., Yadav, L., Ross, C., Srivastava, S."Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms". Oncology Letters 21.3 (2021): 204.
Chicago
Sharma, M., Bhavani, C., Suresh, S. B., Paul, J., Yadav, L., Ross, C., Srivastava, S."Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms". Oncology Letters 21, no. 3 (2021): 204. https://doi.org/10.3892/ol.2021.12465
Copy and paste a formatted citation
x
Spandidos Publications style
Sharma M, Bhavani C, Suresh SB, Paul J, Yadav L, Ross C and Srivastava S: Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncol Lett 21: 204, 2021.
APA
Sharma, M., Bhavani, C., Suresh, S.B., Paul, J., Yadav, L., Ross, C., & Srivastava, S. (2021). Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncology Letters, 21, 204. https://doi.org/10.3892/ol.2021.12465
MLA
Sharma, M., Bhavani, C., Suresh, S. B., Paul, J., Yadav, L., Ross, C., Srivastava, S."Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms". Oncology Letters 21.3 (2021): 204.
Chicago
Sharma, M., Bhavani, C., Suresh, S. B., Paul, J., Yadav, L., Ross, C., Srivastava, S."Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms". Oncology Letters 21, no. 3 (2021): 204. https://doi.org/10.3892/ol.2021.12465
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team