|
1
|
IARC: Global Cancer Observatory
https://gco.iarc.fr/today/home: GLOBOCAN, . 2018.The Global Cancer
Observatory (GCO) is an interactive web-based platform presenting
global cancer statistics to inform cancer control and research.
|
|
2
|
Beltran H, Yelensky R, Frampton GM, Park
K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus
DM, et al: Targeted next-generation sequencing of advanced prostate
cancer identifies potential therapeutic targets and disease
heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lu-Yao G, Albertsen PC, Stanford JL,
Stukel TA, Walker-Corkery E and Barry MJ: Screening, treatment, and
prostate cancer mortality in the Seattle area and Connecticut:
Fifteen-year follow-up. J Gen Intern Med. 23:1809–1814. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Partin AW: High-grade prostatic
intraepithelial neoplasia on a prostate biopsy-what does it mean?
Rev Urol. 4:157–158. 2002.PubMed/NCBI
|
|
5
|
De Marzo AM, Marchi VL, Epstein JI and
Nelson WG: Proliferative inflammatory atrophy of the prostate:
Implications for prostatic carcinogenesis. Am J Pathol.
155:1985–1992. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wei L, Wang J, Lampert E, Schlanger S,
DePriest AD, Hu Q, Gomez EC, Murakam M, Glenn ST, Conroy J, et al:
Intratumoral and intertumoral genomic heterogeneity of multifocal
localized prostate cancer impacts molecular classifications and
genomic prognosticators. Eur Urol. 71:183–192. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Epstein JI, Allsbrook WC, Amin MB and
Egevad LL; ISUP Grading Committee, : The 2005 International society
of urological pathology (ISUP) consensus conference on gleason
grading of prostatic carcinoma. Am J Surg Pathol. 29:1228–1242.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Epstein JI, Egevad L, Amin MB, Delahunt B,
Srigley JR and Humphrey PA; Grading Committee, : The 2014
International Society of Urological Pathology (ISUP) Consensus
Conference on Gleason Grading of Prostatic Carcinoma: Definition of
Grading Patterns and Proposal for a New Grading System. Am J Surg
Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
De Nunzio C, Pastore AL, Lombardo R,
Simone G, Leonardo C, Mastroianni R, Collura D, Muto G, Gallucci M,
Carbone A, et al: The new Epstein gleason score classification
significantly reduces upgrading in prostate cancer patients. Eur J
Surg Oncol. 44:835–839. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Baca SC and Garraway LA: The genomic
landscape of prostate cancer. Front Endocrinol (Lausanne).
3:692012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Baca SC, Prandi D, Lawrence MS, Mosquera
JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi
M, et al: Punctuated evolution of prostate cancer genomes. Cell.
153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tomlins SA, Rhodes DR, Perner S,
Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J,
Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription
factor genes in prostate cancer. Science. 310:644–648. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Barbieri CE, Baca SC, Lawrence MS,
Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van
Allen E, Stransky N, et al: Exome sequencing identifies recurrent
SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet.
44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Berger MF, Lawrence MS, Demichelis F,
Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger
D, Sougnez C, et al: The genomic complexity of primary human
prostate cancer. Nature. 470:214–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tomlins SA, Laxman B, Dhanasekaran SM,
Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, et
al: Distinct classes of chromosomal rearrangements create oncogenic
ETS gene fusions in prostate cancer. Nature. 448:595–599. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tomlins SA, Alshalalfa M, Davicioni E,
Erho N, Yousefi K, Zhao S, Haddad Z, Den RB, Dicker AP, Trock BJ,
et al: Characterization of 1577 primary prostate cancers reveals
novel biological and clinicopathologic insights into molecular
subtypes. Eur Urol. 68:555–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cancer Genome Atlas Research Network, .
The Molecular Taxonomy of Primary Prostate Cancer. Cell.
163:1011–1025. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dzamba M, Ramani AK, Buczkowicz P, Jiang
Y, Yu M, Hawkins C and Brudno M: Identification of complex genomic
rearrangements in cancers using CouGaR. Genome Res. 27:107–117.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chun TY: Coincidence of bladder and
prostate cancer. J Urol. 157:65–67. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yu J, Mani RS, Cao Q, Brenner CJ, Cao X,
Wang X, Wu L, Li J, Hu M, Gong Y, et al: An integrated network of
androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in
prostate cancer progression. Cancer Cell. 17:443–454. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lin C, Yang L, Tanasa B, Hutt K, Ju BG,
Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK and Rosenfeld MG: Nuclear
receptor-induced chromosomal proximity and DNA breaks underlie
specific translocations in cancer. Cell. 139:1069–1083. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mani RS, Tomlins SA, Callahan K, Ghosh A,
Nyati MK, Varambally S, Palanisamy N and Chinnaiyan AM: Induced
chromosomal proximity and gene fusions in prostate cancer. Science.
326:12302009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jung SH, Shin S, Kim MS, Baek IP, Lee JY,
Lee SH, Kim TM, Lee SH and Chung YJ: Genetic progression of high
grade prostatic intraepithelial neoplasia to prostate cancer. Eur
Urol. 69:823–830. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lapointe J, Li C, Higgins JP, van de Rijn
M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim
U, et al: Gene expression profiling identifies clinically relevant
subtypes of prostate cancer. Proc Natl Acad Sci USA. 101:811–816.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Brenner JC, Ateeq B, Li Y, Yocum AK, Cao
Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al: Mechanistic
rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene
fusion-positive prostate cancer. Cancer Cell. 19:664–678. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Williamson SR and Cheng L: Potential for
targeted therapy in prostate cancers with ERG abnormalities. Asian
J Androl. 13:781–782. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Karpova Y, Wu C, Divan A, McDonnell ME,
Hewlett E, Makhov P, Gordon J, Ye M, Reitz AB, Childers WE, et al:
Non-NAD-like PARP-1 inhibitors in prostate cancer treatment.
Biochem Pharmacol. 167:149–162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kunderfranco P, Mello-Grand M, Cangemi R,
Pellini S, Mensah A, Albertini V, Malek A, Chiorino G, Catapano CV
and Carbone GM: ETS transcription factors control transcription of
EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1
in prostate cancer. PLoS One. 5:e105472010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang S, Gao J, Lei Q, Rozengurt N,
Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, et
al: Prostate-specific deletion of the murine Pten tumor suppressor
gene leads to metastatic prostate cancer. Cancer Cell. 4:209–221.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao T, Mei Y, Sun H, Nie Z, Liu X and Wang
S: The association of Phosphatase and tensin homolog (PTEN)
deletion and prostate cancer risk: A meta-analysis. Biomed
Pharmacother. 83:114–121. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Leinonen KA, Saramäki OR, Furusato B,
Kimura T, Takahashi H, Egawa S, Suzuki H, Keiger K, Ho Hahm S,
Isaacs WB, et al: Loss of PTEN is associated with aggressive
behavior in ERG-positive prostate cancer. Cancer Epidemiol
Biomarkers Prev. 22:2333–2344. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ngollo M, Lebert A, Dagdemir A, Judes G,
Karsli-Ceppioglu S, Daures M, Kemeny JL, Penault-Llorca F, Boiteux
JP, Bignon YJ, et al: The association between histone 3 lysine 27
trimethylation (H3K27me3) and prostate cancer: Relationship with
clinicopathological parameters. BMC Cancer. 14:9942014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ishigami-Yuasa M, Ekimoto H and Kagechika
H: Class IIb HDAC inhibition enhances the inhibitory effect of
Am80, a synthetic retinoid, in prostate cancer. Biol Pharm Bull.
42:448–452. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bai Y, Zhang Z, Cheng L, Wang R, Chen X,
Kong Y, Feng F, Ahmad N, Li L and Liu X: Inhibition of enhancer of
zeste homolog 2 (EZH2) overcomes enzalutamide resistance in
castration-resistant prostate cancer. J Biol Chem. 294:9911–9923.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Taplin ME, Hussain A, Shah S, Neal D.
Shore, Manish Agrawal, William Clark, et al: ProSTAR: A phase Ib/II
study of CPI-1205, a small molecule inhibitor of EZH2, combined
with enzalutamide (E) or abiraterone/prednisone (A/P) in patients
with metastatic castration-resistant prostate cancer (mCRPC). J
Clin Oncol. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Koh CM, Iwata T, Zheng Q, Bethel C,
Yegnasubramanian S and De Marzo AM: Myc enforces overexpression of
EZH2 in early prostatic neoplasia via transcriptional and
post-transcriptional mechanisms. Oncotarget. 2:669–683. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Varambally S, Cao Q, Mani RS, Shankar S,
Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al:
Genomic loss of microRNA-101 leads to overexpression of histone
methyltransferase EZH2 in cancer. Science. 322:1695–699. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Börno ST, Fischer A, Kerick M, Fälth M,
Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, et al:
Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative
prostate cancers implicate an EZH2-dependent mechanism with miR-26a
hypermethylation. Cancer Discov. 2:1024–1035. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Melling N, Thomsen E, Tsourlakis MC, Kluth
M, Hube-Magg C, Minner S, Koop C, Graefen M, Heinzer H, Wittmer C,
et al: Overexpression of enhancer of zeste homolog 2 (EZH2)
characterizes an aggressive subset of prostate cancers and predicts
patient prognosis independently from pre- and postoperatively
assessed clinicopathological parameters. Carcinogenesis.
36:1333–1340. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Uchiyama N, Tanaka Y and Kawamoto T:
Aristeromycin and DZNeP cause growth inhibition of prostate cancer
via induction of mir-26a. Eur J Pharmacol. 812:138–146. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kirschner AN, Wang J, van der Meer R,
Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O,
Keeton EK, Ahdesmaki M, et al: PIM kinase inhibitor AZD1208 for
treatment of MYC-driven prostate cancer. J Natl Cancer Inst.
107:dju4072015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rebello RJ, Kusnadi E, Cameron DP, Pearson
HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J,
et al: The dual inhibition of RNA Pol I transcription and PIM
kinase as a new therapeutic approach to treat advanced prostate
cancer. Clin Cancer Res. 22:5539–5552. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Boysen G, Barbieri CE, Prandi D, Blattner
M, Chae SS, Dahija A, Nataraj S, Huang D, Marotz C, Xu L, et al:
SPOP mutation leads to genomic instability in prostate cancer.
Elife. 4:e092072015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rodrigues LU, Rider L, Nieto C, Romero L,
Karimpour-Fard A, Loda M, Lucia MS, Wu M, Shi L, Cimic A, et al:
Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate
cancer. Cancer Res. 75:1021–1034. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shen C, Zhang J, Qi M, Chang YWY and BH:
Roles of serine protease inhibitor kazal type 1 (SPINK1) in
prostate cancer. Med chem. 4:725–728. 2014. View Article : Google Scholar
|
|
47
|
Liu D, Takhar M, Alshalalfa M, Erho N,
Shoag J, Jenkins RB, Karnes RJ, Ross AE, Schaeffer EM, Rubin MA, et
al: Impact of the SPOP mutant subtype on the interpretation of
clinical parameters in prostate cancer. JCO Precis Oncol.
2018:102018.
|
|
48
|
Johnson MH, Ross AE, Alshalalfa M, Erho N,
Yousefi K, Glavaris S, Fedor H, Han M, Faraj SF, Bezerra SM, et al:
SPINK1 Defines a molecular subtype of prostate cancer in men with
more rapid progression in an at risk, natural history radical
prostatectomy cohort. J Urol. 196:1436–1444. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yun SJ, Kim SK, Kim J, Cha EJ, Kim JS, Kim
SJ, Ha YS, Kim YH, Jeong P, Kang HW, et al: Transcriptomic features
of primary prostate cancer and their prognostic relevance to
castration-resistant prostate cancer. Oncotarget. 8:114845–114855.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tiwari R, Manzar N, Bhatia V, Yadav A,
Nengroo MA, Datta D, Carskadon S, Gupta N, Sigouros M, Khani F, et
al: Androgen deprivation upregulates SPINK1 expression and
potentiates cellular plasticity in prostate cancer. Nat Commun.
11:3842020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Geng C, Rajapakshe K, Shah SS, Shou J,
Eedunuri VK, Foley C, Fiskus W, Rajendran M, Chew SA, Zimmermann M,
et al: Androgen receptor is the key transcriptional mediator of the
tumor suppressor SPOP in prostate cancer. Cancer Res. 74:5631–5643.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lu D, Lee J, Lee A and Lee R: Development
of a new approach for the therapy of prostate cancer with SPOP
mutations. J Cancer Therapy. 6:841–848. 2015. View Article : Google Scholar
|
|
53
|
Boysen G, Rodrigues DN, Rescigno P, Seed
G, Dolling D, Riisnaes R, Crespo M, Zafeiriou Z, Sumanasuriya S,
Bianchini D, et al: SPOP-Mutated/CHD1-deleted lethal prostate
cancer and abiraterone sensitivity. Clin Cancer Res. 24:5585–5593.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ateeq B, Tomlins SA, Laxman B, Asangani
IA, Cao Q, Cao X, Li Y, Wang X, Feng FY, Pienta KJ, et al:
Therapeutic targeting of SPINK1-positive prostate cancer. Sci
Transl Med. 3:72ra172011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Stelloo S, Nevedomskaya E, Kim Y,
Schuurman K, Valle-Encinas E, Lobo J, Krijgsman O, Peeper DS, Chang
SL, Feng FY, et al: Integrative epigenetic taxonomy of primary
prostate cancer. Nat Commun. 9:49002018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Imamura Y, Sakamoto S, Endo T, Utsumi T,
Fuse M, Suyama T, Kawamura K, Imamoto T, Yano K, Uzawa K, et al:
FOXA1 promotes tumor progression in prostate cancer via the
insulin-like growth factor binding protein 3 pathway. PLoS One.
7:e424562012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Adams EJ, Karthaus WR, Hoover E, Liu D,
Gruet A, Zhang Z, Cho H, DiLoreto R, Chhangawala S, Liu Y, et al:
FOXA1 mutations alter pioneering activity, differentiation and
prostate cancer phenotypes. Nature. 571:408–412. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Song B, Park SH, Zhao JC, Fong KW, Li S,
Lee Y, Yang YA, Sridhar S, Lu X, Abdulkadir SA, et al: Targeting
FOXA1-mediated repression of TGF-β signaling suppresses
castration-resistant prostate cancer progression. J Clin Invest.
129:569–582. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gui B, Gui F, Takai T, Feng C, Bai X,
Fazli L, Dong X, Liu S, Zhang X, Zhang W, et al: Selective
targeting of PARP-2 inhibits androgen receptor signaling and
prostate cancer growth through disruption of FOXA1 function. Proc
Natl Acad Sci USA. 116:14573–14582. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim
SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite
2-hydroxyglutarate is a competitive inhibitor of
α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ghiam AF, Cairns RA, Thoms J, Dal Pra A,
Ahmed O, Meng A, Mak TW and Bristow RG: IDH mutation status in
prostate cancer. Oncogene. 31:38262012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mondesir J, Willekens C, Touat M and de
Botton S: IDH1 and IDH2 mutations as novel therapeutic targets:
Current perspectives. J Blood Med. 7:171–180. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wu YM, Cieślik M, Lonigro RJ, Vats P,
Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al:
Inactivation of CDK12 delineates a distinct immunogenic class of
advanced prostate cancer. Cell. 173:1770–1782.e14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tomlins SA, Rhodes DR, Yu J, Varambally S,
Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS,
et al: The role of SPINK1 in ETS rearrangement-negative prostate
cancers. Cancer Cell. 13:519–528. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hermans KG, van Marion R, van Dekken H,
Jenster G, van Weerden WM and Trapman J: TMPRSS2:ERG fusion by
translocation or interstitial deletion is highly relevant in
androgen-dependent prostate cancer, but is bypassed in late-stage
androgen receptor-negative prostate cancer. Cancer Res.
66:10658–10663. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Thangapazham R, Saenz F, Katta S, Mohamed
AA, Tan SH, Petrovics G, Srivastava S and Dobi A: Loss of the
NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene
expression in prostate cancer. BMC Cancer. 14:162014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fontugne J, Davis K, Palanisamy N, Udager
A, Mehra R, McDaniel AS, Siddiqui J, Rubin MA, Mosquera JM and
Tomlins SA: Clonal evaluation of prostate cancer foci in biopsies
with discontinuous tumor involvement by dual ERG/SPINK1
immunohistochemistry. Mod Pathol. 29:157–165. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Løvf M, Zhao S, Axcrona U, Johannessen B,
Bakken AC, Carm KT, Hoff AM, Myklebost O, Meza-Zepeda LA and Lie
AK: Multifocal primary prostate cancer exhibits high degree of
genomic heterogeneity. Eur Urol. 75:498–505. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huang CC, Deng FM, Kong MX, Ren Q, Melamed
J and Zhou M: Re-evaluating the concept of ‘dominant/index tumor
nodule’ in multifocal prostate cancer. Virchows Arch. 464:589–594.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
McNeal JE, Price HM, Redwine EA, Freiha FS
and Stamey TA: Stage A versus stage B adenocarcinoma of the
prostate: Morphological comparison and biological significance. J
Urol. 139:61–65. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu W, Laitinen S, Khan S, Vihinen M,
Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, et
al: Copy number analysis indicates monoclonal origin of lethal
metastatic prostate cancer. Nat Med. 15:559–565. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Haffner MC, Mosbruger T, Esopi DM, Fedor
H, Heaphy CM, Walker DA, Adejola N, Gürel M, Hicks J, Meeker AK, et
al: Tracking the clonal origin of lethal prostate cancer. J Clin
Invest. 123:4918–4922. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Barry M, Perner S, Demichelis F and Rubin
MA: TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer:
clinical and biologic implications. Urology. 70:630–633. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Furusato B, Gao CL, Ravindranath L, Chen
Y, Cullen J, McLeod DG, Dobi A, Srivastava S, Petrovics G and
Sesterhenn IA: Mapping of TMPRSS2-ERG fusions in the context of
multi-focal prostate cancer. Mod Pathol. 21:67–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yoshimoto M, Ding K, Sweet JM, Ludkovski
O, Trottier G, Song KS, Joshua AM, Fleshner NE, Squire JA and Evans
AJ: PTEN losses exhibit heterogeneity in multifocal prostatic
adenocarcinoma and are associated with higher Gleason grade. Mod
Pathol. 26:435–447. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Boutros PC, Fraser M, Harding NJ, de Borja
R, Trudel D, Lalonde E, Meng A, Hennings-Yeomans PH, McPherson A,
Sabelnykova VY, et al: Spatial genomic heterogeneity within
localized, multifocal prostate cancer. Nat Genet. 47:736–745. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cooper CS, Eeles R, Wedge DC, Van Loo P,
Gundem G, Alexandrov LB, Kremeyer B, Butler A, Lynch AG, Camacho N,
et al: Analysis of the genetic phylogeny of multifocal prostate
cancer identifies multiple independent clonal expansions in
neoplastic and morphologically normal prostate tissue. Nat Genet.
47:367–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Crawford ED, Heidenreich A, Lawrentschuk
N, Tombal B, Pompeo ACL, Mendoza-Valdes A, Miller K, Debruyne FMJ
and Klotz L: Androgen-targeted therapy in men with prostate cancer:
Evolving practice and future considerations. Prostate Cancer
Prostatic Dis. 22:24–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Vickers AJ, Bianco FJ, Serio AM, Eastham
JA, Schrag D, K EA, Reuther AM, Kattan MW, Pontes JE and Scardino
PT: The surgical learning curve for prostate cancer control after
radical prostatectomy. J Natl Cancer Inst. 99:1171–1177. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yu EY, Gulati R, Telesca D, Jiang P, Tam
S, Russell KJ, Nelson PS, Etzioni RD and Higano CS: Duration of
first off-treatment interval is prognostic for time to castration
resistance and death in men with biochemical relapse of prostate
cancer treated on a prospective trial of intermittent androgen
deprivation. J Clin Oncol. 28:2668–2673. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Huang KC, Evans A, Donnelly B and Bismar
TA: SPINK1 Overexpression in localized prostate cancer: A rare
event inversely associated with ERG expression and exclusive of
homozygous PTEN deletion. Pathol Oncol Res. 23:399–407. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Green SM, Mostaghel EA and Nelson PS:
Androgen action and metabolism in prostate cancer. Mol Cell
Endocrinol. 360:3–13. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Phin S, Moore MW and Cotter PD: Genomic
rearrangements of PTEN in prostate cancer. Front Oncol. 3:2402013.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Taylor BS, Schultz N, Hieronymus H,
Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva
B, et al: Integrative genomic profiling of human prostate cancer.
Cancer Cell. 18:11–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang J, Cunningham JJ, Brown JS and
Gatenby RA: Integrating evolutionary dynamics into treatment of
metastatic castrate-resistant prostate cancer. Nat Commun.
8:18162017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lawson DA, Zong Y, Memarzadeh S, Xin L,
Huang J and Witte ON: Basal epithelial stem cells are efficient
targets for prostate cancer initiation. Proc Natl Acad Sci USA.
107:2610–2615. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang D, Park D, Zhong Y, Lu Y, Rycaj K,
Gong S, Chen X, Liu X, Chao HP, Whitney P, et al: Stem cell and
neurogenic gene-expression profiles link prostate basal cells to
aggressive prostate cancer. Nat Commun. 7:107982016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nouri M, Caradec J, Lubik AA, Li N,
Hollier BG, Takhar M, Altimirano-Dimas M, Chen M, Roshan-Moniri M,
Butler M, et al: Therapy-induced developmental reprogramming of
prostate cancer cells and acquired therapy resistance. Oncotarget.
8:18949–18967. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu C, Wyatt AW, Lapuk AV, McPherson A,
McConeghy BJ, Bell RH, Anderson S, Haegert A, Brahmbhatt S, Shukin
R, et al: Integrated genome and transcriptome sequencing identifies
a novel form of hybrid and aggressive prostate cancer. J Pathol.
227:53–61. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lipianskaya J, Cohen A, Chen CJ, Hsia E,
Squires J, Li Z, Zhang Y, Li W, Chen X, Xu H and Huang J:
Androgen-deprivation therapy-induced aggressive prostate cancer
with neuroendocrine differentiation. Asian J Androl. 16:541–544.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Aparicio AM, Harzstark AL, Corn PG, Wen S,
Araujo JC, Tu SM, Pagliaro LC, Kim J, Millikan RE, Ryan C, et al:
Platinum-based chemotherapy for variant castrate-resistant prostate
cancer. Clin Cancer Res. 19:3621–3630. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bonkhoff H and Remberger K:
Differentiation pathways and histogenetic aspects of normal and
abnormal prostatic growth: A stem cell model. Prostate. 28:98–106.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Cortés MA, Cariaga-Martinez AE, Lobo MV,
Martín Orozco RM, Motiño O, Rodríguez-Ubreva FJ, Angulo J,
López-Ruiz P and Colás B: EGF promotes neuroendocrine-like
differentiation of prostate cancer cells in the presence of
LY294002 through increased ErbB2 expression independent of the
phosphatidylinositol 3-kinase-AKT pathway. Carcinogenesis.
33:1169–1177. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Abrahamsson PA, Wadström LB, Alumets J,
Falkmer S and Grimelius L: Peptide-hormone- and
serotonin-immunoreactive tumour cells in carcinoma of the prostate.
Pathol Res Pract. 182:298–307. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Thompson J, Hyytinen ER, Haapala K,
Rantala I, Helin HJ, Jänne OA, Palvimo JJ and Koivisto PA: Androgen
receptor mutations in high-grade prostate cancer before hormonal
therapy. Lab Invest. 83:1709–1713. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Röpke A, Erbersdobler A, Hammerer P,
Palisaar J, John K, Stumm M and Wieacker P: Gain of androgen
receptor gene copies in primary prostate cancer due to X chromosome
polysomy. Prostate. 59:59–68. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nouri M, Ratther E, Stylianou N, Nelson
CC, Hollier BG and Williams ED: Androgen-targeted therapy-induced
epithelial mesenchymal plasticity and neuroendocrine
transdifferentiation in prostate cancer: An opportunity for
intervention. Front Oncol. 4:3702014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Han G, Buchanan G, Ittmann M, Harris JM,
Yu X, Demayo FJ, Tilley W and Greenberg NM: Mutation of the
androgen receptor causes oncogenic transformation of the prostate.
Proc Natl Acad Sci USA. 102:1151–1156. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kaarbø M, Mikkelsen OL, Malerød L, Qu S,
Lobert VH, Akgul G, Halvorsen T, Maelandsmo GM and Saatcioglu F:
PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling
in prostate cancer cells. Cell Oncol. 32:11–27. 2010.PubMed/NCBI
|
|
100
|
Terry S and Beltran H: The many faces of
neuroendocrine differentiation in prostate cancer progression.
Front Oncol. 4:602014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Choi N, Zhang B, Zhang L, Ittmann M and
Xin L: Adult murine prostate basal and luminal cells are
self-sustained lineages that can both serve as targets for prostate
cancer initiation. Cancer Cell. 21:253–265. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Germann M, Wetterwald A, Guzmán-Ramirez N,
vander Pluijm G, Culig Z, Cecchini MG, Williams ED and Thalmann GN:
Stem-like cells with luminal progenitor phenotype survive
castration in human prostate cancer. Stem Cells. 30:1076–1086.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Evans AJ, Humphrey PA, Belani J, van der
Kwast TH and Srigley JR: Large cell neuroendocrine carcinoma of
prostate: A clinicopathologic summary of 7 cases of a rare
manifestation of advanced prostate cancer. Am J Surg Pathol.
30:684–693. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chen H, Sun Y, Wu C, Magyar CE, Li X,
Cheng L, Yao JL, Shen S, Osunkoya AO, Liang C and Huang J:
Pathogenesis of prostatic small cell carcinoma involves the
inactivation of the P53 pathway. Endocr Relat Cancer. 19:321–331.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Beltran H, Prandi D, Mosquera JM, Benelli
M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV,
Varambally S, et al: Divergent clonal evolution of
castration-resistant neuroendocrine prostate cancer. Nat Med.
22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Aparicio A, Logothetis CJ and Maity SN:
Understanding the lethal variant of prostate cancer: Power of
examining extremes. Cancer Discov. 1:466–468. 2011. View Article : Google Scholar : PubMed/NCBI
|