Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Decoding the heterogeneous landscape in the development prostate cancer (Review)

  • Authors:
    • Yenifer Yamile Segura-Moreno
    • María Carolina Sanabria-Salas
    • Rodolfo Varela
    • Jorge Andrés Mesa
    • Martha Lucia Serrano
  • View Affiliations / Copyright

    Affiliations: Cancer Biology Research Group, National Institute of Cancerology, Bogota 110411, Colombia, Department of Urology, National Institute of Cancerology, Bogota 110411, Colombia, Department of Pathology, National Institute of Cancerology, Bogota 110411, Colombia
    Copyright: © Segura-Moreno et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 376
    |
    Published online on: March 15, 2021
       https://doi.org/10.3892/ol.2021.12637
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) is characterized as being histologically and molecularly heterogeneous; however, this is not only incorrect among individuals, but also at the multiple foci level, which originates in the prostate gland itself. The reasons for such heterogeneity have not been fully elucidated; however, understanding these may be crucial in determining the course of the disease. PCa is characterized by a complex network of chromosomal rearrangements, which simultaneously deregulate multiple genes; this could explain the appearance of exclusive events associated with molecular subtypes, which have been extensively investigated to establish clinical management and the development of therapies targeted to this type of cancer. From a clinical aspect, the prognosis of the patient has focused on the characteristics of the index lesion (the largest focus in PCa); however, a significant percentage of patients (11%) also exhibit an aggressive secondary foci, which may determine the prognosis of the disease, and could be the determining factor of why, in different studies, the classification of the subtypes does not have an association with prognosis. Due to the aforementioned reasons, the analysis of molecular subtypes in several foci, from the same individual could assist in determining the association between clinical evolution and management of patients with PCa. Castration‑resistant PCa (CRPC) has the worst prognosis and develops following androgen ablation therapy. Currently, there are two models to explain the development of CRPC: i) the selection model and ii) the adaptation model; both of which, have been found to include alterations described in the molecular subtypes, such as Enhancer of zeste 2 polycomb repressive complex 2 subunit overexpression, isocitrate dehydrogenase (NAPD+)1 and forkhead box A1 mutations, suggesting that the presence of specific molecular alterations could predict the development of CRPC. This type of analysis could lead to a biological understanding of PCa, to develop personalized medicine strategies, which could improve the response to treatment thus, avoiding the development of resistance. Therefore, the present review discusses the primary molecular factors, to which variable heterogeneity in PCa progress has been attributed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

IARC: Global Cancer Observatory https://gco.iarc.fr/today/home: GLOBOCAN, . 2018.The Global Cancer Observatory (GCO) is an interactive web-based platform presenting global cancer statistics to inform cancer control and research.

2 

Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus DM, et al: Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Lu-Yao G, Albertsen PC, Stanford JL, Stukel TA, Walker-Corkery E and Barry MJ: Screening, treatment, and prostate cancer mortality in the Seattle area and Connecticut: Fifteen-year follow-up. J Gen Intern Med. 23:1809–1814. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Partin AW: High-grade prostatic intraepithelial neoplasia on a prostate biopsy-what does it mean? Rev Urol. 4:157–158. 2002.PubMed/NCBI

5 

De Marzo AM, Marchi VL, Epstein JI and Nelson WG: Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am J Pathol. 155:1985–1992. 1999. View Article : Google Scholar : PubMed/NCBI

6 

Wei L, Wang J, Lampert E, Schlanger S, DePriest AD, Hu Q, Gomez EC, Murakam M, Glenn ST, Conroy J, et al: Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 71:183–192. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Epstein JI, Allsbrook WC, Amin MB and Egevad LL; ISUP Grading Committee, : The 2005 International society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol. 29:1228–1242. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR and Humphrey PA; Grading Committee, : The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI

9 

De Nunzio C, Pastore AL, Lombardo R, Simone G, Leonardo C, Mastroianni R, Collura D, Muto G, Gallucci M, Carbone A, et al: The new Epstein gleason score classification significantly reduces upgrading in prostate cancer patients. Eur J Surg Oncol. 44:835–839. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Baca SC and Garraway LA: The genomic landscape of prostate cancer. Front Endocrinol (Lausanne). 3:692012. View Article : Google Scholar : PubMed/NCBI

11 

Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, et al: Punctuated evolution of prostate cancer genomes. Cell. 153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 310:644–648. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al: The genomic complexity of primary human prostate cancer. Nature. 470:214–220. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, et al: Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 448:595–599. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Tomlins SA, Alshalalfa M, Davicioni E, Erho N, Yousefi K, Zhao S, Haddad Z, Den RB, Dicker AP, Trock BJ, et al: Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes. Eur Urol. 68:555–567. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Cancer Genome Atlas Research Network, . The Molecular Taxonomy of Primary Prostate Cancer. Cell. 163:1011–1025. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Dzamba M, Ramani AK, Buczkowicz P, Jiang Y, Yu M, Hawkins C and Brudno M: Identification of complex genomic rearrangements in cancers using CouGaR. Genome Res. 27:107–117. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Chun TY: Coincidence of bladder and prostate cancer. J Urol. 157:65–67. 1997. View Article : Google Scholar : PubMed/NCBI

20 

Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, Wu L, Li J, Hu M, Gong Y, et al: An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 17:443–454. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK and Rosenfeld MG: Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139:1069–1083. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N and Chinnaiyan AM: Induced chromosomal proximity and gene fusions in prostate cancer. Science. 326:12302009. View Article : Google Scholar : PubMed/NCBI

23 

Jung SH, Shin S, Kim MS, Baek IP, Lee JY, Lee SH, Kim TM, Lee SH and Chung YJ: Genetic progression of high grade prostatic intraepithelial neoplasia to prostate cancer. Eur Urol. 69:823–830. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, et al: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 101:811–816. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al: Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 19:664–678. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Williamson SR and Cheng L: Potential for targeted therapy in prostate cancers with ERG abnormalities. Asian J Androl. 13:781–782. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Karpova Y, Wu C, Divan A, McDonnell ME, Hewlett E, Makhov P, Gordon J, Ye M, Reitz AB, Childers WE, et al: Non-NAD-like PARP-1 inhibitors in prostate cancer treatment. Biochem Pharmacol. 167:149–162. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V, Malek A, Chiorino G, Catapano CV and Carbone GM: ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One. 5:e105472010. View Article : Google Scholar : PubMed/NCBI

29 

Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, et al: Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 4:209–221. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Gao T, Mei Y, Sun H, Nie Z, Liu X and Wang S: The association of Phosphatase and tensin homolog (PTEN) deletion and prostate cancer risk: A meta-analysis. Biomed Pharmacother. 83:114–121. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Leinonen KA, Saramäki OR, Furusato B, Kimura T, Takahashi H, Egawa S, Suzuki H, Keiger K, Ho Hahm S, Isaacs WB, et al: Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. Cancer Epidemiol Biomarkers Prev. 22:2333–2344. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Ngollo M, Lebert A, Dagdemir A, Judes G, Karsli-Ceppioglu S, Daures M, Kemeny JL, Penault-Llorca F, Boiteux JP, Bignon YJ, et al: The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: Relationship with clinicopathological parameters. BMC Cancer. 14:9942014. View Article : Google Scholar : PubMed/NCBI

33 

Ishigami-Yuasa M, Ekimoto H and Kagechika H: Class IIb HDAC inhibition enhances the inhibitory effect of Am80, a synthetic retinoid, in prostate cancer. Biol Pharm Bull. 42:448–452. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Bai Y, Zhang Z, Cheng L, Wang R, Chen X, Kong Y, Feng F, Ahmad N, Li L and Liu X: Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J Biol Chem. 294:9911–9923. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Taplin ME, Hussain A, Shah S, Neal D. Shore, Manish Agrawal, William Clark, et al: ProSTAR: A phase Ib/II study of CPI-1205, a small molecule inhibitor of EZH2, combined with enzalutamide (E) or abiraterone/prednisone (A/P) in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S and De Marzo AM: Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2:669–683. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 322:1695–699. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Börno ST, Fischer A, Kerick M, Fälth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, et al: Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2:1024–1035. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Melling N, Thomsen E, Tsourlakis MC, Kluth M, Hube-Magg C, Minner S, Koop C, Graefen M, Heinzer H, Wittmer C, et al: Overexpression of enhancer of zeste homolog 2 (EZH2) characterizes an aggressive subset of prostate cancers and predicts patient prognosis independently from pre- and postoperatively assessed clinicopathological parameters. Carcinogenesis. 36:1333–1340. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Uchiyama N, Tanaka Y and Kawamoto T: Aristeromycin and DZNeP cause growth inhibition of prostate cancer via induction of mir-26a. Eur J Pharmacol. 812:138–146. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Kirschner AN, Wang J, van der Meer R, Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O, Keeton EK, Ahdesmaki M, et al: PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J Natl Cancer Inst. 107:dju4072015. View Article : Google Scholar : PubMed/NCBI

42 

Rebello RJ, Kusnadi E, Cameron DP, Pearson HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J, et al: The dual inhibition of RNA Pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer. Clin Cancer Res. 22:5539–5552. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, Nataraj S, Huang D, Marotz C, Xu L, et al: SPOP mutation leads to genomic instability in prostate cancer. Elife. 4:e092072015. View Article : Google Scholar : PubMed/NCBI

44 

Rodrigues LU, Rider L, Nieto C, Romero L, Karimpour-Fard A, Loda M, Lucia MS, Wu M, Shi L, Cimic A, et al: Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer. Cancer Res. 75:1021–1034. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Shen C, Zhang J, Qi M, Chang YWY and BH: Roles of serine protease inhibitor kazal type 1 (SPINK1) in prostate cancer. Med chem. 4:725–728. 2014. View Article : Google Scholar

47 

Liu D, Takhar M, Alshalalfa M, Erho N, Shoag J, Jenkins RB, Karnes RJ, Ross AE, Schaeffer EM, Rubin MA, et al: Impact of the SPOP mutant subtype on the interpretation of clinical parameters in prostate cancer. JCO Precis Oncol. 2018:102018.

48 

Johnson MH, Ross AE, Alshalalfa M, Erho N, Yousefi K, Glavaris S, Fedor H, Han M, Faraj SF, Bezerra SM, et al: SPINK1 Defines a molecular subtype of prostate cancer in men with more rapid progression in an at risk, natural history radical prostatectomy cohort. J Urol. 196:1436–1444. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Yun SJ, Kim SK, Kim J, Cha EJ, Kim JS, Kim SJ, Ha YS, Kim YH, Jeong P, Kang HW, et al: Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget. 8:114845–114855. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, Carskadon S, Gupta N, Sigouros M, Khani F, et al: Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat Commun. 11:3842020. View Article : Google Scholar : PubMed/NCBI

51 

Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C, Fiskus W, Rajendran M, Chew SA, Zimmermann M, et al: Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res. 74:5631–5643. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Lu D, Lee J, Lee A and Lee R: Development of a new approach for the therapy of prostate cancer with SPOP mutations. J Cancer Therapy. 6:841–848. 2015. View Article : Google Scholar

53 

Boysen G, Rodrigues DN, Rescigno P, Seed G, Dolling D, Riisnaes R, Crespo M, Zafeiriou Z, Sumanasuriya S, Bianchini D, et al: SPOP-Mutated/CHD1-deleted lethal prostate cancer and abiraterone sensitivity. Clin Cancer Res. 24:5585–5593. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X, Li Y, Wang X, Feng FY, Pienta KJ, et al: Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med. 3:72ra172011. View Article : Google Scholar : PubMed/NCBI

55 

Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo J, Krijgsman O, Peeper DS, Chang SL, Feng FY, et al: Integrative epigenetic taxonomy of primary prostate cancer. Nat Commun. 9:49002018. View Article : Google Scholar : PubMed/NCBI

56 

Imamura Y, Sakamoto S, Endo T, Utsumi T, Fuse M, Suyama T, Kawamura K, Imamoto T, Yano K, Uzawa K, et al: FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway. PLoS One. 7:e424562012. View Article : Google Scholar : PubMed/NCBI

57 

Adams EJ, Karthaus WR, Hoover E, Liu D, Gruet A, Zhang Z, Cho H, DiLoreto R, Chhangawala S, Liu Y, et al: FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 571:408–412. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, Yang YA, Sridhar S, Lu X, Abdulkadir SA, et al: Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J Clin Invest. 129:569–582. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Gui B, Gui F, Takai T, Feng C, Bai X, Fazli L, Dong X, Liu S, Zhang X, Zhang W, et al: Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci USA. 116:14573–14582. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Ghiam AF, Cairns RA, Thoms J, Dal Pra A, Ahmed O, Meng A, Mak TW and Bristow RG: IDH mutation status in prostate cancer. Oncogene. 31:38262012. View Article : Google Scholar : PubMed/NCBI

62 

Mondesir J, Willekens C, Touat M and de Botton S: IDH1 and IDH2 mutations as novel therapeutic targets: Current perspectives. J Blood Med. 7:171–180. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 173:1770–1782.e14. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS, et al: The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 13:519–528. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM and Trapman J: TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res. 66:10658–10663. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Thangapazham R, Saenz F, Katta S, Mohamed AA, Tan SH, Petrovics G, Srivastava S and Dobi A: Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. BMC Cancer. 14:162014. View Article : Google Scholar : PubMed/NCBI

67 

Fontugne J, Davis K, Palanisamy N, Udager A, Mehra R, McDaniel AS, Siddiqui J, Rubin MA, Mosquera JM and Tomlins SA: Clonal evaluation of prostate cancer foci in biopsies with discontinuous tumor involvement by dual ERG/SPINK1 immunohistochemistry. Mod Pathol. 29:157–165. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Løvf M, Zhao S, Axcrona U, Johannessen B, Bakken AC, Carm KT, Hoff AM, Myklebost O, Meza-Zepeda LA and Lie AK: Multifocal primary prostate cancer exhibits high degree of genomic heterogeneity. Eur Urol. 75:498–505. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Huang CC, Deng FM, Kong MX, Ren Q, Melamed J and Zhou M: Re-evaluating the concept of ‘dominant/index tumor nodule’ in multifocal prostate cancer. Virchows Arch. 464:589–594. 2014. View Article : Google Scholar : PubMed/NCBI

70 

McNeal JE, Price HM, Redwine EA, Freiha FS and Stamey TA: Stage A versus stage B adenocarcinoma of the prostate: Morphological comparison and biological significance. J Urol. 139:61–65. 1988. View Article : Google Scholar : PubMed/NCBI

71 

Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, et al: Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 15:559–565. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, Adejola N, Gürel M, Hicks J, Meeker AK, et al: Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 123:4918–4922. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Barry M, Perner S, Demichelis F and Rubin MA: TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology. 70:630–633. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J, McLeod DG, Dobi A, Srivastava S, Petrovics G and Sesterhenn IA: Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol. 21:67–75. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Yoshimoto M, Ding K, Sweet JM, Ludkovski O, Trottier G, Song KS, Joshua AM, Fleshner NE, Squire JA and Evans AJ: PTEN losses exhibit heterogeneity in multifocal prostatic adenocarcinoma and are associated with higher Gleason grade. Mod Pathol. 26:435–447. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, Meng A, Hennings-Yeomans PH, McPherson A, Sabelnykova VY, et al: Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 47:736–745. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, Kremeyer B, Butler A, Lynch AG, Camacho N, et al: Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 47:367–372. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Crawford ED, Heidenreich A, Lawrentschuk N, Tombal B, Pompeo ACL, Mendoza-Valdes A, Miller K, Debruyne FMJ and Klotz L: Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis. 22:24–38. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Vickers AJ, Bianco FJ, Serio AM, Eastham JA, Schrag D, K EA, Reuther AM, Kattan MW, Pontes JE and Scardino PT: The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 99:1171–1177. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Yu EY, Gulati R, Telesca D, Jiang P, Tam S, Russell KJ, Nelson PS, Etzioni RD and Higano CS: Duration of first off-treatment interval is prognostic for time to castration resistance and death in men with biochemical relapse of prostate cancer treated on a prospective trial of intermittent androgen deprivation. J Clin Oncol. 28:2668–2673. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Huang KC, Evans A, Donnelly B and Bismar TA: SPINK1 Overexpression in localized prostate cancer: A rare event inversely associated with ERG expression and exclusive of homozygous PTEN deletion. Pathol Oncol Res. 23:399–407. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Green SM, Mostaghel EA and Nelson PS: Androgen action and metabolism in prostate cancer. Mol Cell Endocrinol. 360:3–13. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Phin S, Moore MW and Cotter PD: Genomic rearrangements of PTEN in prostate cancer. Front Oncol. 3:2402013. View Article : Google Scholar : PubMed/NCBI

84 

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative genomic profiling of human prostate cancer. Cancer Cell. 18:11–22. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Zhang J, Cunningham JJ, Brown JS and Gatenby RA: Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun. 8:18162017. View Article : Google Scholar : PubMed/NCBI

86 

Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J and Witte ON: Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA. 107:2610–2615. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Zhang D, Park D, Zhong Y, Lu Y, Rycaj K, Gong S, Chen X, Liu X, Chao HP, Whitney P, et al: Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun. 7:107982016. View Article : Google Scholar : PubMed/NCBI

88 

Nouri M, Caradec J, Lubik AA, Li N, Hollier BG, Takhar M, Altimirano-Dimas M, Chen M, Roshan-Moniri M, Butler M, et al: Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget. 8:18949–18967. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Wu C, Wyatt AW, Lapuk AV, McPherson A, McConeghy BJ, Bell RH, Anderson S, Haegert A, Brahmbhatt S, Shukin R, et al: Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer. J Pathol. 227:53–61. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Lipianskaya J, Cohen A, Chen CJ, Hsia E, Squires J, Li Z, Zhang Y, Li W, Chen X, Xu H and Huang J: Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. Asian J Androl. 16:541–544. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, Pagliaro LC, Kim J, Millikan RE, Ryan C, et al: Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 19:3621–3630. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Bonkhoff H and Remberger K: Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: A stem cell model. Prostate. 28:98–106. 1996. View Article : Google Scholar : PubMed/NCBI

93 

Cortés MA, Cariaga-Martinez AE, Lobo MV, Martín Orozco RM, Motiño O, Rodríguez-Ubreva FJ, Angulo J, López-Ruiz P and Colás B: EGF promotes neuroendocrine-like differentiation of prostate cancer cells in the presence of LY294002 through increased ErbB2 expression independent of the phosphatidylinositol 3-kinase-AKT pathway. Carcinogenesis. 33:1169–1177. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Abrahamsson PA, Wadström LB, Alumets J, Falkmer S and Grimelius L: Peptide-hormone- and serotonin-immunoreactive tumour cells in carcinoma of the prostate. Pathol Res Pract. 182:298–307. 1987. View Article : Google Scholar : PubMed/NCBI

95 

Thompson J, Hyytinen ER, Haapala K, Rantala I, Helin HJ, Jänne OA, Palvimo JJ and Koivisto PA: Androgen receptor mutations in high-grade prostate cancer before hormonal therapy. Lab Invest. 83:1709–1713. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Röpke A, Erbersdobler A, Hammerer P, Palisaar J, John K, Stumm M and Wieacker P: Gain of androgen receptor gene copies in primary prostate cancer due to X chromosome polysomy. Prostate. 59:59–68. 2004. View Article : Google Scholar : PubMed/NCBI

97 

Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG and Williams ED: Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: An opportunity for intervention. Front Oncol. 4:3702014. View Article : Google Scholar : PubMed/NCBI

98 

Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ, Tilley W and Greenberg NM: Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA. 102:1151–1156. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Kaarbø M, Mikkelsen OL, Malerød L, Qu S, Lobert VH, Akgul G, Halvorsen T, Maelandsmo GM and Saatcioglu F: PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Cell Oncol. 32:11–27. 2010.PubMed/NCBI

100 

Terry S and Beltran H: The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol. 4:602014. View Article : Google Scholar : PubMed/NCBI

101 

Choi N, Zhang B, Zhang L, Ittmann M and Xin L: Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell. 21:253–265. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Germann M, Wetterwald A, Guzmán-Ramirez N, vander Pluijm G, Culig Z, Cecchini MG, Williams ED and Thalmann GN: Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells. 30:1076–1086. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Evans AJ, Humphrey PA, Belani J, van der Kwast TH and Srigley JR: Large cell neuroendocrine carcinoma of prostate: A clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol. 30:684–693. 2006. View Article : Google Scholar : PubMed/NCBI

104 

Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L, Yao JL, Shen S, Osunkoya AO, Liang C and Huang J: Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer. 19:321–331. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Aparicio A, Logothetis CJ and Maity SN: Understanding the lethal variant of prostate cancer: Power of examining extremes. Cancer Discov. 1:466–468. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Segura-Moreno YY, Sanabria-Salas MC, Varela R, Mesa JA and Serrano ML: Decoding the heterogeneous landscape in the development prostate cancer (Review). Oncol Lett 21: 376, 2021.
APA
Segura-Moreno, Y.Y., Sanabria-Salas, M.C., Varela, R., Mesa, J.A., & Serrano, M.L. (2021). Decoding the heterogeneous landscape in the development prostate cancer (Review). Oncology Letters, 21, 376. https://doi.org/10.3892/ol.2021.12637
MLA
Segura-Moreno, Y. Y., Sanabria-Salas, M. C., Varela, R., Mesa, J. A., Serrano, M. L."Decoding the heterogeneous landscape in the development prostate cancer (Review)". Oncology Letters 21.5 (2021): 376.
Chicago
Segura-Moreno, Y. Y., Sanabria-Salas, M. C., Varela, R., Mesa, J. A., Serrano, M. L."Decoding the heterogeneous landscape in the development prostate cancer (Review)". Oncology Letters 21, no. 5 (2021): 376. https://doi.org/10.3892/ol.2021.12637
Copy and paste a formatted citation
x
Spandidos Publications style
Segura-Moreno YY, Sanabria-Salas MC, Varela R, Mesa JA and Serrano ML: Decoding the heterogeneous landscape in the development prostate cancer (Review). Oncol Lett 21: 376, 2021.
APA
Segura-Moreno, Y.Y., Sanabria-Salas, M.C., Varela, R., Mesa, J.A., & Serrano, M.L. (2021). Decoding the heterogeneous landscape in the development prostate cancer (Review). Oncology Letters, 21, 376. https://doi.org/10.3892/ol.2021.12637
MLA
Segura-Moreno, Y. Y., Sanabria-Salas, M. C., Varela, R., Mesa, J. A., Serrano, M. L."Decoding the heterogeneous landscape in the development prostate cancer (Review)". Oncology Letters 21.5 (2021): 376.
Chicago
Segura-Moreno, Y. Y., Sanabria-Salas, M. C., Varela, R., Mesa, J. A., Serrano, M. L."Decoding the heterogeneous landscape in the development prostate cancer (Review)". Oncology Letters 21, no. 5 (2021): 376. https://doi.org/10.3892/ol.2021.12637
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team