Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of exosomes in the immune microenvironment of ovarian cancer (Review)

  • Authors:
    • Xiao Li
    • Yang Liu
    • Shuangshuang Zheng
    • Tianyu Zhang
    • Jing Wu
    • Yue Sun
    • Jingzi Zhang
    • Guoyan Liu
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 377
    |
    Published online on: March 15, 2021
       https://doi.org/10.3892/ol.2021.12638
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer‑derived exosomes initiate cross‑talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid‑derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer‑associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Drakes ML and Stiff PJ: Regulation of ovarian cancer prognosis by immune cells in the tumor microenvironment. Cancers (Basel). 10:3022018. View Article : Google Scholar

3 

Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Albini A, Bruno A, Noonan DM and Mortara L: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front Immunol. 9:5272018. View Article : Google Scholar : PubMed/NCBI

5 

Cassim S and Pouyssegur J: Tumor microenvironment: A metabolic player that shapes the immune response. Int J Mol Sci. 21:1572019. View Article : Google Scholar

6 

Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, et al: Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 360:295–305. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Giordano C, La Camera G, Gelsomino L, Barone I, Bonofiglio D, Ando S and Catalano S: The biology of exosomes in breast cancer progression: Dissemination, immune evasion and metastatic colonization. Cancers (Basel). 12:21792020. View Article : Google Scholar

8 

Kulkarni B, Kirave P, Gondaliya P, Jash K, Jain A, Tekade RK and Kalia K: Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov Today. 24:2058–2067. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Lundholm M, Schroder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L and Wikström P: Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: Mechanism of immune evasion. PLoS One. 9:e1089252014. View Article : Google Scholar : PubMed/NCBI

10 

Cheng L, Wu S, Zhang K, Qing Y and Xu T: A comprehensive overview of exosomes in ovarian cancer: Emerging biomarkers and therapeutic strategies. J Ovarian Res. 10:732017. View Article : Google Scholar : PubMed/NCBI

11 

Beach A, Zhang HG, Ratajczak MZ and Kakar SS: Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 7:142014. View Article : Google Scholar : PubMed/NCBI

12 

Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar

13 

Sharma A and Johnson A: Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 235:1921–1932. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Iliev D, Strandskog G, Nepal A, Aspar A, Olsen R, Jørgensen J, Wolfson D, Ahluwalia BS, Handzhiyski J and Mironova R: Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. FEBS J. 285:3114–3133. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH and Wang Q: Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med. 40:834–844. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Shyu KG, Wang BW, Pan CM, Fang WJ and Lin CM: Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis. Int J Cardiol. 274:271–278. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Blick KE, Dooley WC and Ding WQ: Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 18:902016. View Article : Google Scholar : PubMed/NCBI

18 

Kobayashi M, Sawada K, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto K and Kimura T: Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochem Biophys Res Commun. 527:153–161. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Mittal S, Gupta P, Chaluvally-Raghavan P and Pradeep S: Emerging role of extracellular vesicles in immune regulation and cancer progression. Cancers (Basel). 12:35632020. View Article : Google Scholar

20 

Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X and Shen K: Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics. 80:171–182. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Peng P, Yan Y and Keng S: Exosomes in the ascites of ovarian cancer patients: Origin and effects on anti-tumor immunity. Oncol Rep. 25:749–762. 2011.PubMed/NCBI

22 

Luo Z, Wang Q, Lau WB, Lau B, Xu L, Zhao L, Yang H, Feng M, Xuan Y, Yang Y, et al: Tumor microenvironment: The culprit for ovarian cancer metastasis? Cancer Lett. 377:174–182. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Da Silva AC, Jammal MP, Crispim PCA, Murta EFC and Nomelini RS: The role of stroma in ovarian cancer. Immunol Invest. 49:406–424. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR and Jafri A: Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med. 16:2422018. View Article : Google Scholar : PubMed/NCBI

25 

Wen Z, Liu H, Li M, Li B, Gao W, Shao Q, Fan B, Zhao F, Wang Q, Xie Q, et al: Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene. 34:1241–1252. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Browning L, Patel MR, Horvath EB, Tawara K and Jorcyk CL: IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag Res. 10:6685–6693. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Sanmarco LM, Ponce NE, Visconti LM, Eberhardt N, Theumer MG, Minguez AR and Aoki MP: IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochim Biophys Acta Mol Basis Dis. 1863:857–869. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S and Jian Z: IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem. 119:9419–9432. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Fu XL, Duan W, Su CY, Mao FY, Lv YP, Teng YS, Yu PW, Zhuang Y and Zhao YL: Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother. 66:1597–1608. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Jiang B, Zhu SJ, Xiao SS and Xue M: miR-217 Inhibits M2-like macrophage polarization by suppressing secretion of interleukin-6 in ovarian cancer. Inflammation. 42:1517–1529. 2019. View Article : Google Scholar : PubMed/NCBI

31 

McLean K, Tan L, Bolland DE, Coffman LG, Peterson LF, Talpaz M, Neamati N and Buckanovich RJ: Leukemia inhibitory factor functions in parallel with interleukin-6 to promote ovarian cancer growth. Oncogene. 38:1576–1584. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Wang Y, Zong X, Mitra S, Mitra AK, Matei D and Nephew KP: IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells. JCI Insight. 3:e1223602018. View Article : Google Scholar

33 

Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, Marmé F, Umansky L, Umansky V, Eigenbrod T, et al: Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J Biol Chem. 288:36691–3702. 2013. View Article : Google Scholar : PubMed/NCBI

34 

De Marco M, Falco A, Festa M, Raffone A, Sandullo L, Rosati A, Reppucci F, Cammarota AL, Esposito F, Matassa DS, et al: Different mechanisms underlie IL-6 release in chemosensitive and chemoresistant ovarian carcinoma cells. Am J Cancer Res. 10:2596–2602. 2020.PubMed/NCBI

35 

Kumari N, Dwarakanath BS, Das A and Bhatt AN: Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37:11553–11572. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ and Li LZ: Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett. 295:110–123. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Kampan NC, Madondo MT, Reynolds J, Hallo J, McNally OM, Jobling TW, Stephens AN, Quinn MA and Plebanski M: Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Sci Rep. 10:22132020. View Article : Google Scholar : PubMed/NCBI

38 

Isobe A, Sawada K, Kinose Y, Ohyagi-Hara C, Nakatsuka E, Makino H, Ogura T, Mizuno T, Suzuki N, Morii E, et al: Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One. 10:e01180802015. View Article : Google Scholar : PubMed/NCBI

39 

Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W and Ma X: Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. Gynecol Oncol. 147:181–187. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Maccio A, Gramignano G, Cherchi MC, Tanca L, Melis L and Madeddu C: Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep. 10:60962020. View Article : Google Scholar : PubMed/NCBI

41 

Carroll MJ, Kapur A, Felder M, Patankar MS and Kreeger PK: M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget. 7:86608–86620. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Zhou ZN, Sharma VP, Beaty BT, Roh-Johnson M, Peterson EA, Van Rooijen N, Kenny PA, Wiley HS, Condeelis JS and Segall JE: Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene. 33:3784–3793. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Haque S and Morris JC: Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother. 13:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, Wagner U, Graumann J, Müller R and Reinartz S: Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis. 11:2492020. View Article : Google Scholar : PubMed/NCBI

45 

Dasari S, Fang Y and Mitra AK: Cancer associated fibroblasts: Naughty neighbors that drive ovarian cancer progression. Cancers (Basel). 10:4062018. View Article : Google Scholar

46 

Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, et al: Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 216:688–703. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 5:119242015. View Article : Google Scholar : PubMed/NCBI

48 

Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X and Yang M: Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene. 39:4227–4240. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, Jiang J, Dong W and Wang Z: Tumor cell-fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med. 44:2245–2255. 2019.PubMed/NCBI

50 

Liu CL, Pan HW, Torng PL, Fan MH and Mao TL: SRPX and HMCN1 regulate cancer-associated fibroblasts to promote the invasiveness of ovarian carcinoma. Oncol Rep. 42:2706–2715. 2019.PubMed/NCBI

51 

De Cicco P, Ercolano G and Ianaro A: The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 11:16802020. View Article : Google Scholar : PubMed/NCBI

52 

Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors in cancer therapy: A focus on T-regulatory cells. Immunol Cell Biol. 96:21–33. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Li X, Wang J, Wu W, Gao H, Liu N, Zhan G, Li L, Han L and Guo X: Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p-STAT3 signalling pathway. FEBS J. 287:5218–5235. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I: Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 23:587–599. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Dutsch-Wicherek MM, Szubert S, Dziobek K, Wisniewski M, Lukaszewska E, Wicherek L, Jozwicki W, Rokita W and Koper K: Analysis of the treg cell population in the peripheral blood of ovarian cancer patients in relation to the long-term outcomes. Ginekol Pol. 90:179–184. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Batlle E and Massague J: Transforming growth Factor-beta signaling in immunity and cancer. Immunity. 50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Zhou J, Jiang W, Huang W, Ye M and Zhu X: Prognostic values of transforming growth Factor-Beta subtypes in ovarian cancer. Biomed Res Int. 2020:21706062020.PubMed/NCBI

58 

Wen H, Qian M, He J, Li M, Yu Q and Leng Z: Inhibiting of self-renewal, migration and invasion of ovarian cancer stem cells by blocking TGF-beta pathway. PLoS One. 15:e02302302020. View Article : Google Scholar : PubMed/NCBI

59 

Bai Y, Li LD, Li J, Chen RF, Yu HL, Sun HF, Wang JY and Lu X: A FXYD5/TGFβ/SMAD positive feedback loop drives epithelial-to-mesenchymal transition and promotes tumor growth and metastasis in ovarian cancer. Int J Oncol. 56:301–314. 2020.PubMed/NCBI

60 

Fukui S, Nagasaka K, Miyagawa Y, Kikuchi-Koike R, Kawata Y, Kanda R, Ichinose T, Sugihara T, Hiraike H, Wada-Hiraike O, et al: The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-β/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer. Oncotarget. 10:5932–5948. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, Coward JI, Schioppa T, Robinson SC, Gallagher WM, et al: A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 72:66–75. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Carbotti G, Petretto A, Naschberger E, Sturzl M, Martini S, Mingari MC, Filaci G, Ferrini S and Fabbi M: Cytokine-Induced Guanylate Binding Protein 1 (GBP1) release from human ovarian cancer cells. Cancers (Basel). 12:4882020. View Article : Google Scholar

63 

Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, et al: Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 5:e102502016. View Article : Google Scholar : PubMed/NCBI

64 

Whiteside TL: The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncol. 13:2583–2592. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, Millard RW, Xiao DS, Ashraf M and Xu M: Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 8:45200–45212. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Wu Q, Zhou L, Lv D, Zhu X and Tang H: Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 12:532019. View Article : Google Scholar : PubMed/NCBI

67 

Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE and Selvendiran K: Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene. 37:3806–3821. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Matias Ostrowski NBC, Sophie Krumeich, Isabelle Fanget, Graça Raposo, Ariel Savina, et al: Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 12:19–30. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY and Hua KQ: Exosomal metastasis associated lung adenocarcinoma Transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 14:1960–1973. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ngan HYS and Wong AST: Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun. 9:22702018. View Article : Google Scholar : PubMed/NCBI

71 

Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G and Altevogt P: Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 107:563–571. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F and Tan HB: Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 470:126–133. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Xu SJ, Hu HT, Li HL and Chang S: The role of miRNAs in immune cell development, immune cell activation, and tumor immunity: With a focus on macrophages and natural killer cells. Cells. 8:11402019. View Article : Google Scholar

74 

Rhee I: Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 39:1588–1596. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Tashiro-Yamaji J, Kubota T and Yoshida R: Macrophage MHC receptor 2: A novel receptor on allograft (H-2D(d)K(d))-induced macrophage (H-2D(b)K(b)) recognizing an MHC class I molecule, H-2K(d), in mice. Gene. 384:1–8. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Chen X, Zhou J, Li X and Wang X, Lin Y and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 435:80–91. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Ruffell B, Affara NI and Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33:119–126. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Funes SC, Rios M, Escobar-Vera J and Kalergis AM: Implications of macrophage polarization in autoimmunity. Immunology. 154:186–195. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Madeddu C, Gramignano G, Kotsonis P, Coghe F, Atzeni V, Scartozzi M and Macciò A: Microenvironmental M1 tumor-associated macrophage polarization influences cancer-related anemia in advanced ovarian cancer: Key role of interleukin-6. Haematologica. 103:e388–e391. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, Wagner U, Müller-Brüsselbach S and Müller R: Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 134:32–42. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Nowak M and Klink M: The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar

83 

Zhu Q, Wu X, Wu Y and Wang X: Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep. 36:3472–3478. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Zhou J, Li X, Wu X, Zhang T, Zhu Q and Wang X, Wang H, Wang K, Lin Y and Wang X: Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Huang YJ, Huang TH, Yadav VK, Sumitra MR, Tzeng DT, Wei PL, Shih JW and Wu AT: Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphere-derived exosomal beta-catenin/STAT3/miR-1246 cargoes. Am J Cancer Res. 10:2337–2354. 2020.PubMed/NCBI

86 

Xiao L, He Y, Peng F, Yang J and Yuan C: Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res. 2020:97310492020. View Article : Google Scholar : PubMed/NCBI

87 

Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxic tumor-derived exosomal miR-301a Mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 78:4586–4598. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Li X, Lei Y, Wu M and Li N: Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci. 19:29582018. View Article : Google Scholar

90 

Piao YJ, Kim HS, Hwang EH, Woo J, Zhang M and Moon WK: Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget. 9:7398–7410. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM and Deshane JS: Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 9:13032020. View Article : Google Scholar

92 

Chen X, Ying X and Wang X, Wu X, Zhu Q and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 38:522–528. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Li X and Tang M: Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 9:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Ying X, Wu Q, Wu X, Zhu Q and Wang X, Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 7:43076–43087. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Wu Q, Wu X, Ying X, Zhu Q and Wang X, Jiang L, Chen X, Wu Y and Wang X: Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell Int. 17:622017. View Article : Google Scholar : PubMed/NCBI

96 

Hu Y, Li D, Wu A, Qiu X, Di W, Huang L and Qiu L: TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 393:60–67. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J and Zembala M: Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett. 113:76–82. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Baj-Krzyworzeka M, Baran J, Weglarczyk K, Szatanek R, Szaflarska A, Siedlar M and Zembala M: Tumour-derived microvesicles (TMV) mimic the effect of tumour cells on monocyte subpopulations. Anticancer Res. 30:3515–3520. 2010.PubMed/NCBI

99 

Baj-Krzyworzeka M, Mytar B, Szatanek R, Surmiak M, Weglarczyk K, Baran J and Siedlar M: Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J Transl Med. 14:362016. View Article : Google Scholar : PubMed/NCBI

100 

Moradi-Chaleshtori M, Bandehpour M, Soudi S, Mohammadi-Yeganeh S and Hashemi SM: In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes. Cancer Immunol Immunother. 2020.(Epub ahead of print). View Article : Google Scholar

101 

Yue S, Ye X, Zhou T, Gan D, Qian H, Fang W, Yao M, Zhang D, Shi H and Chen T: PGRN−/− TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci. 264:1186872020. View Article : Google Scholar : PubMed/NCBI

102 

Han JJ, Yu M, Houston N, Steinberg SM and Kohn EC: Progranulin is a potential prognostic biomarker in advanced epithelial ovarian cancers. Gynecol Oncol. 120:5–10. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Carlson AM, Maurer MJ, Goergen KM, Kalli KR, Erskine CL, Behrens MD, Knutson KL and Block MS: Utility of progranulin and serum leukocyte protease inhibitor as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Epidemiol Biomarkers Prev. 22:1730–1735. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Dong T, Yang D, Li R, Zhang L, Zhao H, Shen Y, Zhang X, Kong B and Wang L: PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol. 100:17–25. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Dou R, Hong Z, Tan X, Hu F, Ding Y, Wang W, Liang Z, Zhong R, Wu X and Weng X: Fas/FasL interaction mediates imbalanced cytokine/cytotoxicity responses of iNKT cells against Jurkat cells. Mol Immunol. 99:145–153. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Wallin RP, Screpanti V, Michaelsson J, Grandien A and Ljunggren HG: Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol. 33:2727–2735. 2003. View Article : Google Scholar : PubMed/NCBI

107 

Tanaka H, Kai S, Yamaguchi M, Misawa M, Fujimori Y, Yamamoto M and Hara H: Analysis of natural killer (NK) cell activity and adhesion molecules on NK cells from umbilical cord blood. Eur J Haematol. 71:29–38. 2003. View Article : Google Scholar : PubMed/NCBI

108 

Konjevic GM, Vuletic AM, Mirjacic Martinovic KM, Larsen AK and Jurisic VB: The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine. 117:30–40. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Pahl JHW, Cerwenka A and Ni J: Memory-Like NK Cells: Remembering a previous activation by cytokines and NK cell receptors. Front Immunol. 9:27962018. View Article : Google Scholar : PubMed/NCBI

110 

Gianchecchi E, Delfino DV and Fierabracci A: NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev. 17:142–154. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Zitti B and Bryceson YT: Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 42:37–46. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Rodriguez GM, Galpin KJC, McCloskey CW and Vanderhyden BC: The tumor microenvironment of epithelial ovarian cancer and its influence on response to immunotherapy. Cancers (Basel). 10:2422018. View Article : Google Scholar

113 

Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J and Ahn BC: Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials. 190-191:38–50. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Jong AY, Wu CH, Li J, Sun J, Fabbri M, Wayne AS and Seeger RC: Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 6:12943682017. View Article : Google Scholar : PubMed/NCBI

115 

Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, et al: Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 189:2833–2842. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Di Pace A, Tumino N, Besi F, Alicata C, Conti LA, Munari E, Maggi E, Vacca P and Moretta L: Characterization of human NK cell-derived exosomes: Role of DNAM1 receptor in exosome-mediated cytotoxicity against tumor. Cancers (Basel). 12:6612020. View Article : Google Scholar

117 

Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, Jeong SY, Lee SW, Lee J and Ahn BC: Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 7:2732–2745. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC and Fabbri M: Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res. 79:1151–1164. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI

120 

Labani-Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, Dehlin E, Baranov V and Mincheva-Nilsson L: Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 37:5455–5466. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Ishii S and Koziel MJ: Immune responses during acute and chronic infection with hepatitis C virus. Clin Immunol. 128:133–147. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Kaech SM and Cui W: Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 12:749–761. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Thommen DS and Schumacher TN: T cell dysfunction in cancer. Cancer Cell. 33:547–562. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Hiltbrunner S, Larssen P, Eldh M, Martinez-Bravo MJ, Wagner AK, Karlsson MC and Gabrielsson S: Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget. 7:38707–38717. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, Martín-Cófreces NB, Jaso-Tamame ÁL, Iborra S, Jorge I, et al: Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 9:26582018. View Article : Google Scholar : PubMed/NCBI

126 

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996. View Article : Google Scholar : PubMed/NCBI

127 

Yang J, Bi L, He X, Wang Z, Qian Y, Xiao L and Shi B: Follicular helper T cell derived exosomes promote B cell proliferation and differentiation in antibody-mediated rejection after renal transplantation. Biomed Res Int. 2019:63879242019.PubMed/NCBI

128 

Fernandez-Messina L, Rodriguez-Galan A, de Yebenes VG, Gutierrez-Vazquez C, Tenreiro S, Seabra MC, Ramiro AR and Sánchez-Madrid F: Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep. 21:e489252020. View Article : Google Scholar : PubMed/NCBI

129 

Li Y, Yang Y, Xiong A, Wu X, Xie J, Han S and Zhao S: Comparative gene expression analysis of lymphocytes treated with exosomes derived from ovarian cancer and ovarian cysts. Front Immunol. 8:6072017. View Article : Google Scholar : PubMed/NCBI

130 

Xu HY, Li N, Yao N, Xu XF, Wang HX, Liu XY and Zhang Y: CD8+ T cells stimulated by exosomes derived from RenCa cells mediate specific immune responses through the FasL/Fas signaling pathway and, combined with GM-CSF and IL-12, enhance the anti-renal cortical adenocarcinoma effect. Oncol Rep. 42:866–879. 2019.PubMed/NCBI

131 

Taylor DD, Gerçel-Taylor C, Lyons KS, Stanson J and Whiteside TL: T-Cell apoptosis and suppression of T-Cell Receptor/CD3-zeta by Fas Ligand-Containing membrane vesicles shed from ovarian tumors. Clin Cancer Res. 9:5113–5119. 2003.PubMed/NCBI

132 

Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL and Min WP: Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 35:169–173. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Filipazzi P, Burdek M, Villa A, Rivoltini L and Huber V: Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 22:342–349. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Wang X, Yao Y and Jin M: Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells. Aging (Albany NY). 12:19095–19106. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Asare-Werehene M, Communal L, Carmona E, Han Y, Song YS, Burger D, Mes-Masson AM and Tsang BK: Plasma gelsolin inhibits CD8+ T-cell function and regulates glutathione production to confer chemoresistance in ovarian cancer. Cancer Res. 80:3959–3971. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Taylor DD and Gercel-Taylor C: Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 92:305–311. 2005. View Article : Google Scholar : PubMed/NCBI

137 

Shenoy GN, Loyall J, Berenson CS, Kelleher RJ Jr, Iyer V, Balu-Iyer SV, Odunsi K and Bankert RB: Sialic Acid-Dependent inhibition of T Cells by Exosomal Ganglioside GD3 in ovarian tumor microenvironments. J Immunol. 201:3750–3758. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Webb TJ, Li X, Giuntoli RL II, Lopez PH, Heuser C, Schnaar RL, Tsuji M, Kurts C, Oelke M and Schneck JP: Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 72:3744–3752. 2012. View Article : Google Scholar : PubMed/NCBI

139 

Shenoy GN, Loyall J, Maguire O, Iyer V, Kelleher RJ Jr, Minderman H, Wallace PK, Odunsi K, Balu-Iyer SV and Bankert RB: Exosomes Associated with human ovarian tumors harbor a reversible checkpoint of T-cell Responses. Cancer Immunol Res. 6:236–247. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Clayton A, Al-Taei S, Webber J, Mason MD and Tabi Z: Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol. 187:676–683. 2011. View Article : Google Scholar : PubMed/NCBI

141 

Kelleher RJ Jr, Balu-Iyer S, Loyall J, Sacca AJ, Shenoy GN, Peng P, Iyer V, Fathallah AM, Berenson CS, Wallace PK, et al: Extracellular vesicles present in human ovarian tumor microenvironments induce a Phosphatidylserine-Dependent arrest in the T-cell signaling cascade. Cancer Immunol Res. 3:1269–1278. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Li X and Wang X: The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer. 16:922017. View Article : Google Scholar : PubMed/NCBI

143 

Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 13:1072020. View Article : Google Scholar : PubMed/NCBI

144 

Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S and Mécheri S: Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. 170:3037–3045. 2003. View Article : Google Scholar : PubMed/NCBI

145 

Robbins PD and Morelli AE: Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 14:195–208. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Lindenbergh MFS, Koerhuis DGJ, Borg EGF, van't Veld EM, Driedonks TAP, Wubbolts R, Stoorvogel W and Boes M: Bystander T-Cells Support Clonal T-Cell activation by controlling the release of dendritic Cell-Derived Immune-Stimulatory extracellular vesicles. Front Immunol. 10:4482019. View Article : Google Scholar : PubMed/NCBI

147 

Zheng L, Li Z, Ling W, Zhu D, Feng Z and Kong L: Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of Treg and Th17 Cells after ischemia reperfusion. Cell Physiol Biochem. 46:740–756. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Li QL, Bu N, Yu YC, Hua W and Xin XY: Exvivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment. Clin Med Oncol. 2:461–467. 2008.PubMed/NCBI

149 

Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G and Zitvogel L: Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 126:1224–1232. 2016. View Article : Google Scholar : PubMed/NCBI

150 

Ridge SM, Sullivan FJ and Glynn SA: Mesenchymal stem cells: Key players in cancer progression. Mol Cancer. 16:312017. View Article : Google Scholar : PubMed/NCBI

151 

De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J and Arnalich-Montiel F: Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Curr Mol Med. 12:574–591. 2012. View Article : Google Scholar : PubMed/NCBI

152 

Lis R, Touboul C, Raynaud CM, Malek JA, Suhre K, Mirshahi M and Rafii A: Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One. 7:e383402012. View Article : Google Scholar : PubMed/NCBI

153 

Zhang B, Tian X, Hao J, Xu G and Zhang W: Mesenchymal Stem Cell-Derived extracellular vesicles in tissue regeneration. Cell Transplant. 29:9636897209085002020. View Article : Google Scholar : PubMed/NCBI

154 

Khare D, Or R, Resnick I, Barkatz C, Almogi-Hazan O and Avni B: Mesenchymal stromal Cell-Derived exosomes affect mRNA expression and function of B-Lymphocytes. Front Immunol. 9:30532018. View Article : Google Scholar : PubMed/NCBI

155 

Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A and Hass R: Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol. 47:244–252. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Sharma S, Alharbi M, Kobayashi M, Lai A, Guanzon D, Zuniga F, Ormazabal V, Palma C, Scholz-Romero K, Rice GE, et al: Proteomic analysis of exosomes reveals an association between cell invasiveness and exosomal bioactivity on endothelial and mesenchymal cell migration in vitro. Clin Sci (Lond). 132:2029–2044. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar : PubMed/NCBI

158 

Vera N, Acuna-Gallardo S, Grunenwald F, Caceres-Verschae A, Realini O, Acuna R, Lladser A, Illanes SE and Varas-Godoy M: Small extracellular vesicles released from ovarian cancer spheroids in response to Cisplatin Promote the Pro-Tumorigenic activity of mesenchymal stem cells. Int J Mol Sci. 20:49722019. View Article : Google Scholar

159 

Qiu L, Wang J, Chen M, Chen F and Tu W: Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2-mediated PI3K/Akt axis. Int J Mol Med. 46:609–620. 2020. View Article : Google Scholar : PubMed/NCBI

160 

Reza AMMT, Choi YJ, Yasuda H and Kim JH: Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep. 6:384982016. View Article : Google Scholar : PubMed/NCBI

161 

Melzer C, Rehn V, Yang Y, Bahre H, von der Ohe J and Hass R: Taxol-Loaded MSC-Derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel). 11:7982019. View Article : Google Scholar

162 

Tanaka A and Sakaguchi S: Regulatory T cells in cancer immunotherapy. Cell Res. 27:109–118. 2017. View Article : Google Scholar : PubMed/NCBI

163 

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI

164 

Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M and Whiteside TL: Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 5:e114692010. View Article : Google Scholar : PubMed/NCBI

165 

Gabrilovich DI: Myeloid-Derived suppressor cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI

166 

Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, et al: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 120:457–471. 2010.PubMed/NCBI

167 

Balaburski GM, Leu JI, Beeharry N, Hayik S, Andrake MD, Zhang G, Herlyn M, Villanueva J, Dunbrack RL Jr, Yen T, et al: A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 11:219–229. 2013. View Article : Google Scholar : PubMed/NCBI

168 

Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, Richaud S, Mjahed H, Isambert N, Clausse V, et al: Restoring anticancer immune response by targeting Tumor-Derived exosomes with a HSP70 Peptide Aptamer. J Natl Cancer Inst. 108:2015.(Epub ahead of print). PubMed/NCBI

169 

Liu T, Han C, Wang S, Fang P, Ma Z, Xu L and Yin R: Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI

170 

Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH, Shin JW and Lee KW: Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol. 123:379–386. 2011. View Article : Google Scholar : PubMed/NCBI

171 

Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ and Mok SC: TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 73:5016–5028. 2013. View Article : Google Scholar : PubMed/NCBI

172 

Li W, Zhang X, Wang J, Li M, Cao C, Tan J, Ma D and Gao Q: TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 8:96035–96047. 2017. View Article : Google Scholar : PubMed/NCBI

173 

Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI

174 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

175 

Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI

176 

Dickman CT, Lawson J, Jabalee J, MacLellan SA, LePard NE, Bennewith KL and Garnis C: Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget. 8:15252–15266. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Kanlikilicer P, Rashed MH, Bayraktar R, Mitra R, Ivan C, Aslan B, Zhang X, Filant J, Silva AM, Rodriguez-Aguayo C, et al: Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 76:7194–7207. 2016. View Article : Google Scholar : PubMed/NCBI

178 

Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A, Aslan B, et al: Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: A possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget. 8:20145–20164. 2017. View Article : Google Scholar : PubMed/NCBI

179 

Masoumi-Dehghi S, Babashah S and Sadeghizadeh M: MicroRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways. J Cell Commun Signal. 14:233–244. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Yoshimura A, Sawada K, Nakamura K, Kinose Y, Nakatsuka E, Kobayashi M, Miyamoto M, Ishida K, Matsumoto Y, Kodama M, et al: Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 18:10652018. View Article : Google Scholar : PubMed/NCBI

181 

Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD and Rice GE: Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 12:42014. View Article : Google Scholar : PubMed/NCBI

182 

Pan C, Stevic I, Muller V, Ni Q, Oliveira-Ferrer L, Pantel K and Schwarzenbach H: Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 12:1935–1948. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, Ishida K, Nakatsuka E, Kodama M, Hashimoto K, et al: Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 11:812018. View Article : Google Scholar : PubMed/NCBI

184 

Cheng L, Zhang K, Qing Y, Li D, Cui M, Jin P and Xu T: Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 13:92020. View Article : Google Scholar : PubMed/NCBI

185 

Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI, Kurachi H, et al: Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res. 15:78–92. 2017. View Article : Google Scholar : PubMed/NCBI

186 

Dorayappan KDP, Wallbillich JJ, Cohn DE and Selvendiran K: The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol. 142:199–205. 2016. View Article : Google Scholar : PubMed/NCBI

187 

Enriquez VA, Cleys ER, Da Silveira JC, Spillman MA, Winger QA and Bouma GJ: High LIN28A expressing ovarian cancer cells secrete exosomes that induce invasion and migration in HEK293 cells. Biomed Res Int. 2015:7013902015. View Article : Google Scholar : PubMed/NCBI

188 

Stope MB, Klinkmann G, Diesing K, Koensgen D, Burchardt M and Mustea A: Heat Shock Protein HSP27 secretion by ovarian cancer cells is linked to intracellular expression levels, occurs independently of the endoplasmic reticulum pathway and HSP27's phosphorylation status, and is mediated by exosome liberation. Dis Markers. 2017:15753742017. View Article : Google Scholar : PubMed/NCBI

189 

Nam GH, Choi Y, Kim GB, Kim S, Kim SA and Kim IS: Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy. Adv Mater. 32:e20024402020. View Article : Google Scholar : PubMed/NCBI

190 

Koyama Y, Ito T, Hasegawa A, Eriguchi M, Inaba T, Ushigusa T and Sugiura K: Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: A novel vaccine for cancer therapy. Biotechnol Lett. 38:1857–1866. 2016. View Article : Google Scholar : PubMed/NCBI

191 

Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, et al: A new approach for loading anticancer drugs into mesenchymal stem Cell-Derived exosome mimetics for cancer therapy. Front Pharmacol. 9:11162018. View Article : Google Scholar : PubMed/NCBI

192 

Feng Y, Hang W, Sang Z, Li S, Xu W, Miao Y, Xi X and Huang Q: Identification of exosomal and non-exosomal microRNAs associated with the drug resistance of ovarian cancer. Mol Med Rep. 19:3376–3392. 2019.PubMed/NCBI

193 

Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019. View Article : Google Scholar : PubMed/NCBI

194 

Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, Mitra R, Karagoz K, Bayraktar E, Zhang X, et al: Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine. 38:100–112. 2018. View Article : Google Scholar : PubMed/NCBI

195 

Guo H, Ha C, Dong H, Yang Z, Ma Y and Ding Y: Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int. 19:3472019. View Article : Google Scholar : PubMed/NCBI

196 

Cao YL, Zhuang T, Xing BH, Li N and Li Q: Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct. 35:296–303. 2017. View Article : Google Scholar : PubMed/NCBI

197 

Kim SM, Yang Y, Oh SJ, Hong Y, Seo M and Jang M: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 266:8–16. 2017. View Article : Google Scholar : PubMed/NCBI

198 

Tsou P, Katayama H, Ostrin EJ and Hanash SM: The emerging role of B Cells in tumor immunity. Cancer Res. 76:5597–5601. 2016. View Article : Google Scholar : PubMed/NCBI

199 

Im EJ, Lee CH, Moon PG, Rangaswamy GG, Lee B, Lee JM, Lee JC, Jee JG, Bae JS, Kwon TK, et al: Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun. 10:13872019. View Article : Google Scholar : PubMed/NCBI

200 

Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX and Wolfram J: Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 9:8001–8017. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Pisano S, Pierini I, Gu J, Gazze A, Francis LW, Gonzalez D, Conlan RS and Corradetti B: Immune (Cell) Derived Exosome Mimetics (IDEM) as a treatment for ovarian cancer. Front Cell Dev Biol. 8:5535762020. View Article : Google Scholar : PubMed/NCBI

202 

Ge L, Zhang N, Li D, Wu Y, Wang H and Wang J: Circulating exosomal small RNAs are promising non-invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med. 24:14502–14513. 2020. View Article : Google Scholar : PubMed/NCBI

203 

Chen Z, Liang Q, Zeng H, Zhao Q, Guo Z, Zhong R, Xie M, Cai X, Su J, He Z, et al: Exosomal CA125 as a promising biomarker for ovarian cancer diagnosis. J Cancer. 11:6445–6453. 2020. View Article : Google Scholar : PubMed/NCBI

204 

Wang Y, Li Q, Shi H, Tang K, Qiao L, Yu G, Ding C and Yu S: Microfluidic Raman biochip detection of exosomes: A promising tool for prostate cancer diagnosis. Lab Chip. 20:4632–4637. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J and Liu G: Role of exosomes in the immune microenvironment of ovarian cancer (Review). Oncol Lett 21: 377, 2021.
APA
Li, X., Liu, Y., Zheng, S., Zhang, T., Wu, J., Sun, Y. ... Liu, G. (2021). Role of exosomes in the immune microenvironment of ovarian cancer (Review). Oncology Letters, 21, 377. https://doi.org/10.3892/ol.2021.12638
MLA
Li, X., Liu, Y., Zheng, S., Zhang, T., Wu, J., Sun, Y., Zhang, J., Liu, G."Role of exosomes in the immune microenvironment of ovarian cancer (Review)". Oncology Letters 21.5 (2021): 377.
Chicago
Li, X., Liu, Y., Zheng, S., Zhang, T., Wu, J., Sun, Y., Zhang, J., Liu, G."Role of exosomes in the immune microenvironment of ovarian cancer (Review)". Oncology Letters 21, no. 5 (2021): 377. https://doi.org/10.3892/ol.2021.12638
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J and Liu G: Role of exosomes in the immune microenvironment of ovarian cancer (Review). Oncol Lett 21: 377, 2021.
APA
Li, X., Liu, Y., Zheng, S., Zhang, T., Wu, J., Sun, Y. ... Liu, G. (2021). Role of exosomes in the immune microenvironment of ovarian cancer (Review). Oncology Letters, 21, 377. https://doi.org/10.3892/ol.2021.12638
MLA
Li, X., Liu, Y., Zheng, S., Zhang, T., Wu, J., Sun, Y., Zhang, J., Liu, G."Role of exosomes in the immune microenvironment of ovarian cancer (Review)". Oncology Letters 21.5 (2021): 377.
Chicago
Li, X., Liu, Y., Zheng, S., Zhang, T., Wu, J., Sun, Y., Zhang, J., Liu, G."Role of exosomes in the immune microenvironment of ovarian cancer (Review)". Oncology Letters 21, no. 5 (2021): 377. https://doi.org/10.3892/ol.2021.12638
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team