|
1
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594.
2008. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rotow J and Bivona TG: Understanding and
targeting resistance mechanisms in NSCLC. Nat Rev Cancer.
17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Arbour KC and Riely GJ: Systemic therapy
for locally advanced and metastatic non-small cell lung cancer: A
review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Holohan C, Schaeybroeck SV, Longley DB and
Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev
Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Salem A, Asselin MC, Reymen B, Jackson A,
Lambin P, West CM, OConnor JP and Faivre-Finn C: Targeting hypoxia
to improve non-small cell lung cancer outcome. J Natl Cancer Inst.
110:2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fischer C, Leithner K, Wohlkoenig C,
Quehenberger F, Bertsch A, Olschewski A, Olschewski H and Hrzenjak
A: Panobinostat reduces hypoxia-induced cisplatin resistance of
non-small cell lung carcinoma cells via HIF-1α destabilization. Mol
Cancer. 14:42015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Navab R, Strumpf D, To C, Pasko E, Kim KS,
Park CJ, Hai J, Liu J, Jonkman J, Barczyk M, et al: Integrin α11β1
regulates cancer stromal stiffness and promotes tumorigenicity and
metastasis in non-small cell lung cancer. Oncogene. 35:1899–1908.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Su S, Chen J, Yao H, Liu J, Yu S, Lao L,
Wang M, Luo M, Xing Y, Chen F, et al:
CD10+GPR77+ cancer-associated fibroblasts
promote cancer formation and chemoresistance by sustaining cancer
stemness. Cell. 172:841–856.e16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang W, Li Q, Yamada T, Matsumoto K,
Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S and
Yano S: Crosstalk to stromal fibroblasts induces resistance of lung
cancer to epidermal growth factor receptor tyrosine kinase
inhibitors. Clin Cancer Res. 15:6630–6638. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Radisky DC: Fibroblasts act as
co-conspirators for chemotherapy resistance. Cancer Biol Ther.
7:1348–1349. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ishii G, Ochiai A and Neri S: Phenotypic
and functional heterogeneity of cancer-associated fibroblast within
the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA,
Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, et al: Cancer-associated
fibroblasts regulate the plasticity of lung cancer stemness via
paracrine signalling. Nat Commun. 5:34722014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Leung CS, Yeung TL, Yip KP, Wong KK, Ho
SY, Mangala LS, Sood AK, Lopez-Berestein G, Sheng J, Wong ST, et
al: Cancer-associated fibroblasts regulate endothelial adhesion
protein LPP to promote ovarian cancer chemoresistance. J Clin
Invest. 128:589–606. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
New J, Arnold L, Ananth M, Alvi S,
Thornton M, Werner L, Tawfik O, Dai H, Shnayder Y, Kakarala K, et
al: Secretory autophagy in cancer-associated fibroblasts promotes
head and neck cancer progression and offers a novel therapeutic
target. Cancer Res. 77:6679–6691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Allaoui R, Bergenfelz C, Mohlin S,
Hagerling C, Salari K, Werb Z, Anderson RL, Ethier SP, Jirström K,
Påhlman S, et al: Cancer-associated fibroblast-secreted CXCL16
attracts monocytes to promote stroma activation in triple-negative
breast cancers. Nat Commun. 7:130502016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sun Y, Wang R, Qiao M, Xu Y, Guan W and
Wang L: Cancer associated fibroblasts tailored tumor
microenvironment of therapy resistance in gastrointestinal cancers.
J Cell Physiol. 233:6359–6369. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
von Ahrens D, Bhagat TD, Nagrath D, Maitra
A and Verma A: The role of stromal cancer-associated fibroblasts in
pancreatic cancer. J Hematol Oncol. 10:762017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen
S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts
promote the stemness and chemoresistance of colorectal cancer by
transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ying L, Zhu Z, Xu Z, He T, Li E, Guo Z,
Liu F, Jiang C and Wang Q: Cancer associated fibroblast-derived
hepatocyte growth factor inhibits the paclitaxel-induced apoptosis
of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78
signaling on a microfluidic platform. PLoS One. 10:e01295932015.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shan T, Chen S, Chen X, Lin WR, Li W, Ma
J, Wu T, Ji H, Li Y, Cui X and Kang Y: Prometastatic mechanisms of
CAF-mediated EMT regulation in pancreatic cancer cells. Int J
Oncol. 50:121–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lai D, Ma L and Wang F: Fibroblast
activation protein regulates tumor-associated fibroblasts and
epithelial ovarian cancer cells. Int J Oncol. 41:541–550. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Foster DS, Jones RE, Ransom RC, Longaker
MT and Norton JA: The evolving relationship of wound healing and
tumor stroma. JCI Insight. 3:e999112018. View Article : Google Scholar
|
|
23
|
Kojima Y, Acar A, Eaton EN, Mellody KT,
Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg
RA and Orimo A: Autocrine TGF-beta and stromal cell-derived
factor-1 (SDF-1) signaling drives the evolution of tumor-promoting
mammary stromal myofibroblasts. Proc Natl Acad Sci USA.
107:20009–20014. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Louault K, Li R and DeClerck YA:
Cancer-associated fibroblasts: Understanding their heterogeneity.
Cancers (Basel). 12:31082020. View Article : Google Scholar
|
|
25
|
An Y, Liu F, Chen Y and Yang Q: Crosstalk
between cancer-associated fibroblasts and immune cells in cancer. J
Cell Mol Med. 24:13–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Borriello L, Nakata R, Sheard MA,
Fernandez GE, Sposto R, Malvar J, Blavier L, Shimada H, Asgharzadeh
S, Seeger RC and DeClerck YA: Cancer-associated fibroblasts share
characteristics and protumorigenic activity with mesenchymal
stromal cells. Cancer Res. 77:5142–5157. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Koliaraki V, Pallangyo CK, Greten FR and
Kollias G: Mesenchymal cells in colon cancer. Gastroenterology.
152:964–979. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nair N, Calle AS, Zahra MH, Prieto-Vila M,
Oo AKK, Hurley L, Vaidyanath A, Seno A, Masuda J, Iwasaki Y, et al:
A cancer stem cell model as the point of origin of
cancer-associated fibroblasts in tumor microenvironment. Sci Rep.
7:68382017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zeisberg EM, Potenta S, Xie L, Zeisberg M
and Kalluri R: Discovery of endothelial to mesenchymal transition
as a source for carcinoma-associated fibroblasts. Cancer Res.
67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Iwano M, Plieth D, Danoff TM, Xue C, Okada
H and Neilson EG: Evidence that fibroblasts derive from epithelium
during tissue fibrosis. J Clin Invest. 110:341–350. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
McDonald LT, Russell DL, Kelly RR, Xiong
Y, Motamarry A, Patel RK, Jones JA, Watson PM, Turner DP, Watson
DK, et al: Hematopoietic stem cell-derived cancer-associated
fibroblasts are novel contributors to the pro-tumorigenic
microenvironment. Neoplasia. 17:434–448. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gascard P and Tlsty TD:
Carcinoma-associated fibroblasts: Orchestrating the composition of
malignancy. Genes Dev. 30:1002–1019. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hoshino A, Ishii G, Ito T, Aoyagi K,
Ohtaki Y, Nagai K, Sasaki H and Ochiai A: Podoplanin-positive
fibroblasts enhance lung adenocarcinoma tumor formation: Podoplanin
in fibroblast functions for tumor progression. Cancer Res.
71:4769–4779. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kawase A, Ishii G, Nagai K, Ito T, Nagano
T, Murata Y, Hishida T, Nishimura M, Yoshida J, Suzuki K and Ochiai
A: Podoplanin expression by cancer associated fibroblasts predicts
poor prognosis of lung adenocarcinoma. Int J Cancer. 123:1053–1059.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Schoppmann SF, Berghoff A, Dinhof C,
Jakesz R, Gnant M, Dubsky P, Jesch B, Heinzl H and Birner P:
Podoplanin-expressing cancer-associated fibroblasts are associated
with poor prognosis in invasive breast cancer. Breast Cancer Res
Treat. 134:237–244. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ono S, Ishii G, Nagai K, Takuwa T, Yoshida
J, Nishimura M, Hishida T, Aokage K, Fujii S, Ikeda N, Ochiai A, et
al: Podoplanin-positive cancer-associated fibroblasts could have
prognostic value independent of cancer cell phenotype in stage I
lung squamous cell carcinoma: Usefulness of combining analysis of
both cancer cell phenotype and cancer-associated fibroblast
phenotype. Chest. 143:963–970. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Heldin CH: Targeting the PDGF signaling
pathway in tumor treatment. Cell Commun Signal. 11:972013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hsia LT, Ashley N, Ouaret D, Wang LM,
Wilding J and Bodmer WF: Myofibroblasts are distinguished from
activated skin fibroblasts by the expression of AOC3 and other
associated markers. Proc Natl Acad Sci USA. 113:E2162–E2171. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Herrera M, Islam AB, Herrera A, Martín P,
García V, Silva J, Garcia JM, Salas C, Casal I, de Herreros AG, et
al: Functional heterogeneity of cancer-associated fibroblasts from
human colon tumors shows specific prognostic gene expression
signature. Clin Cancer Res. 19:5914–5926. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nurmik M, Ullmann P, Rodriguez F, Haan S
and Letellier E: In search of definitions: Cancer-associated
fibroblasts and their markers. Int J Cancer. 146:895–905. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Park SY, Kim HM and Koo JS: Differential
expression of cancer-associated fibroblast-related proteins
according to molecular subtype and stromal histology in breast
cancer. Breast Cancer Res Treat. 149:727–741. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Patel AK, Vipparthi K, Thatikonda V, Arun
I, Bhattacharjee S, Sharan R, Arun P and Singh S: A subtype of
cancer-associated fibroblasts with lower expression of alpha-smooth
muscle actin suppresses stemness through BMP4 in oral carcinoma.
Oncogenesis. 7:782018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Öhlund D, Elyada E and Tuveson D:
Fibroblast heterogeneity in the cancer wound. J Cell Biol.
211:1503–1523. 2014.
|
|
44
|
Brennen WN, Isaacs JT and Denmeade SR:
Rationale behind targeting fibroblast activation protein-expressing
carcinoma-associated fibroblasts as a novel chemotherapeutic
strategy. Mol Cancer Ther. 11:257–266. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huber MA, Kraut N, Park JE, Schubert RD,
Rettig WJ, Peter RU and Garin-Chesa P: Fibroblast activation
protein: Differential expression and serine protease activity in
reactive stromal fibroblasts of melanocytic skin tumors. J Investig
Dermatol. 120:182–188. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Berdiel-Acer M, Sanz-Pamplona R, Calon A,
Cuadras D, Berenguer A, Sanjuan X, Paules MJ, Salazar R, Moreno V,
Batlle E, et al: Differences between CAFs and their paired NCF from
adjacent colonic mucosa reveal functional heterogeneity of CAFs,
providing prognostic information. Mol Oncol. 8:1290–1305. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fearon DT: The carcinoma-associated
fibroblast expressing fibroblast activation protein and escape from
immune surveillance. Cancer Immunol Res. 2:187–193. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Feig C, Jones JO, Kraman M, Wells RJ,
Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL,
et al: Targeting CXCL12 from FAP-expressing carcinoma-associated
fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic
cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Brennen WN, Rosen DM, Wang H, Isaacs JT
and Denmeade SR: Targeting carcinoma-associated fibroblasts within
the tumor stroma with a fibroblast activation protein-activated
prodrug. J Natl Cancer Inst. 104:1320–1334. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yoshida GJ: Regulation of heterogeneous
cancer-associated fibroblasts: The molecular pathology of activated
signaling pathways. J Exp Clin Cancer Res. 39:1122020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Raghavan S, Snyder CS, Wang A, McLean K,
Zamarin D, Buckanovich RJ and Mehta G: Carcinoma-associated
mesenchymal stem cells promote chemoresistance in ovarian cancer
stem cells via PDGF signaling. Cancers (Basel). 12:20632020.
View Article : Google Scholar
|
|
52
|
Rizvi S, Mertens JC, Bronk SF, Hirsova P,
Dai H, Roberts LR, Kaufmann SH and Gores GJ: Platelet-derived
growth factor primes cancer-associated fibroblasts for apoptosis. J
Biol Chem. 289:22835–22849. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Raz Y, Cohen N, Shani O, Bell RE,
Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L,
Moses HL, et al: Bone marrow-derived fibroblasts are a functionally
distinct stromal cell population in breast cancer. J Exp Med.
215:3075–3093. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ishibashi M, Neri S, Hashimoto H,
Miyashita T, Yoshida T, Nakamura Y, Udagawa H, Kirita K, Matsumoto
S, Umemura S, et al: CD200-positive cancer associated fibroblasts
augment the sensitivity of epidermal growth factor receptor
mutation-positive lung adenocarcinomas to EGFR tyrosine kinase
inhibitors. Sci Rep. 7:466622017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mizutani Y, Kobayashi H, Iida T, Asai N,
Masamune A, Hara A, Esaki N, Ushida K, Mii S, Shiraki Y, et al:
Meflin-positive cancer-associated fibroblasts inhibit pancreatic
carcinogenesis. Cancer Res. 79:5367–5381. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Alcaraz J, Carrasco JL, Millares L, Luis
IC, Fernández-Porras FJ, Martínez-Romero A, Diaz-Valdivia N, De Cos
JS, Rami-Porta R, Seijo L, et al: Stromal markers of activated
tumor associated fibroblasts predict poor survival and are
associated with necrosis in non-small cell lung cancer. Lung
Cancer. 135:151–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schulze AB, Schmidt LH, Heitkötter B, Huss
S, Mohr M, Marra A, Hillejan L, Görlich D, Barth PJ, Rehkämper J
and Evers G: Prognostic impact of CD34 and SMA in cancer-associated
fibroblasts in stage I–III NSCLC. Thorac Cancer. 11:120–129. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hao J, Zeltz C, Pintilie M, Li Q,
Sakashita S, Wang T, Cabanero M, Martins-Filho SN, Wang DY, Pasko
E, et al: Characterization of distinct populations of
carcinoma-associated fibroblasts from non-small cell lung carcinoma
reveals a role for ST8SIA2 in cancer cell invasion. Neoplasia.
21:482–493. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kilvaer TK, Khanehkenari MR, Hellevik T,
Al-Saad S, Paulsen EE, Bremnes RM, Busund LT, Donnem T and Martinez
IZ: Cancer associated fibroblasts in stage I–IIIA NSCLC: Prognostic
impact and their correlations with tumor molecular markers. PLoS
One. 10:e01349652015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cohen SJ, Alpaugh RK, Palazzo I, Meropol
NJ, Rogatko A, Xu Z, Hoffman JP, Weiner LM and Cheng JD: Fibroblast
activation protein and its relationship to clinical outcome in
pancreatic adenocarcinoma. Pancreas. 37:154–158. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yoshida T, Ishii G, Goto K, Neri S,
Hashimoto H, Yoh K, Niho S, Umemura S, Matsumoto S, Ohmatsu H, et
al: Podoplanin-positive cancer-associated fibroblasts in the tumor
microenvironment induce primary resistance to EGFR-TKIs in lung
adenocarcinoma with EGFR mutation. Clin Cancer Res. 21:642–651.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Neri S, Ishii G, Hashimoto H, Kuwata T,
Nagai K, Date H and Ochiai A: Podoplanin-expressing
cancer-associated fibroblasts lead and enhance the local invasion
of cancer cells in lung adenocarcinoma. Int J Cancer. 137:784–796.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Edlund K, Lindskog C, Saito A, Berglund A,
Pontén F Göransson-Kultima H, Isaksson A, Jirström K, Planck M,
Johansson L, et al: CD99 is a novel prognostic stromal marker in
non-small cell lung cancer. Int J Cancer. 131:2264–2273. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Mitchell MI and Engelbrecht AM: Metabolic
hijacking: A survival strategy cancer cells exploit? Crit Rev Oncol
Hematol. 109:1–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Suzuki A, Puri S, Leland P, Puri A,
Moudgil T, Fox BA, Puri RK and Joshi BH: Subcellular
compartmentalization of PKM2 identifies anti-PKM2 therapy response
in vitro and in vivo mouse model of human non-small-cell lung
cancer. PLoS One. 14:e02171312019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang D, Zhao C, Xu F, Zhang A, Jin M,
Zhang K, Liu L, Hua Q, Zhao J, Liu J, et al: Cisplatin-resistant
NSCLC cells induced by hypoxia transmit resistance to sensitive
cells through exosomal PKM2. Theranostics. 11:2860–2875. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Thiery JP: Epithelial-mesenchymal
transitions in development and pathologies. Curr Opin Cell Biol.
15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Arumugam T, Ramachandran V, Fournier KF,
Wang H, Marquis L, Abbruzzese JL, Gallick GE, Logsdon CD, McConkey
DJ and Choi W: Epithelial to mesenchymal transition contributes to
drug resistance in pancreatic cancer. Cancer Res. 69:5820–5828.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
McConkey DJ, Choi W, Marquis L, Martin F,
Williams MB, Shah J, Svatek R, Das A, Adam L, Kamat A, et al: Role
of epithelial-to-mesenchymal transition (EMT) in drug sensitivity
and metastasis in bladder cancer. Cancer Metastasis Rev.
28:335–344. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mallini P, Lennard T, Kirby J and Meeson
A: Epithelial-to-mesenchymal transition: What is the impact on
breast cancer stem cells and drug resistance. Cancer Treat Rev.
40:341–348. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ye Q, Su L, Chen D, Zheng W and Liu Y:
Astragaloside IV Induced miR-134 expression reduces EMT and
increases chemotherapeutic sensitivity by suppressing CREB1
signaling in colorectal cancer cell line SW-480. Cell Physiol
Biochem. 43:1617–1626. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ding X, Ji J, Jiang J, Cai Q, Wang C, Shi
M, Yu Y, Zhu Z and Zhang J: HGF-mediated crosstalk between
cancer-associated fibroblasts and MET-unamplified gastric cancer
cells activates coordinated tumorigenesis and metastasis. Cell
Death Dis. 9:8672018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shintani Y, Fujiwara A, Kimura T, Kawamura
T, Funaki S, Minami M and Okumura M: IL-6 secreted from
cancer-associated fibroblasts mediates chemoresistance in NSCLC by
increasing epithelial-mesenchymal transition signaling. J Thorac
Oncol. 11:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gherardi E, Birchmeier W, Birchmeier C and
Vande Woude G: Targeting MET in cancer: Rationale and progress. Nat
Rev Cancer. 12:89–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lapidot T, Sirard C, Vormoor J, Murdoch B,
Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and
Dick JE: A cell initiating human acute myeloid leukaemia after
transplantation into SCID mice. Nature. 367:645–648. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Leon G, MacDonagh L, Finn SP, Cuffe S and
Barr MP: Cancer stem cells in drug resistant lung cancer: Targeting
cell surface markers and signaling pathways. Pharmacol Ther.
158:71–90. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shafee N, Smith CR, Wei S, Kim Y, Mills
GB, Hortobagyi GN, Stanbridge EJ and Lee EY: Cancer stem cells
contribute to cisplatin resistance in Brca1/p53-mediated mouse
mammary tumors. Cancer Res. 68:3243–3250. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Schöning JP, Monteiro M and Gu W: Drug
resistance and cancer stem cells: The shared but distinct roles of
hypoxia-inducible factors HIF1α and HIF2α. Clin Exp Pharmacol
Physiol. 44:153–161. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen Z, Shi T, Zhang L, Zhu P, Deng M,
Huang C, Hu T, Jiang L and Li J: Mammalian drug efflux transporters
of the ATP binding cassette (ABC) family in multidrug resistance: A
review of the past decade. Cancer Lett. 370:153–164. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kinugasa Y, Matsui T and Takakura N: CD44
expressed on cancer-associated fibroblasts is a functional molecule
supporting the stemness and drug resistance of malignant cancer
cells in the tumor microenvironment. Stem Cells. 32:145–156. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Najafi M, Farhood B and Mortezaee K:
Extracellular matrix (ECM) stiffness and degradation as cancer
drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Keeratichamroen S, Lirdprapamongkol K and
Svasti J: Mechanism of ECM-induced dormancy and chemoresistance in
A549 human lung carcinoma cells. Oncol Rep. 39:1765–1774.
2018.PubMed/NCBI
|
|
84
|
De Rosa V, Iommelli F, Monti M, Fonti R,
Votta G, Stoppelli MP and Del Vecchio S: Reversal of warburg effect
and reactivation of oxidative phosphorylation by differential
inhibition of EGFR signaling pathways in non-small cell lung
cancer. Clin Cancer Res. 21:5110–5120. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Iderzorig T, Kellen J, Osude C, Singh S,
Woodman JA, Garcia C and Puri N: Comparison of EMT mediated
tyrosine kinase inhibitor resistance in NSCLC. Biochem Biophys Res
Commun. 496:770–777. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rho JK, Choi YJ, Lee JK, Ryoo BY, Na II,
Yang SH, Kim CH and Lee JC: Epithelial to mesenchymal transition
derived from repeated exposure to gefitinib determines the
sensitivity to EGFR inhibitors in A549, a non-small cell lung
cancer cell line. Lung Cancer. 63:219–226. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yoshida T, Song L, Bai Y, Kinose F, Li J,
Ohaegbulam KC, Muñoz-Antonia T, Qu X, Eschrich S, Uramoto H, et al:
ZEB1 mediates acquired resistance to the epidermal growth factor
receptor-tyrosine kinase inhibitors in non-small cell lung cancer.
PLoS One. 11:e01473442016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
You J, Li M, Cao LM, Gu QH, Deng PB, Tan Y
and Hu CP: Snail1-dependent cancer-associated fibroblasts induce
epithelial-mesenchymal transition in lung cancer cells via
exosomes. QJM. 112:581–590. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yi Y, Zeng S, Wang Z, Wu M, Ma Y, Ye X,
Zhang B and Liu H: Cancer-associated fibroblasts promote
epithelial-mesenchymal transition and EGFR-TKI resistance of
non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling. Biochim
Biophys Acta Mol Basis Dis. 1864:793–803. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhou J, Wang J, Zeng Y, Zhang X, Hu Q,
Zheng J, Chen B, Xie B and Zhang WM: Implication of
epithelial-mesenchymal transition in IGF1R-induced resistance to
EGFR-TKIs in advanced non-small cell lung cancer. Oncotarget.
6:44332–44345. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Choe C, Shin YS, Kim C, Choi SJ, Lee J,
Kim SY, Cho YB and Kim J: Crosstalk with cancer-associated
fibroblasts induces resistance of non-small cell lung cancer cells
to epidermal growth factor receptor tyrosine kinase inhibition.
Oncol Targets Ther. 8:3665–3678. 2015. View Article : Google Scholar
|
|
92
|
Della Corte CM, Bellevicine C, Vicidomini
G, Vitagliano D, Malapelle U, Accardo M, Fabozzi A, Fiorelli A,
Fasano M, Papaccio F, et al: SMO gene amplification and activation
of the hedgehog pathway as novel mechanisms of resistance to
anti-epidermal growth factor receptor drugs in human lung cancer.
Clin Cancer Res. 21:4686–4697. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Murakami A, Takahashi F, Nurwidya F,
Kobayashi I, Minakata K, Hashimoto M, Nara T, Kato M, Tajima K,
Shimada N, et al: Hypoxia increases gefitinib-resistant lung cancer
stem cells through the activation of insulin-like growth factor 1
receptor. PLoS One. 9:e864592014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Petrova V, Annicchiarico-petruzzelli M,
Melino G and Amelio I: The hypoxic tumour microenvironment.
Oncogenesis. 7:102018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sugano T, Seike M, Noro R, Soeno C, Chiba
M, Zou F, Nakamichi S, Nishijima N, Matsumoto M, Miyanaga A, et al:
Inhibition of ABCB1 overcomes cancer stem cell-like properties and
acquired resistance to MET inhibitors in non-small cell lung
cancer. Mol Cancer Ther. 14:2433–2440. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang Q, Yang J, Bai J and Ren J: Reverse
of non-small cell lung cancer drug resistance induced by
cancer-associated fibroblasts via a paracrine pathway. Cancer Sci.
109:944–955. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li F, Mei H, Gao Y, Xie X, Nie H, Li T,
Zhang H and Jia L: Co-delivery of oxygen and erlotinib by
aptamer-modified liposomal complexes to reverse hypoxia-induced
drug resistance in lung cancer. Biomaterials. 145:56–71. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bridgford JL, Xie SC, Cobbold SA, Pasaje
CFA, Herrmann S, Yang T, Gillett DL, Dick LR, Ralph SA, Dogovski C,
et al: Artemisinin kills malaria parasites by damaging proteins and
inhibiting the proteasome. Nat Commun. 9:38012018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chou CW, Wang CC, Wu CP, Lin YJ, Lee YC,
Cheng YW and Hsieh CH: Tumor cycling hypoxia induces
chemoresistance in glioblastoma multiforme by upregulating the
expression and function of ABCB1. Neuro Oncol. 14:1227–1238. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Raju S, Joseph R and Sehgal S: Review of
checkpoint immunotherapy for the management of non-small cell lung
cancer. Immunotargets Ther. 7:63–75. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kloten V, Lampignano R, Krahn T and
Schlange T: Circulating tumor Cell PD-L1 expression as biomarker
for therapeutic efficacy of immune checkpoint inhibition in NSCLC.
Cells. 8:8092019. View Article : Google Scholar
|
|
102
|
Pu X, Wu L, Su D, Mao W and Fang B:
Immunotherapy for non-small cell lung cancers: Biomarkers for
predicting responses and strategies to overcome resistance. BMC
Cancer. 18:10822018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Salmon H, Franciszkiewicz K, Damotte D,
Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F and
Donnadieu E: Matrix architecture defines the preferential
localization and migration of T cells into the stroma of human lung
tumors. J Clin Invest. 122:899–910. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nicolas-Boluda A, Vaquero J, Barrin S,
Kantari-Mimoun C, Ponzo M, Renault G, Deptuła P, Pogoda K, Bucki R,
Cascone I, et al: Tumor stiffening reversion through collagen
crosslinking inhibition improves T cell migration and anti-PD-1
treatment. Cold Spring Harbor. 2020.
|
|
105
|
Zeltz C, Pasko E, Cox TR, Navab R and Tsao
MS: LOXL1 is regulated by integrin α11 and promotes non-small cell
lung cancer tumorigenicity. Cancers (Basel). 11:7052019. View Article : Google Scholar
|
|
106
|
Saunier EF and Akhurst RJ: TGF beta
inhibition for cancer therapy. Curr Cancer Drug Targets. 6:565–578.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ford K, Hanley CJ, Mellone M,
Szyndralewiez C, Heitz F, Wiesel P, Wood O, Machado M, Lopez MA,
Ganesan AP, et al: NOX4 inhibition potentiates immunotherapy by
overcoming cancer-associated fibroblast-mediated CD8 T-cell
exclusion from tumors. Cancer Res. 80:1846–1860. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lakins MA, Ghorani E, Munir H, Martins CP
and Shields JD: Cancer-associated fibroblasts induce
antigen-specific deletion of CD8 + T Cells to protect
tumour cells. Nat Commun. 9:9482018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Teramoto K, Igarashi T, Kataoka Y, Ishida
M, Hanaoka J, Sumimoto H and Daigo Y: Clinical significance of
PD-L1-positive cancer-associated fibroblasts in pN0M0 non-small
cell lung cancer. Lung Cancer. 137:56–63. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kilvaer TK, Rakaee M, Hellevik T, Østman
A, Strell C, Bremnes RM, Busund LT, Dønnem T and Martinez-Zubiaurre
I: Tissue analyses reveal a potential immune-adjuvant function of
FAP-1 positive fibroblasts in non-small cell lung cancer. PLoS One.
13:e01921572018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hanley CJ, Mellone M, Ford K, Thirdborough
SM, Mellows T, Frampton SJ, Smith DM, Harden E, Szyndralewiez C,
Bullock M, et al: Targeting the myofibroblastic cancer-associated
fibroblast phenotype through inhibition of NOX4. J Natl Cancer
Inst. 110:109–120. 2018. View Article : Google Scholar
|
|
112
|
Fujiwara A, Funaki S, Fukui E, Kimura K,
Kanou T, Ose N, Minami M and Shintani Y: Effects of pirfenidone
targeting the tumor microenvironment and tumor-stroma interaction
as a novel treatment for non-small cell lung cancer. Sci Rep.
10:109002020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kakarla S, Chow K, Mata M, Shaffer DR,
Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K and
Gottschalk S: Antitumor effects of chimeric receptor engineered
human T cells directed to tumor stroma. Mol Ther. 21:1611–1620.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Masuda T, Nakashima T, Namba M, Yamaguchi
K, Sakamoto S, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K,
Miyata Y, et al: Inhibition of PAI-1 limits chemotherapy resistance
in lung cancer through suppressing myofibroblast characteristics of
cancer-associated fibroblasts. J Cell Mol Med. 23:29842019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Duan S, Tsai Y, Keng P and Chen Y, Lee SO
and Chen Y: IL-6 signaling contributes to cisplatin resistance in
non-small cell lung cancer via the up-regulation of anti-apoptotic
and DNA repair associated molecules. Oncotarget. 6:27651–27660.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang L, Li X, Ren Y, Geng H, Zhang Q, Cao
L, Meng Z, Wu X, Xu M and Xu K: Cancer-associated fibroblasts
contribute to cisplatin resistance by modulating ANXA3 in lung
cancer cells. Cancer Sci. 110:1609–1620. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wei JR, Dong J and Li L: Cancer-associated
fibroblasts-derived gamma-glutamyltransferase 5 promotes tumor
growth and drug resistance in lung adenocarcinoma. Aging (Albany
NY). 12:13220–13233. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Tao L, Huang G, Wang R, Pan Y, He Z, Chu
X, Song H and Chen L: Cancer-associated fibroblasts treated with
cisplatin facilitates chemoresistance of lung adenocarcinoma
through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 6:384082016.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Shien K, Papadimitrakopoulou VA, Ruder D,
Behrens C, Shen L, Kalhor N, Song J, Lee JJ, Wang J, Tang X, et al:
JAK1/STAT3 activation through a proinflammatory cytokine pathway
leads to resistance to molecularly targeted therapy in non-small
cell lung cancer. Mol Cancer Ther. 16:2234–2245. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Foster JG, Wong SC and Sharp TV: The
hypoxic tumor microenvironment: Driving the tumorigenesis of
non-small-cell lung cancer. Future Oncol. 10:2659–2674. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Rebelo SP, Pinto C, Martins TR, Harrer N,
Estrada MF, Loza-Alvarez P, Cabeçadas J, Alves PM, Gualda EJ,
Sommergruber W and Brito C: 3D-3-culture: A tool to unveil
macrophage plasticity in the tumour microenvironment. Biomaterials.
163:185–197. 2018. View Article : Google Scholar : PubMed/NCBI
|