|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cheng SJ, Hsieh KY, Chen SL, Chen CY,
Huang CY, Tsou HI, Kumar PV, Hsieh JC and Chen GY: Microfluidics
and nanomaterial-based technologies for circulating tumor cell
isolation and detection. Sensors (Basel). 20:18752020. View Article : Google Scholar
|
|
4
|
Maconi G, Manes G and Porro GB: Role of
symptoms in diagnosis and outcome of gastric cancer. World J
Gastroenterol. 14:1149–1155. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Necula L, Matei L, Dragu D, Neagu AI,
Mambet C, Nedeianu S, Bleotu C, Diaconu CC and Chivu-Economescu M:
Recent advances in gastric cancer early diagnosis. World J
Gastroenterol. 25:2029–2044. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gabriel MT, Calleja LR, Chalopin A, Ory B
and Heymann D: Circulating tumor cells: A review of non-EpCAM-based
approaches for cell enrichment and isolation. Clin Chem.
62:571–581. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Prasanna BK, Balakrishnan A and Kumar P:
Circulating tumor cell clusters and circulating tumor cell-derived
explant models as a tool for treatment response. Biotechniques.
69:362–363. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tellez-Gabriel M, Heymann MF and Heymann
D: Circulating tumor cells as a tool for assessing tumor
heterogeneity. Theranostics. 9:4580–4594. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Leone K, Poggiana C and Zamarchi R: The
interplay between circulating tumor cells and the immune system:
From immune escape to cancer immunotherapy. Diagnostics (Basel).
8:592018. View Article : Google Scholar
|
|
12
|
Tayoun T, Faugeroux V, Oulhen M, Aberlenc
A, Pawlikowska P and Farace F: CTC-derived models: A window into
the seeding capacity of circulating tumor cells (CTCs). Cells.
8:11452019. View Article : Google Scholar
|
|
13
|
Meng S, Tripathy D, Frenkel EP, Shete S,
Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, et
al: Circulating tumor cells in patients with breast cancer
dormancy. Clin Cancer Res. 10:8152–8162. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Au SH, Edd J, Haber DA, Maheswaran S,
Stott SL and Toner M: Clusters of circulating tumor cells: A
biophysical and technological perspective. Curr Opin Biomed Eng.
3:13–19. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Thiele JA, Bethel K, Králíčková M and Kuhn
P: Circulating tumor cells: Fluid surrogates of solid tumors. Annu
Rev Pathol. 12:419–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mocan T, Simão AL, Castro RE, Rodrigues
CMP, Słomka A, Wang B, Strassburg C, Wöhler A, Willms AG and Kornek
M: Liquid biopsies in hepatocellular carcinoma: Are we winning? J
Clin Med. 9:15412020. View Article : Google Scholar
|
|
17
|
Wu C, Zhang J, Li H, Xu W and Zhang X: The
potential of liquid biopsies in gastrointestinal cancer. Clin
Biochem. 84:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li X, Zhang P, Dou L, Wang Y, Sun K, Zhang
X, Song G, Zhao C, Li K, Bai Y, et al: Detection of circulating
tumor cells in breast cancer patients by nanopore sensing with
aptamer-mediated amplification. ACS Sens. 5:2359–2366. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yap K, Cohen EN, Reuben JM and Khoury JD:
Circulating tumor cells: State-of-the-art update on technologies
and clinical applications. Curr Hematol Malig Rep. 14:353–357.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang D, Yang X, Li Y, Zhao P, Fu R, Ren T,
Hu P, Wu Y, Yang H and Guo N: Clinical significance of circulating
tumor cells and metabolic signatures in lung cancer after surgical
removal. J Transl Med. 18:2432020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zapatero A, Gómez-Caamaño A, Cabeza
Rodriguez MÁ, Muinelo-Romay L, Martin de Vidales C, Abalo A, Calvo
Crespo P, Leon Mateos L, Olivier C and Vega Piris LV: Detection and
dynamics of circulating tumor cells in patients with high-risk
prostate cancer treated with radiotherapy and hormones: A
prospective phase II study. Radiat Oncol. 15:1372020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sun YF, Wang PX, Cheng JW, Gong ZJ, Huang
A, Zhou KQ, Hu B, Gao PT, Cao Y, Qiu SJ, et al: Postoperative
circulating tumor cells: An early predictor of extrahepatic
metastases in patients with hepatocellular carcinoma undergoing
curative surgical resection. Cancer Cytopathol. 128:733–745. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Deutsch TM, Stefanovic S, Feisst M,
Fischer C, Riedel F, Fremd C, Domschke C, Pantel K, Hartkopf AD,
Sutterlin M, et al: Cut-off analysis of CTC change under systemic
therapy for defining early therapy response in metastatic breast
cancer. Cancers (Basel). 12:10552020. View Article : Google Scholar
|
|
24
|
Dimitrov-Markov S, Perales-Patón J,
Bockorny B, Dopazo A, Muñoz M, Baños N, Bonilla V, Menendez C,
Duran Y, Huang L, et al: Discovery of new targets to control
metastasis in pancreatic cancer by single-cell transcriptomics
analysis of circulating tumor cells. Mol Cancer Ther. 19:1751–1760.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pan X and Zhang X: Utility of circulating
tumor cells and DNA in the management of advanced colorectal
cancer. Future Oncol. 16:1289–1299. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kim H, Lim M, Kim JY, Shin SJ, Cho YK and
Cho CH: Circulating tumor cells enumerated by a centrifugal
microfluidic device as a predictive marker for monitoring ovarian
cancer treatment: A pilot study. Diagnostics (Basel). 10:2492020.
View Article : Google Scholar
|
|
27
|
Hong Y, Fang F and Zhang Q: Circulating
tumor cell clusters: What we know and what we expect (Review). Int
J Oncol. 49:2206–2216. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cabel L, Proudhon C, Gortais H, Loirat D,
Coussy F, Pierga JY and Bidard FC: Circulating tumor cells:
Clinical validity and utility. Int J Clin Oncol. 22:421–430. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aoki M, Shoji H, Kashiro A, Takeuchi K,
Shimizu Y and Honda K: Prospects for comprehensive analyses of
circulating tumor cells in tumor biology. Cancers (Basel).
12:11352020. View Article : Google Scholar
|
|
30
|
Brown HK, Tellez-Gabriel M, Cartron PF,
Vallette FM, Heymann MF and Heymann D: Characterization of
circulating tumor cells as a reflection of the tumor heterogeneity:
Myth or reality? Drug Discov Today. 24:763–772. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lowes LE and Allan AL: Circulating tumor
cells and implications of the epithelial-to-mesenchymal transition.
Adv Clin Chem. 83:121–181. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lin E, Cao T, Nagrath S and King MR:
Circulating tumor cells: Diagnostic and therapeutic applications.
Annu Rev Biomed Eng. 20:329–352. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hong S and Wang AZ: Nanotechnology
enabling the use of circulating tumor cells (CTCs) as reliable
cancer biomarkers. Adv Drug Deliv Rev. 125:1–2. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zou D and Cui D: Advances in isolation and
detection of circulating tumor cells based on microfluidics. Cancer
Biol Med. 15:335–353. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Peng Y, Peng Y, Tang S, Shen H, Sheng S,
Wang Y, Wang T, Cai J, Xie G and Feng W: PdIrBP mesoporous
nanospheres combined with superconductive carbon black for the
electrochemical determination and collection of circulating tumor
cells. Mikrochim Acta. 187:2162020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen Y, Peng J, Lai Y, Wu B, Sun L and
Weng J: Ultrasensitive label-free detection of circulating tumor
cells using conductivity matching of two-dimensional semiconductor
with cancer cell. Biosens Bioelectron. 142:1115202019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen J, Chen L, Du S, Wu J, Quan M, Yin H,
Wu Y, Ye X, Liang X and Jiang H: High sensitive detection of
circulating tumor cell by multimarker lipid magnetic nanoparticles
and clinical verifications. J Nanobiotechnology. 17:1162019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Dou B, Xu L, Jiang B, Yuan R and Xiang Y:
Aptamer-functionalized and gold nanoparticle array-decorated
magnetic graphene nanosheets enable multiplexed and sensitive
electrochemical detection of rare circulating tumor cells in whole
blood. Anal Chem. 91:10792–10799. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen SL, Chen CY, Hsieh JC, Yu ZY, Cheng
SJ, Hsieh KY, Yang JW, Kumar PV, Lin SF and Chen GY: Graphene
oxide-based biosensors for liquid biopsies in cancer diagnosis.
Nanomaterials (Basel). 9:17252019. View Article : Google Scholar
|
|
40
|
Zhu Y, Zou C, Zhang J, Jiang W, Guan F,
Tang K, Li S, Li G, Wang J and Ke Z: dynamically monitoring the
clonal evolution of lung cancer based on the molecular
characterization of circulating tumor cells using aptamer
cocktail-modified nanosubstrates. ACS Appl Mater Interfaces.
12:5671–5679. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ding P, Wang Z, Wu Z, Zhou Y, Sun N and
Pei R: Natural biointerface based on cancer cell membranes for
specific capture and release of circulating tumor cells. ACS Appl
Mater Interfaces. 12:20263–20270. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li W, Wang H, Zhao Z, Gao H, Liu C, Zhu L,
Wang C and Yang Y: Emerging nanotechnologies for liquid biopsy: The
detection of circulating tumor cells and extracellular vesicles.
Adv Mater. 31:e18053442019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen M, Liu A, Chen B, Zhu DM, Xie W, Deng
FF, Ji LW, Chen LB, Huang HM, Fu YR, et al: Erythrocyte-derived
vesicles for circulating tumor cell capture and specific tumor
imaging. Nanoscale. 11:12388–12396. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xiong K, Wei W, Jin Y, Wang S, Zhao D,
Wang S, Gao X, Qiao C, Yue H, Ma G and Xie HY: Biomimetic
immuno-magnetosomes for high-performance enrichment of circulating
tumor cells. Adv Mater. 28:7929–7935. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rao L, Meng QF, Huang Q, Wang Z, Yu GT, Li
A, Ma W, Zhang N, Guo SS, Zhao XZ, et al: Platelet-leukocyte hybrid
membrane-coated immunomagnetic beads for highly efficient and
highly specific isolation of circulating tumor cells. Adv Funct
Mater. 28:18035312018. View Article : Google Scholar
|
|
46
|
Wu L, Ding H, Qu X, Shi X, Yang J, Huang
M, Zhang J, Zhang H, Song J, Zhu L, et al: Fluidic multivalent
membrane nanointerface enables synergetic enrichment of circulating
tumor cells with high efficiency and viability. J Am Chem Soc.
142:4800–4806. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel
SM, Knauer SK, Stauber RH and Ding GB: Is small smarter?
Nanomaterial-based detection and elimination of circulating tumor
cells: Current knowledge and perspectives. Int J Nanomedicine.
14:4187–4209. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Salmanogli A and Gokcen D: Identification
of circulating tumor cells using plasmonic resonance effect:
Lab-on-a-chip analysis and modelling. J Nanosci Nanotechnol.
20:1341–1350. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Al-Halhouli A, Al-Faqheri W, Alhamarneh B,
Hecht L and Dietzel A: Spiral microchannels with trapezoidal cross
section fabricated by femtosecond laser ablation in glass for the
inertial separation of microparticles. Micromachines (Basel).
9:1712018. View Article : Google Scholar
|
|
50
|
Hao N, Nie Y, Tadimety A, Shen T and Zhang
JXJ: Microfluidics-enabled rapid manufacturing of hierarchical
silica-magnetic microflower toward enhanced circulating tumor cell
screening. Biomater Sci. 6:3121–3125. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jackson JM, Witek MA, Hupert ML, Brady C,
Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh
JJ and Soper SA: UV activation of polymeric high aspect ratio
microstructures: Ramifications in antibody surface loading for
circulating tumor cell selection. Lab Chip. 14:106–117. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fan X, Jia C, Yang J, Li G, Mao H, Jin Q
and Zhao J: A microfluidic chip integrated with a high-density
PDMS-based microfiltration membrane for rapid isolation and
detection of circulating tumor cells. Biosens Bioelectron.
71:380–386. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu Z, Zhao D, Zhang Y, Huang L, Huang H,
Guo Q, Zhang W, Hou C, Wang H, Zhang Q, et al: Facile synthesis of
3D hierarchical micro-/nanostructures in capillaries for efficient
capture of circulating tumor cells. J Colloid Interface Sci.
575:108–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Khoo BL, Grenci G, Lim YB, Lee SC, Han J
and Lim CT: Expansion of patient-derived circulating tumor cells
from liquid biopsies using a CTC microfluidic culture device. Nat
Protoc. 13:34–58. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Harigopal M, Kowalski D and Vosoughi A:
Enumeration and molecular characterization of circulating tumor
cells as an innovative tool for companion diagnostics in breast
cancer. Expert Rev Mol Diagn. 20:815–828. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deng G, Krishnakumar S, Powell AA, Zhang
H, Mindrinos MN, Telli ML, Davis RW and Jeffrey SS: Single cell
mutational analysis of PIK3CA in circulating tumor cells and
metastases in breast cancer reveals heterogeneity, discordance, and
mutation persistence in cultured disseminated tumor cells from bone
marrow. BMC Cancer. 14:4562014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Maheswaran S and Haber DA: Ex vivo culture
of CTCs: An emerging resource to guide cancer therapy. Cancer Res.
75:2411–2415. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sun D, Lu J, Zhang L and Chen Z:
Aptamer-based electrochemical cytosensors for tumor cell detection
in cancer diagnosis: A review. Anal Chim Acta. 1082:1–17. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fan X, Guo Y, Wang L, Xiong X, Zhu L and
Fang K: Diagnosis of prostate cancer using anti-PSMA aptamer
A10-3.2-oriented lipid nanobubbles. Int J Nanomedicine.
11:3939–3950. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yin X, Chen B, He M and Hu B: A
multifunctional platform for the capture, release, and enumeration
of circulating tumor cells based on aptamer binding, nicking
endonuclease-assisted amplification, and inductively coupled plasma
mass spectrometry detection. Anal Chem. 92:10308–10315. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zheng Y, Zhang J, Huang M, Wang T, Qu X,
Wu L, Song J, Wang W, Song Y and Yang C: Selection of aptamers
against vimentin for isolation and release of circulating tumor
cells undergoing epithelial mesenchymal transition. Anal Chem.
92:5178–5184. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N
and Pei R: Aptamer-based nanostructured interfaces for the
detection and release of circulating tumor cells. J Mater Chem B.
8:3408–3422. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shen Q, Yang H, Peng C, Zhu H, Mei J,
Huang S, Chen B, Liu J, Wu W and Cao S: Capture and biological
release of circulating tumor cells in pancreatic cancer based on
peptide-functionalized silicon nanowire substrate. Int J
Nanomedicine. 14:205–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang SG, Zhang B, Li CG, Zhu JQ, Sun BS
and Wang CL: Sorting and gene mutation verification of circulating
tumor cells of lung cancer with epidermal growth factor receptor
peptide lipid magnetic spheres. Thorac Cancer. 11:2887–2895. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin Y, Jiang L, Huang Y, Yang Y, He Y, Lu
C and Yang H: DNA-mediated reversible capture and release of
circulating tumor cells with a multivalent dual-specific aptamer
coating network. Chem Commun (Camb). 55:5387–5390. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Magbanua MJ, Das R, Polavarapu P and Park
JW: Approaches to isolation and molecular characterization of
disseminated tumor cells. Oncotarget. 6:30715–30729. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Costa C and Dávila-Ibáñez AB: Methodology
for the isolation and analysis of CTCs. Adv Exp Med Biol.
1220:45–59. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang Q, Wang FB, Yuan CH, He Z, Rao L,
Cai B, Chen B, Jiang S, Li Z, Chen J, et al: Gelatin
nanoparticle-coated silicon beads for density-selective capture and
release of heterogeneous circulating tumor cells with high purity.
Theranostics. 8:1624–1635. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hao SJ, Wan Y, Xia YQ, Zou X and Zheng SY:
Size-based separation methods of circulating tumor cells. Adv Drug
Deliv Rev. 125:3–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Magbanua MJ and Park JW: Isolation of
circulating tumor cells by immunomagnetic enrichment and
fluorescence-activated cell sorting (IE/FACS) for molecular
profiling. Methods. 64:114–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sun N, Li X, Wang Z, Li Y and Pei R:
High-purity capture of CTCs based on micro-beads enhanced isolation
by size of epithelial tumor cells (ISET) method. Biosens
Bioelectron. 102:157–163. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Aghaamoo M, Zhang Z, Chen X and Xu J:
Deformability-based circulating tumor cell separation with
conical-shaped microfilters: Concept, optimization, and design
criteria. Biomicrofluidics. 9:0341062015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Suzuki T, Kaji N, Yasaki H, Yasui T and
Baba Y: Mechanical low-pass filtering of cells for detection of
circulating tumor cells in whole blood. Anal Chem. 92:2483–2491.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xiang A, Xue M, Ren F, Wang L, Ye Z, Li D,
Ji Q, Ji G and Lu Z: High-throughput and continuous flow isolation
of rare circulating tumor cells and clusters in gastric cancer from
human whole blood samples using electromagnetic vibration-based
filtration. Oncol Rep. 43:1975–1985. 2020.PubMed/NCBI
|
|
75
|
Lei KF: A review on microdevices for
isolating circulating tumor cells. Micromachines (Basel).
11:5312020. View Article : Google Scholar
|
|
76
|
Lin Z, Luo G, Du W, Kong T, Liu C and Liu
Z: Recent advances in microfluidic platforms applied in cancer
metastasis: Circulating tumor cells' (CTCs) isolation and
tumor-on-a-chip. Small. 16:e19038992020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Drucker A, Teh EM, Kostyleva R, Rayson D,
Douglas S and Pinto DM: Comparative performance of different
methods for circulating tumor cell enrichment in metastatic breast
cancer patients. PLoS One. 15:e02373082020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Soler A, Cayrefourcq L, Mazel M and
Alix-Panabières C: EpCAM-independent enrichment and detection of
viable circulating tumor cells using the EPISPOT assay. Methods Mol
Biol. 1634:263–276. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
He W, Kularatne SA, Kalli KR, Prendergast
FG, Amato RJ, Klee GG, Hartmann LC and Low PS: Quantitation of
circulating tumor cells in blood samples from ovarian and prostate
cancer patients using tumor-specific fluorescent ligands. Int J
Cancer. 123:1968–1973. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen W, Weng S, Zhang F, Allen S, Li X,
Bao L, Lam RH, Macoska JA, Merajver SD and Fu J: Nanoroughened
surfaces for efficient capture of circulating tumor cells without
using capture antibodies. ACS Nano. 7:566–575. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Waheed W, Alazzam A, Mathew B,
Christoforou N and Abu-Nada E: Lateral fluid flow fractionation
using dielectrophoresis (LFFF-DEP) for size-independent, label-free
isolation of circulating tumor cells. J Chromatogr B Analyt Technol
Biomed Life Sci. 1087-1088:133–137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Murlidhar V, Rivera-Báez L and Nagrath S:
Affinity versus label-free isolation of circulating tumor cells:
Who wins? Small. 12:4450–4463. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nasiri R, Shamloo A, Ahadian S, Amirifar
L, Akbari J, Goudie MJ, Lee K, Ashammakhi N, Dokmeci MR, Di Carlo D
and Khademhosseini A: Microfluidic-based approaches in targeted
cell/particle separation based on physical properties: Fundamentals
and applications. Small. 16:e20001712020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gupta V, Jafferji I, Garza M, Melnikova
VO, Hasegawa DK, Pethig R and Davis DW: ApoStream(™), a
new dielectrophoretic device for antibody independent isolation and
recovery of viable cancer cells from blood. Biomicrofluidics.
6:241332012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gascoyne PR, Noshari J, Anderson TJ and
Becker FF: Isolation of rare cells from cell mixtures by
dielectrophoresis. Electrophoresis. 30:1388–1398. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Shim S, Gascoyne P, Noshari J and Hale KS:
Dynamic physical properties of dissociated tumor cells revealed by
dielectrophoretic field-flow fractionation. Integr Biol (Camb).
3:850–862. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Abdulla A, Liu W, Gholamipour-Shirazi A,
Sun J and Ding X: High-throughput isolation of circulating tumor
cells using cascaded inertial focusing microfluidic channel. Anal
Chem. 90:4397–4405. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Aghilinejad A, Aghaamoo M and Chen X: On
the transport of particles/cells in high-throughput deterministic
lateral displacement devices: Implications for circulating tumor
cell separation. Biomicrofluidics. 13:0341122019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lin MX, Hyun KA, Moon HS, Sim TS, Lee JG,
Park JC, Lee SS and Jung HI: Continuous labeling of circulating
tumor cells with microbeads using a vortex micromixer for highly
selective isolation. Biosens Bioelectron. 40:63–67. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu X, Jiang Z, Wang J, Ren Y and Wu A:
Microfluidic applications on circulating tumor cell isolation and
biomimicking of cancer metastasis. Electrophoresis. 41:933–951.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Loutherback K, D'Silva J, Liu L, Wu A,
Austin RH and Sturm JC: Deterministic separation of cancer cells
from blood at 10 ml/min. AIP Adv. 2:421072012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Khojah R, Stoutamore R and Di Carlo D:
Size-tunable microvortex capture of rare cells. Lab Chip.
17:2542–2549. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sollier E, Go DE, Che J, Gossett DR,
O'Byrne S, Weaver WM, Kummer N, Rettig M, Goldman J, Nickols N, et
al: Size-selective collection of circulating tumor cells using
vortex technology. Lab Chip. 14:63–77. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Renier C, Pao E, Che J, Liu HE, Lemaire
CA, Matsumoto M, Triboulet M, Srivinas S, Jeffrey SS, Rettig M, et
al: Label-free isolation of prostate circulating tumor cells using
vortex microfluidic technology. NPJ Precis Oncol. 1:152017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ding X, Peng Z, Lin SC, Geri M, Li S, Li
P, Chen Y, Dao M, Suresh S and Huang T: Cell separation using
tilted-angle standing surface acoustic waves. Proc Natl Acad Sci U
S A. 111:12992–12997. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu M, Huang PH, Zhang R, Mao Z, Chen C,
Kemeny G, Li P, Lee AV, Gyanchandani R, Armstrong AJ, et al:
Circulating tumor cell phenotyping via high-throughput acoustic
separation. Small. 14:e18011312018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Castro-Giner F and Aceto N: Tracking
cancer progression: From circulating tumor cells to metastasis.
Genome Med. 12:312020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Rawal S, Yang YP, Cote R and Agarwal A:
Identification and quantitation of circulating tumor cells. Annu
Rev Anal Chem (Palo Alto Calif). 10:321–343. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Riethdorf S, O'Flaherty L, Hille C and
Pantel K: Clinical applications of the CellSearch platform in
cancer patients. Adv Drug Deliv Rev. 125:102–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Awasthi NP, Kumari S, Neyaz A, Gupta S,
Agarwal A, Singhal A and Husain N: EpCAM-based flow cytometric
detection of circulating tumor cells in gallbladder carcinoma
cases. Asian Pac J Cancer Prev. 18:3429–3437. 2017.PubMed/NCBI
|
|
101
|
Stott SL, Hsu CH, Tsukrov DI, Yu M,
Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK,
et al: Isolation of circulating tumor cells using a
microvortex-generating herringbone-chip. Proc Natl Acad Sci USA.
107:18392–18397. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen K, Dopico P, Varillas J, Zhang J,
George TJ and Fan ZH: Integration of lateral filter arrays with
immunoaffinity for circulating tumor cell isolation. Angew Chem Int
Ed Engl. 58:7606–7610. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Aceto N, Bardia A, Miyamoto DT, Donaldson
MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, et al:
Circulating tumor cell clusters are oligoclonal precursors of
breast cancer metastasis. Cell. 158:1110–1122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang S, Thomas A, Lee E, Yang S, Cheng X
and Liu Y: Highly efficient and selective isolation of rare tumor
cells using a microfluidic chip with wavy-herringbone
micro-patterned surfaces. Analyst. 141:2228–2237. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dizdar L, Fluegen G, van Dalum G, Honisch
E, Neves RP, Niederacher D, Neubauer H, Fehm T, Rehders A, Krieg A,
et al: Detection of circulating tumor cells in colorectal cancer
patients using the GILUPI CellCollector: Results from a
prospective, single-center study. Mol Oncol. 13:1548–1558. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
He Y, Shi J, Shi G, Xu X, Liu Q, Liu C,
Gao Z, Bai J and Shan B: Using the new CellCollector to capture
circulating tumor cells from blood in different groups of pulmonary
disease: A cohort study. Sci Rep. 7:95422017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Que Z, Luo B, Zhou Z, Dong C, Jiang Y,
Wang L, Shi Q and Tian J: Establishment and characterization of a
patient-derived circulating lung tumor cell line in vitro and in
vivo. Cancer Cell Int. 19:212019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
De T, Goyal S, Balachander G, Chatterjee
K, Kumar P, Babu KG and Rangarajan A: A novel ex vivo system using
3d polymer scaffold to culture circulating tumor cells from breast
cancer patients exhibits dynamic E-M phenotypes. J Clin Med.
8:14732019. View Article : Google Scholar
|
|
109
|
Hwang WL, Pleskow HM and Miyamoto DT:
Molecular analysis of circulating tumors cells: Biomarkers beyond
enumeration. Adv Drug Deliv Rev. 125:122–131. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Rossi E and Zamarchi R: Single-cell
analysis of circulating tumor cells: How far have we come in
the-omics era? Front Genet. 10:9582019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Pramani KA, Jones S, Gao Y, Sweet C,
Vangara A, Begum S and Ray PC: Multifunctional hybrid graphene
oxide for circulating tumor cell isolation and analysis. Adv Drug
Deliv Rev. 125:21–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M,
Chae CH, Cho DH and Telekes A: Technologies for circulating tumor
cell separation from whole blood. J Hematol Oncol. 12:482019.
View Article : Google Scholar : PubMed/NCBI
|