Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2021 Volume 21 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 21 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response

  • Authors:
    • Danni Meng
    • Kun Guo
    • Die Zhang
    • Cheng Zhao
    • Chuanwen Sun
    • Feng Zhang
  • View Affiliations / Copyright

    Affiliations: College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China 
    Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 436
    |
    Published online on: April 1, 2021
       https://doi.org/10.3892/ol.2021.12697
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

p53 is one of the most important tumor suppressor genes, and its primary function is to act as a transcriptional activator to control cell cycle arrest, DNA repair and cellular metabolism by recognizing and binding to specific DNA sequences. Defects in the ring finger (RNF)20/RNF40/WW domain‑containing adaptor with coiled‑coil (WAC) complex, one of the histone H2B ubiquitination E3 ligases, have been reported to be a key factor in oncogenesis, cancer cell migration and invasion. Histone H2B mono‑ubiquitination has been demonstrated to be essential for maintaining the functionality of the p53 tumor suppressor protein. The aim of the present study was to identify any sites in the p53 DNA‑binding domain (DBD) specific to the RNF20/RNF40/WAC complex that may be involved in the gene regulation in DNA damage response. The results demonstrated that p53 and the RNF20/RNF40/WAC complex interacted with each other, and the coiled‑coil regions in RNF20, RNF40 and WAC were identified to directly interact with p53. The R282 site in the p53 DBD, one of the frequent missense mutations associated with p53 mutation‑dependent cancer, was demonstrated to be the key binding site for the RNF20/RNF40/WAC complex. Furthermore, knockout of RNF20/RNF40 suppressed the expression levels of p53 and its target genes in HCT116 cells compared with those in wild‑type HCT116 cells. Consistent with these results, the R282W mutation in p53 inhibited the expression levels of p53 and its downstream genes by inactivating the interaction between p53 and RNF20/RNF40 compared with those in wild‑type HCT116 cells. In conclusion, the results of the present study revealed the molecular mechanism of the interaction between the RNF20/RNF40/WAC complex and p53, and demonstrated that these proteins regulated gene transcription in the DNA damage response.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Bieging KT, Mello SS and Attardi LD: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 97:1–23. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Ozaki T and Nakagawara A: Role of p53 in Cell Death and Human Cancers. Cancers (Basel). 3:994–1013. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Joerger AC and Fersht AR: Structure-function-rescue: The diverse nature of common p53 cancer mutants. Oncogene. 26:2226–2242. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Riley T, Sontag E, Chen P and Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A, Freeman JA, Sullivan KD, Galbraith MD, Luo X, Kraus WL, et al: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. eLife. 3:e022002014. View Article : Google Scholar : PubMed/NCBI

8 

Dai C and Gu W: p53 post-translational modification: Deregulated in tumorigenesis. Trends Mol Med. 16:528–536. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Bernard M, Yang B, Migneault F, Turgeon J, Dieudé M, Olivier MA, Cardin GB, El-Diwany M, Underwood K, Rodier F, et al: Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy. 16:2004–2016. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Ho CJ, Lin RW, Zhu WH, Wen TK, Hu CJ, Lee YL, Hung TI and Wang C: Transcription-independent and -dependent p53-mediated apoptosis in response to genotoxic and non-genotoxic stress. Cell Death Discov. 5:1312019. View Article : Google Scholar : PubMed/NCBI

11 

Follis AV, Llambi F, Ou L, Baran K, Green DR and Kriwacki RW: The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat Struct Mol Biol. 21:535–543. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Mrakovcic M and Frohlich LF: p53-mediated molecular control of autophagy in tumor cells. Biomolecules. 8:142018. View Article : Google Scholar

13 

Clapier CR and Cairns BR: The biology of chromatin remodeling complexes. Annu Rev Biochem. 78:273–304. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Cole AJ, Clifton-Bligh R and Marsh DJ: Histone H2B monoubiquitination: Roles to play in human malignancy. Endocr Relat Cancer. 22:T19–T33. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Chandrasekharan MB, Huang F and Sun ZW: Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics. 5:460–468. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Hammond-Martel I, Yu H and Affar B: Roles of ubiquitin signaling in transcription regulation. Cell Signal. 24:410–421. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Buetow L and Huang DT: Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol. 17:626–642. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Shiloh Y, Shema E, Moyal L and Oren M: RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett. 585:2795–2802. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Zhang K, Wang J, Tong TR, Wu X, Nelson R, Yuan YC, Reno T, Liu Z, Yun X, Kim JY, et al: Loss of H2B monoubiquitination is associated with poor-differentiation and enhanced malignancy of lung adenocarcinoma. Int J Cancer. 141:766–777. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, et al: The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22:2664–2676. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Zhang F and Yu X: WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell. 41:384–397. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Johnsen SA: The enigmatic role of H2Bub1 in cancer. FEBS Lett. 586:1592–1601. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Sethi G, Shanmugam MK, Arfuso F and Kumar AP: Role of RNF20 in cancer development and progression - a comprehensive review. Biosci Rep. 38:BSR201712872018. View Article : Google Scholar : PubMed/NCBI

24 

Chernikova SB, Razorenova OV, Higgins JP, Sishc BJ, Nicolau M, Dorth JA, Chernikova DA, Kwok S, Brooks JD, Bailey SM, et al: Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res. 72:2111–2119. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Lee JH, Jeon YG, Lee KH, Lee HW, Park J, Jang H, Kang M, Lee HS, Cho HJ, Nam DH, et al: RNF20 Suppresses Tumorigenesis by Inhibiting the SREBP1c-PTTG1 Axis in Kidney Cancer. Mol Cell Biol. 37:e00265–17. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Tarcic O, Granit RZ, Pateras IS, Masury H, Maly B, Zwang Y, Yarden Y, Gorgoulis VG, Pikarsky E, Ben-Porath I, et al: RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-Like versus luminal breast cancer. Cell Death Differ. 24:694–704. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Wu C, Cui Y, Liu X, Zhang F, Lu LY and Yu X: The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. J Mol Cell Biol. 12:113–124. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Tzin V, Rogachev I, Meir S, Moyal Ben Zvi M, Masci T, Vainstein A, Aharoni A and Galili G: Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. J Exp Bot. 64:4441–4452. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Kitzman JO, Starita LM, Lo RS, Fields S and Shendure J: Massively parallel single-amino-acid mutagenesis. Nat Methods. 12:203–206, 4 p following 206. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Stiewe T and Haran TE: How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat. 38:27–43. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, et al: Corrigendum: The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 31:19262017. View Article : Google Scholar : PubMed/NCBI

33 

Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C and Madhani HD: A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell. 11:261–266. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DV, Shimada M, Tauchi H, Suzuki H, Tashiro S, et al: Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell. 41:515–528. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S and Osley MA: Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev. 18:184–195. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Tang Q, Su Z, Gu W and Rustgi AK: Mutant p53 on the path to metastasis. Trends Cancer. 6:62–73. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Vousden KH and Prives C: Blinded by the Light: The growing complexity of p53. Cell. 137:413–431. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Li H, Zhang J, Tong JHM, Chan AWH, Yu J, Kang W and To KF: Targeting the oncogenic p53 mutants in colorectal cancer and other solid tumors. Int J Mol Sci. 20:59992019. View Article : Google Scholar

39 

Hanel W, Marchenko N, Xu S, Yu SX, Weng W and Moll U: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ. 20:898–909. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Cho Y, Gorina S, Jeffrey PD and Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science. 265:346–355. 1994. View Article : Google Scholar : PubMed/NCBI

41 

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Kumar P and Wolberger C: Structure of the yeast Bre1 RING domain. Proteins. 83:1185–1190. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, et al: Role of novel histone modifications in cancer. Oncotarget. 9:11414–11426. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Menendez D, Nguyen TA, Freudenberg JM, Mathew VJ, Anderson CW, Jothi R and Resnick MA: Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res. 41:7286–7301. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Stein Y, Rotter V and Aloni-Grinstein R: Gain-of-function mutant p53: All the roads lead to tumorigenesis. Int J Mol Sci. 20:61972019. View Article : Google Scholar

46 

Zhang Y, Coillie SV, Fang JY and Xu J: Gain of function of mutant p53: R282W on the peak? Oncogenesis. 5:e1962016. View Article : Google Scholar : PubMed/NCBI

47 

Xu J, Wang J, Hu Y, Qian J, Xu B, Chen H, Zou W and Fang JY: Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death Dis. 5:e11082014. View Article : Google Scholar : PubMed/NCBI

48 

Calhoun S and Daggett V: Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain. Biochemistry. 50:5345–5353. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Deyoung MP and Ellisen LW: p63 and p73 in human cancer: Defining the network. Oncogene. 26:5169–5183. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Ali A, Shah AS and Ahmad A: Gain-of-function of mutant p53: Mutant p53 enhances cancer progression by inhibiting KLF17 expression in invasive breast carcinoma cells. Cancer Lett. 354:87–96. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ, et al: Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 32:2992–3000. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Xu J, Qian J, Hu Y, Wang J, Zhou X, Chen H and Fang JY: Heterogeneity of Li-Fraumeni syndrome links to unequal gain-of-function effects of p53 mutations. Sci Rep. 4:42232014. View Article : Google Scholar : PubMed/NCBI

53 

Zhang Y and Hunter T: Roles of Chk1 in cell biology and cancer therapy. Int J Cancer. 134:1013–1023. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Tarcic O, Pateras IS, Cooks T, Shema E, Kanterman J, Ashkenazi H, Boocholez H, Hubert A, Rotkopf R, Baniyash M, et al: RNF20 Links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. Cell Rep. 14:1462–1476. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Hooda J, Novak M, Salomon MP, Matsuba C, Ramos RI, MacDuffie E, Song M, Hirsch MS, Lester J, Parkash V, et al: Early loss of histone H2B monoubiquitylation alters chromatin accessibility and activates key immune pathways that facilitate progression of ovarian cancer. Cancer Res. 79:760–772. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Zhang Y, Yao L, Zhang X, Ji H, Wang L, Sun S and Pang D: Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol. 137:1245–1253. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Minsky N, Shema E, Field Y, Schuster M, Segal E and Oren M: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol. 10:483–488. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Prenzel T, Begus-Nahrmann Y, Kramer F, Hennion M, Hsu C, Gorsler T, Hintermair C, Eick D, Kremmer E, Simons M, et al: Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B. Cancer Res. 71:5739–5753. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Mimnaugh EG, Chen HY, Davie JR, Celis JE and Neckers L: Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: Effects on replication, transcription, translation, and the cellular stress response. Biochemistry. 36:14418–14429. 1997. View Article : Google Scholar : PubMed/NCBI

60 

Skinner HD, Sandulache VC, Ow TJ, Meyn RE, Yordy JS, Beadle BM, Fitzgerald AL, Giri U, Ang KK and Myers JN: TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 18:290–300. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Okaichi K, Ide-Kanematsu M, Izumi N, Morita N, Okumura Y and Ihara M: Variations in sensitivity to ionizing radiation in relation to p53 mutation point. Anticancer Res. 28((5A)): 2687–2690. 2008.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Meng D, Guo K, Zhang D, Zhao C, Sun C and Zhang F: Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response. Oncol Lett 21: 436, 2021.
APA
Meng, D., Guo, K., Zhang, D., Zhao, C., Sun, C., & Zhang, F. (2021). Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response. Oncology Letters, 21, 436. https://doi.org/10.3892/ol.2021.12697
MLA
Meng, D., Guo, K., Zhang, D., Zhao, C., Sun, C., Zhang, F."Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response". Oncology Letters 21.6 (2021): 436.
Chicago
Meng, D., Guo, K., Zhang, D., Zhao, C., Sun, C., Zhang, F."Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response". Oncology Letters 21, no. 6 (2021): 436. https://doi.org/10.3892/ol.2021.12697
Copy and paste a formatted citation
x
Spandidos Publications style
Meng D, Guo K, Zhang D, Zhao C, Sun C and Zhang F: Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response. Oncol Lett 21: 436, 2021.
APA
Meng, D., Guo, K., Zhang, D., Zhao, C., Sun, C., & Zhang, F. (2021). Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response. Oncology Letters, 21, 436. https://doi.org/10.3892/ol.2021.12697
MLA
Meng, D., Guo, K., Zhang, D., Zhao, C., Sun, C., Zhang, F."Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response". Oncology Letters 21.6 (2021): 436.
Chicago
Meng, D., Guo, K., Zhang, D., Zhao, C., Sun, C., Zhang, F."Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response". Oncology Letters 21, no. 6 (2021): 436. https://doi.org/10.3892/ol.2021.12697
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team