|
1
|
Schulz KH: Clinical & experimental
studies on the etiology of chloracne. Arch Clinical Exp Dematol.
206:589–596. 1957.(In German).
|
|
2
|
Kimmig J and Schulz KH: Occupational acne
(so-called chloracne) due to chlorinated aromatic cyclic ethers.
Dermatologica. 115:540–546. 1957.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Poland A and Glover E:
2,3,7,8-Tetrachlorodibenzo-p-dioxin: A potent inducer
of-aminolevulinic acid synthetase. Science. 179:476–477. 1973.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Richardson HL, Stier AR and
Borsos-Nachtnebel E: Liver tumor inhibition and adrenal histologic
responses in rats to which 3′-methyl-4-dimethylaminoazobenzene and
20-methylcholanthrene were simultaneously administrated. Cancer
Res. 12:356–361. 1952.PubMed/NCBI
|
|
5
|
Conney AH, Miller EC and Miller JA:
Substrate-induced synthesis and other properties of benzpyrene
hydroxylase in rat liver. J Biol Chem. 228:753–766. 1957.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nebert DW and Bausserman L: Genetic
differences in the extent of aryl hydrocarbon hydroxylase induction
in mouse fetal cell cultures. J Biol Chem. 245:6373–6382. 1970.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nebert DW and Gelboin HV: The in vivo and
in vitro induction of aryl hydrocarbon hydroxylase in mammalian
cells of different species, tissues, strains, and developmental and
hormonal states. Achr Biochem Biophys. 134:76–89. 1969. View Article : Google Scholar
|
|
8
|
Nebert DW, Negishi M, Lang MA, Hjelmeland
LM and Eisen HJ: The Ah locus, a multigene family necessary for
survival in a chemically adverse environment: Comparison with the
immune system. Adv Genet. 21:1–51. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nebert DW, Goujon FM and Gielen JE: Aryl
hydrocarbon hydroxylase induction by polycyclic hydrocarbons:
Simple autosomal dominant trait in the mouse. Nat New Biol.
236:107–110. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nebert DW: The 1986 Bernard B. Brodie
award lecture. The genetic regulation of drug-metabolizing enzymes.
Drug Metab Dispos. 16:1–8. 1988.PubMed/NCBI
|
|
11
|
Poland A and Glover E: Comparison of
2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl
hydrocarbon hydroxylase, with 3-methylcholanthrene. Mol Pharmacol.
10:349–359. 1974.PubMed/NCBI
|
|
12
|
Poland A, Glover E, Robinson JR and Nebert
DW: Genetic expression of aryl hydrocarbon hydroxylase activity.
Induction of monooxygenase activities and cytochrome P1-450
formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice
genetically ‘nonresponsive’ to other aromatic hydrocarbons. J Biol
Chem. 249:5599–5606. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yueh MF, Huang YH, Hiller A, Chen S,
Nguyen N and Tukey RH: Involvement of the xenobiotic response
element (XRE) in Ah receptor-mediated induction of human
UDP-glucuronosyltransferase 1A1. J Biol Chem. 278:15002–15006.
2003. View Article : Google Scholar
|
|
14
|
Poland A, Glover E and Kende AS:
Stereospecific, high affinity binding of
2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence
that the binding species is receptor for induction of aryl
hydrocarbon hydroxylase. J Biol Chem. 251:4936–4946. 1976.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gasiewicz TA and Henry E: History of
research on the AhR. Pohjanvirta R: The AH receptor in biology and
toxicology Hoboken, New Jersey: John Wiley & Sons; pp. 3–32.
2012
|
|
16
|
Gasiewicz TA and Bauman PA: Heterogeneity
of the rat hepatic Ah receptor and evidence for transformation in
vitro and in vivo. J Biol Chem. 262:2116–2120. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Reyes H, Reisz-Porszasz S and Hankinson O:
Identification of the Ah receptor nuclear translocator proteins
(Arnt) as a component of the DNA binding form of the Ah receptor.
Science. 256:1193–1195. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Miller AG, Israel D and Whitlock JP Jr:
Biochemical and genetic analysis of variant mouse hepatoma cells
defective in the induction of benzo(a)pyrene-metabolizing enzyme
activity. J Biol Chem. 258:3523–3527. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jones PB, Durrin LK, Galeazzi DR and
Whitlock JP Jr: Control of cytochrome P1-450 gene expression:
Analysis of a dioxin-responsive enhancer system. Proc Nat Acad Sci
USA. 83:2802–2806. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fujisawa-Sehara A, Yamane M and
Fujii-Kuriyama Y: A DNA-binding factor specific for xenobiotic
responsive elements of P-450c gene exists as a cryptic form in
cytoplasm: Its possible translocation to nucleus. Proc Natl Acad
Sci USA. 85:5859–5863. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pohjanvirta R, Korkalainen M, Moffat ID,
Boutros PC and Okey AB: Role of the AHR and its structure in TCDD
toxicity. Pohjanvirta R: The AH receptor in biology and toxicology
Hoboken, New Jersey: John Wiley & Sons; pp. 179–196. 2012
|
|
22
|
DeGroot D, He G, Fraccalvieri D, Bonati L,
Pandini A and Denison MS: Ahr ligands: Promiscuity in binding and
diversity in response. Pohjanvirta R: The AH receptor in biology
and toxicology Hoboken, New Jersey: John Wiley & Sons; pp.
63–79. 2011, View Article : Google Scholar
|
|
23
|
Eguchi H, Hayashi S, Watanabe J, Gotoh O
and Kawajiri K: Molecular cloning of the human Ah receptor gene
promoter. Biochem Biophys Res Comm. 203:615–622. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shin JH, Haggadone MD and Sunwoo JB:
Transcription factor Dlx3 induces aryl hydrocarbon receptor
promoter activity. Biochem Biophys Rep. 7:353–360. 2016.PubMed/NCBI
|
|
25
|
Tanaka G, Kanaji S, Hirano A, Arima K,
Shinagawa A, Goda C, Yasunaga S, Ikizawa K, Yanagihara Y, Kubo M,
et al: Induction and activation of the aryl hydrocarbon receptor by
IL-4 in B cells. Int Immunol. 17:797–805. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Eastman Q and Grosschedl R: Regulation of
LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin
Cell Biol. 11:233–240. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Harper PA, Riddick DS and Okey AB:
Regulating the regulator: Factors that control levels and activity
of the aryl hydrocarbon receptor. Biochem Pharmacol. 72:267–279.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hahn ME: Aryl hydrocarbon receptors:
Diversity and evolution. Chem Biol Interact. 141:131–160. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Burbach KM, Poland A and Bradfield CA:
Cloning of the Ah-receptor cDNA reveals a distinctive
ligand-activated transcription factor. Proc Natl Acad Sci USA.
89:8185–8189. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ma Q: Overview of AHR functional domains
and the classical AHR signaling pathway: Induction of drug
metabolizing enzymes. The AH Receptor in Biology and Toxicology.
Pohjanvirta R: John Wiley & Sons; Hoboken, New Jersey: pp.
35–45. 2012
|
|
31
|
Ma Q and Whitlock JP Jr: A novel
cytoplasmic protein that interacts with the Ah receptor, contains
tetratricopeptide repeat motifs, and augments the transcriptional
response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem.
272:8878–8884. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ma Q, Dong L and Whitlock JP Jr:
Transcriptional activation by the mouse Ah receptor. Interplay
between multiple stimulatory and inhibitory functions. J Biol Chem.
270:12697–12703. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Murray IA and Perdew GH: Role of the
chaperone proteins in ahr function. The AH Receptor in Biology and
Toxicology. Pohjanvirta R: John Wiley & Sons; Hoboken, New
Jersey: pp. 47–61. 2011, View Article : Google Scholar
|
|
34
|
Chen HS and Perdew GH: Subunit composition
of the heteromeric cytosolic aryl hydrocarbon receptor complex. J
Biol Chem. 269:27554–27558. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Meyer BK, Pray-Grant MG, Vanden Heuvel JP
and Perdew GH: Hepatitis B virus X-associated protein 2 is a
subunit of the unliganded aryl hydrocarbon receptor core complex
and exhibits transcriptional enhancer activity. Mol Cel Biol.
18:978–988. 1998. View Article : Google Scholar
|
|
36
|
Carver LA, LaPres JJ, Jain S, Dunham EE
and Bradfield CA: Characterization of the Ah receptor-associated
protein, ARA9. J Biol Chem. 273:33580–33587. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schreiber SL: Chemistry and biology of the
immunophilins and their immunosuppressive ligands. Science.
251:283–287. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ma Q and Baldwin KT:
2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl
hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway.
Role of the transcription activation and DNA binding of AhR. J Biol
Chem. 275:8432–8438. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Roberts BJ and Whitelaw ML: Degradation of
the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin
receptor via the ubiquitin/proteasome pathway. J Biol Chem.
274:36351–36356. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lo RS and Massagué J: Ubiquitin-dependent
degradation of TGF-beta-activated Smad2. Nat Cell Biol. 1:472–478.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Floyd ZE, Trausch-Azar JS, Reinstein E,
Ciechanover A and Schwartz AL: The nuclear ubiquitin-proteasome
system degrades MyoD. J Biol Chem. 276:22468–22475. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ikuta T, Eguchi H, Tachibana T, Yoneda Y
and Kawajiri K: Nuclear localization and export signals of the
human aryl hydrocarbon receptor. J Biol Chem. 273:2895–2904. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fukunaga BN, Probst MR, Reisz-Porszasz S
and Hankinson O: Identification of functional domains of the aryl
hydrocarbon receptor. J Biol Chem. 270:29270–29278. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Reisz-Porszasz S, Probst MR, Fukunaga BN
and Hankinson O: Identification of functional domains of the aryl
hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell
Biol. 14:6075–6086. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Soshilov A and Denison MS: Role of the
Per/Arnt/Sim domains in ligand-dependent transformation of the aryl
hydrocarbon receptor. J Biol Chem. 283:32995–33005. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mahon MJ and Gasiewicz TA: Ah receptor
phosphorylation: Localization of phosphorylation sites to the
C-terminal half of the protein. Arch Biochem Biophys. 318:166–174.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Swanson H: Dioxin response elements and
regulation of gene transcription. The AH Receptor in Biology and
Toxicology. Pohjanvirta R: John Wiley & Sons; Hoboken, New
Jersey: pp. 81–91. 2012
|
|
48
|
Bacsi S, Reisz-Porszasz S and Hankinson O:
Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor
complex on its asymmetric DNA recognition sequence. Mol Pharmacol.
47:432–438. 1995.PubMed/NCBI
|
|
49
|
Ma Q: Induction and superinduction of
2,3,7,8-tetrachlorodibenzo-rho-dioxin-inducible poly(ADP-ribose)
polymerase: Role of the aryl hydrocarbon receptor/aryl hydrocarbon
receptor nuclear translocator transcription activation domains and
a labile transcription repressor. Arch Biochem Biophys.
404:309–316. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gasiewicz TA, Henry EC and Collins LL:
Expression and activity of aryl hydrocarbon receptors in
development and cancer. Crit Review Eukaryotic Gene Exp.
18:279–321. 2008. View Article : Google Scholar
|
|
51
|
Barouki R, Coumoul X and
Fernandez-Salguero PM: The aryl hydrocarbon receptor, more than a
xenobiotic-interacting protein. FEBS Lett. 581:3608–3615. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mulero-Navarro S and Fernandez-Salguero
PM: New trends in Aryl hydrocarbon receptor biology. Front Cell Dev
Biol. 4:452016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Larigot L, Juricek L, Dairou J and Coumoul
X: AhR signaling pathways and regulatory functions. Biochim Open.
7:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bock KW: Aryl hydrocarbon receptor (AHR):
From selected human target genes and crosstalk with transcription
factors to multiple AHR functions. Biochem Pharmacol. 168:65–70.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Josyula N, Andersen ME, Kaminski NE, Dere
E, Zacharewski TR and Bhattacharya S: Gene co-regulation and
co-expression in the aryl hydrocarbon receptor-mediated
transcriptional regulatory network in the mouse liver. Arch
Toxicol. 94:113–126. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gu YZ, Hogenesch JB and Bradfield CA: The
PAS superfamily: Sensors of environmental and developmental
signals. Annu Rev Pharmacol Toxicol. 40:519–561. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ge NL and Elferink CJ: A direct
interaction between the aryl hydrocarbon receptor and
retinoblastoma protein. Linking dioxin signaling to the cell cycle.
J Biol Chem. 273:22708–22713. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang G and Elferink CJ: Multiple
mechanisms are involved in Ah receptor-mediated cell cycle arrest.
Mol Pharmacol. 67:88–96. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Marlowe JL, Knudsen ES, Schwemberger S and
Puga A: The aryl hydrocarbon receptor displaces p300 from
E2F-dependent promoters and represses S phase-specific gene
expression. J Biol Chem. 279:29013–29022. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Elferink CJ, Ge NL and Levine A: Maximal
aryl hydrocarbon receptor activity depends on an interaction with
the retinoblastoma protein. Mol Pharmacol. 59:664–673. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jackson DP, Li H, Mitchell KA, Joshi AD
and Elferink C: Ah receptor-mediated suppression of liver
regeneration through NC-XRE-driven p21Cip1 expression. J Mol
Pharmacol. 85:533–541. 2014. View Article : Google Scholar
|
|
62
|
Vogel CF, Sciullo E and Matsumura F:
Involvement of RelB in aryl hydrocarbon receptor-mediated induction
of chemokines. Biochem Biophys Res Commun. 363:722–726. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tian Y, Ke S, Denison M, Rabson A and
Gallo M: Ah receptor and NF-kappaB interactions, a potential
mechanism for dioxin toxicity. J Biol Chem. 274:510–515. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hollingshead BD, Beischlag TV, Dinatale
BC, Ramadoss P and Perdew GH: Inflammatory signaling and aryl
hydrocarbon receptor mediate synergistic induction of interleukin 6
in MCF-7 cells. Cancer Res. 68:3609–3617. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim DW, Gazourian L, Quadri SA,
Romieu-Mourez R, Sherr DH and Sonenshein GE: The RelA NF-kappaB
subunit and the aryl hydrocarbon receptor (AhR) cooperate to
transactivate the c-myc promoter in mammary cells. Oncogene.
19:5498–5506. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yeager RL, Reisman SA, Aleksunes LM and
Klaassen CD: Introducing the ‘TCDD-inducible AhR-Nrf2 gene
battery’. Toxicol Sci. 111:238–246. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang L, He X, Szklarz GD, Bi Y,
Rojanasakul Y and Ma Q: The aryl hydrocarbon receptor interacts
with nuclear factor erythroid 2-related factor 2 to mediate
induction of NAD(P)H:quinoneoxidoreductase 1 by
2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys.
537:31–38. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zacharewski TR, Bondy KL, McDonell P and
Wu ZF: Antiestrogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin
on 17 beta-estradiol-induced pS2 expression. Cancer Res.
54:2707–2713. 1994.PubMed/NCBI
|
|
69
|
Gillesby BE, Stanostefano M, Porter W,
Safe S, Wu ZF and Zacharewski TR: Identification of a motif within
the 5′ regulatory region of pS2 which is responsible for AP-1
binding and TCDD-mediated suppression. Biochemistry. 36:6080–6089.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ohtake F, Fujii-Kuriyama Y and Kato S: AhR
acts as an E3 ubiquitin ligase to modulate steroid receptor
functions. Biochem Pharmacol. 77:474–484. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Peters JM, Narotsky MG, Elizondo G,
Fernandez-Salguero PM, Gonzalez FJ and Abbott BD: Amelioration of
TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null
mice. Toxicol Sci. 47:86–92. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dere E, Lo R, Celius T, Matthews J and
Zacharewski TR: Integration of genome-wide computation DRE search,
AhR ChIP-chip and gene expression analyses of TCDD-elicited
responses in the mouse liver. BMC Genomics. 12:365–375. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tijet N, Boutros PC, Moffat ID, Okey AB,
Tuomisto J and Pohjanvirta R: Aryl hydrocarbon receptor regulates
distinct dioxin-dependent and dioxin-independent gene batteries.
Mol Pharmacol. 69:140–153. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mitchell KA, Lockhart CA, Huang G and
Elferink CJ: Sustained aryl hydrocarbon receptor activity
attenuates liver regeneration. Mol Pharmacol. 70:163–170. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang G and Elferink CJ: A novel
nonconsensus xenobiotic response element capable of mediating aryl
hydrocarbon receptor-dependent gene expression. Mol Pharmacol.
81:338–347. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Harper JW, Elledge SJ, Keyomarsi K,
Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley
L, Swindell E, et al: Inhibition of cyclin-dependent kinases by
p21. Mol Biol Cell. 6:387–400. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jackson DP, Joshi AD and Elferink CJ: Ah
receptor pathway intricacies; signaling through diverse protein
partners and DNA-motifs. Toxicol Res (Camb). 4:1143–1158. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wilson SR, Joshi AD and Elferink CJ: The
tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon
receptor DNA binding partner. J Pharmacol Exp Ther. 345:419–429.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang W, Shields JM, Sogawa K,
Fujii-Kuriyama Y and Yang VW: The gut-enriched Krüppel-like factor
suppresses the activity of the CYP1A1 promoter in an Sp1-dependent
fashion. J Biol Chem. 273:17917–17925. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Philipsen S and Suske G: A tale of three
fingers: The family of mammalian Sp/XKLF transcription factors.
Nucleic Acids Res. 27:2991–3000. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jeng YM and Hsu HC: KLF6, a putative tumor
suppressor gene, is mutated in astrocytic gliomas. Int J Cancer.
105:625–629. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Andreoli V, Gehrau RC and Bocco JL:
Biology of Krüppel-like factor 6 transcriptional regulator in cell
life and death. IUBMB Life. 62:896–905. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Rubinstein M, Idelman G, Plymate SR, Narla
G, Friedman SL and Werner H: Transcriptional activation of the
insulin-like growth factor I receptor gene by the Kruppel-like
factor 6 (KLF6) tumor suppressor protein: Potential interactions
between KLF6 and p53. Endocrinology. 145:3769–3777. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
YangLShiPZhao G, Xu J, Peng W, Zhang J,
Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem
cell pathways for cancer therapy. Sig Transduct Target Ther.
5:82020. View Article : Google Scholar
|
|
85
|
Pearson JRD and Regad T: Targeting
cellular pathways in glioblastoma multiforme. Sig Transduct Target
Ther. 2:170402017. View Article : Google Scholar
|
|
86
|
Murray IA, Patterson AD and Perdew GH:
Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat
Rev Cancer. 14:801–814. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xue P, Fu J and Zhou Y: The aryl
hydrocarbon receptor and tumor immunity. Front Immunol. 9:2862018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hayashibara T, Yamada Y, Mori N, Harasawa
H, Sugahara K, Miyanishi T, Kamihira S and Tomonaga M: Possible
involvement of aryl hydrocarbon receptor (AhR) in adult T-cell
leukemia (ATL) leukemogenesis: Constitutive activation of AhR in
ATL. Biochem Biophys Res Commun. 300:128–134. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gentil M, Hugues P, Desterke C, Telliam G,
Sloma I, Souza LEB, Baykal S, Artus J, Griscelli F, Guerci A, et
al: Aryl hydrocarbon receptor (AHR) is a novel druggable pathway
controlling malignant progenitor proliferation in chronic myeloid
leukemia (CML). PLoS One. 13:e02009232018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sanna S, Satta G, Padoan M, Piro S,
Gambelunghe A, Miligi L, Ferri GM, Magnani C, Muzi G, Rigacci L, et
al: Activation of the aryl hydrocarbon receptor and risk of
lymphoma subtypes. Int J Mol Epidemiol Genet. 8:40–44.
2017.PubMed/NCBI
|
|
91
|
Wang K, Li Y, Jiang YZ, Dai CF, Patankar
MS, Song JS and Zheng J: An endogenous aryl hydrocarbon receptor
ligand inhibits proliferation and migration of human ovarian cancer
cells. Cancer Lett. 340:63–71. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Perez AIL and Bradshaw TD: Exploring new
molecular targets in advanced ovarian cancer: The aryl hydrocarbon
receptor (AhR) and antitumor benzothiazole ligands as potential
therapeutic candidates. Current Trends in Cancer Management.
2018.
|
|
93
|
Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass
H and Rom WN: Aryl hydrocarbon receptor and lung cancer. Anticancer
Res. 33:1247–1256. 2013.PubMed/NCBI
|
|
94
|
Guerrina N, Traboulsi H, Eidelman DH and
Baglole CJ: The aryl hydrocarbon receptor and the maintenance of
lung health. Int J Mol Sci. 19:38822018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu Z, Wu X, Zhang F, Han L, Bao G, He X
and Xu Z: AhR expression is increased in hepatocellular carcinoma.
J Mol Histol. 44:455–461. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
John K, Lahoti TS, Wagner K, Hughes JM and
Perdew GH: The Ah receptor regulates growth factor expression in
head and neck squamous cell carcinoma cell lines. Mol Carcinog.
53:765–776. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wesseling P and Capper D: WHO 2016
classification of gliomas. Neuropathol Appl Neurobiol. 44:139–150.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Loeffler S, Fayard B, Weis J and
Weissenberger J: Interleukin-6 induces transcriptional activation
of vascular endothelial growth factor (VEGF) in astrocytes in vivo
and regulates VEGF promoter activity in glioblastoma cells via
direct interaction between STAT3 and Sp1. Int J Cancer.
115:202–213. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Botella LM, Sanz-Rodriguez F, Komi Y,
Fernandez-L A, Varela E, Garrido-Martin EM, Narla G, Friedman SL
and Kojima S: TGF-beta regulates the expression of transcription
factor KLF6 and its splice variants and promotes co-operative
transactivation of common target genes through a Smad3-Sp1-KLF6
interaction. Biochem J. 419:485–495. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Merk BC, Owens JL, Lopes MB, Silva CM and
Hussaini IM: STAT6 expression in glioblastoma promotes invasive
growth. BMC Cancer. 11:1842011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gu A, Ji G, Jiang T, Lu A, You Y, Liu N,
Luo C, Yan W and Zhao P: Contributions of aryl hydrocarbon receptor
genetic variants to the risk of glioma and PAH-DNA adducts. Toxicol
Sci. 128:357–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li H xing, Peng X xiao and Zong Q:
Cigarette smoking and risk of adult glioma: A meta-analysis of 24
observational studies involving more than 2.3 million individuals.
Onco Targets Ther. 9:3511–3523. 2016.PubMed/NCBI
|
|
104
|
Maier MS, Legare ME and Hanneman WH: The
aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl
induces distinct patterns of gene expression between hepatoma and
glioma cells: Chromatin remodeling as a mechanism for selective
effects. Neurotoxicology. 28:594–612. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gramatzki D, Pantazis G, Schittenhelm J,
Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M and Tritschler I:
Aryl hydrocarbon receptor inhibition downregulates the
TGF-beta/Smad pathway in human glioblastoma cells. Oncogene.
28:2593–2605. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pećina-Šlaus N, Kafka A, Tomas D, Marković
L, Okštajner PK, Sukser V and Krušlin B: Wnt signaling
transcription factors TCF-1 and LEF-1 are upregulated in malignant
astrocytic brain tumors. Histol Histopathol. 29:1557–1564.
2014.
|
|
107
|
Djuzenova CS, Blassl C, Roloff K, Kuger S,
Katzer A, Niewidok N, Günther N, Polat B, Sukhorukov VL and Flentje
M: Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of
tumor cell lines under hypoxia. Cancer Biol Ther. 13:425–434. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Seznec J, Silkenstedt B and Naumann U:
Therapeutic effects of the Sp1 inhibitor mithramycin A in
glioblastoma. J Neurooncol. 101:365–377. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chiba Y, Todoroki M, Nishida Y, Tanabe M
and Misawa M: A novel STAT6 inhibitor AS1517499 ameliorates
antigen-induced bronchial hypercontractility in mice. Am J Respir
Cell Mol Biol. 41:516–524. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Jin UH, Karki K, Cheng Y, Michelhaugh SK,
Mittal S and Safe S: The aryl hydrocarbon receptor is a tumor
suppressor-like gene in glioblastoma. J Biol Chem. 294:11342–11353.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
de Robles P, Fiest KM, Frolkis AD,
Pringsheim T, Atta C, St Germaine-Smith C, Day L, Lam D and Jette
N: The worldwide incidence and prevalence of primary brain tumors:
A systematic review and meta-analysis. Neuro Oncol. 17:776–783.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Girardi F, Allemani C and Coleman MP:
Worldwide trends in survival from common childhood brain tumors: A
systematic review. J Glob Oncol. 5:1–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ostrom QT, Cioffi G, Gittleman H, Patil N,
Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical
report: Primary brain and other central nervous system tumors
diagnosed in the United States in 2012–2016. Neuro Oncol. 21 (Suppl
5):v1–v100. 2019. View Article : Google Scholar
|
|
114
|
Gilbertson RJ and Ellison DW: The origins
of medulloblastoma subtypes. Annu Rev Pathol. 3:341–365. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yang ZJ, Ellis T, Markant SL, Read TA,
Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch
DH, et al: Medulloblastoma can be initiated by deletion of patched
in lineage-restricted progenitors or stem cells. Cancer Cell.
14:135–145. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Rossi A, Caracciolo V, Russo G, Reiss K
and Giordano A: Medulloblastoma: From molecular pathology to
therapy. Clin Cancer Res. 14:971–976. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ramaswamy V and Taylor MD:
Medulloblastoma: From myth to molecular. J Clin Oncol.
35:2355–2363. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Mulhern RK, Merchant TE, Gajjar A, Reddick
WE and Kun LE: Late neurocognitive sequelae in survivors of brain
tumours in childhood. Lancet Oncol. 5:399–408. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Doussouki MEI, Gajjar A and Chamdine O:
Molecular genetics of medulloblastoma in children: Diagnostic,
therapeutic and prognostic implications. Future Neurol.
14:FNL82019. View Article : Google Scholar
|
|
120
|
Miranda Kuzan-Fischer C, Juraschka K and
Taylor MD: Medulloblastoma in the molecular era. J Korean Neurosurg
Soc. 61:292–301. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Dever DP and Opanashuk LA: The aryl
hydrocarbon receptor contributes to the proliferation of human
medulloblastoma cells. Mol Pharmacol. 81:669–678. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Li Y, Guessous F, Johnson EB, Eberhart CG,
Li XN, Shu Q, Fan S, Lal B, Laterra J, Schiff D and Abounader R:
Functional and molecular interactions between the HGF/c-Met pathway
and c-Myc in large-cell medulloblastoma. Lab Invest. 88:98–111.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Sarić N, Selby M, Ramaswamy V, Kool M,
Stockinger B, Hogstrand C, Williamson D, Marino S, Taylor MD,
Clifford SC and Basson MA: The AHR pathway represses TGFβ-SMAD3
signalling and has a potent tumour suppressive role in SHH
medulloblastoma. Sci Rep. 10:1482020. View Article : Google Scholar
|
|
124
|
Johnsen JI, Dyberg C, Fransson S and
Wickström M: Molecular mechanisms and therapeutic targets in
neuroblastoma. Pharmacol Res. 131:164–176. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Johnsen JI, Dyberg C and Wickström M:
Neuroblastoma-A neural crest derived embryonal malignancy. Front
Mol Neurosci. 12:92019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Steliarova-Foucher E, Colombet M, Ries
LAG, Moreno F, Dolya A, Bray F, Hesseling P, Shin HY and Stiller
CA; IICC-3 contributors, : International incidence of childhood
cancer, 2001-10: A population-based registry study. Lancet Oncol.
8:719–31. 2017. View Article : Google Scholar
|
|
127
|
Panagopoulou P, Georgakis MK, Baka M,
Moschovi M, Papadakis V, Polychronopoulou S, Kourti M,
Hatzipantelis E, Stiakaki E, Dana H, et al: Persisting inequalities
in survival patterns of childhood neuroblastoma in Southern and
Eastern Europe and the effect of socio-economic development
compared with those of the US. Eur J Cancer. 96:44–53. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kholodenko IV, Kalinovsky DV, Doronin II,
Deyev SM and Kholodenko RV: Neuroblastoma origin and therapeutic
targets for immunotherapy. J Immunol Res. 2018:73942682018.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Allen-Rhoades W, Whittle SB and Rainusso
N: Pediatric solid tumors of infancy: An overview. Pediatr Rev.
39:57–67. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Akahoshi E, Yoshimura S and
Ishihara-Sugano M: Over-expression of AhR (aryl hydrocarbon
receptor) induces neural differentiation of Neuro2a cells:
Neurotoxicology study. Environ Health. 5:242006. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wu PY, Liao YF, Juan HF, Huang HC, Wang
BJ, Lu YL, Yu IS, Shih YY, Jeng YM, Hsu WM and Lee H: Aryl
hydrocarbon receptor downregulates MYCN expression and promotes
cell differentiation of neuroblastoma. PLoS One. 9:887952014.
View Article : Google Scholar
|
|
132
|
Latchney SE, Hein AM, O'Banion MK,
DiCicco-Bloom E and Opanashuk LA: Deletion or activation of the
aryl hydrocarbon receptor alters adult hippocampal neurogenesis and
contextual fear memory. J Neurochem. 125:430–445. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Yang X, Liu D, Murray TJ, Mitchell G C,
Hesterman EV, Karchner SI, Merson RR, Hahn ME and Sherr DH: The
aryl hydrocarbon receptor constitutively represses c-myc
transcription in human mammary tumor cells. Oncogene. 24:7869–7881.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Puga A, Barnes SJ, Dalton TP, Chang Cy,
Knudsen ES and Maier MA: Aromatic hydrocarbon receptor interaction
with the retinoblastoma protein potentiates repression of
E2F-dependent transcription and cell cycle arrest. J Biol Chem.
275:2943–2950. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wu PY, Chuang PY, Chang GD, Chan YY, Tsai
TC, Wang BJ, Lin KH, Hsu WM, Liao YF and Lee H: Novel endogenous
ligands of aryl hydrocarbon receptor mediate neural development and
differentiation of neuroblastoma. ACS Chem Neurosci. 10:4031–4042.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Peters JC: Tryptophan nutrition and
metabolism: An overview. Kynurenine and Serotonin Pathways:
Progress in Tryptophan Research. Schwarcz R, Young SN and Brown RR:
Plenum Press Div Plenum Publishing Corp.; New York: pp. 345–358.
1991, View Article : Google Scholar
|
|
137
|
Guillemin GJ, Cullen KM, Lim CK, Smythe
GA, Garner B, Kapoor V, Takikawa O and Brew BJ: Characterization of
the kynurenine pathway in human neurons. J Neurosci.
27:12884–12892. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Coggan SE, Smythe GA, Bilgin A and Grant
RS: Age and circadian influences on picolinic acid concentrations
in human cerebrospinal fluid. J Neurochem. 108:1220–1225. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Adams S, Braidy N, Bessede A, Brew BJ,
Grant R, Teo C and Guillemin GJ: The kynurenine pathway in brain
tumor pathogenesis. Cancer Res. 72:5649–5657. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ye ZC and Sontheimer H: Glioma cells
release excitotoxic concentrations of glutamate. Cancer Res.
59:4383–4391. 1999.PubMed/NCBI
|
|
141
|
Opitz CA, Litzenburger UM, Sahm F, Ott M,
Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller
M, et al: An endogenous tumour-promoting ligand of the human aryl
hydrocarbon receptor. Nature. 478:197–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Zhang S, Qin C and Safe SH: Flavonoids as
aryl hydrocarbon receptor agonists/antagonists: Effects of
structure and cell context. Environ Health Perspect. 111:1877–1882.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Kaiser H, Parker E and Hamrick MW:
Kynurenine signaling through the aryl hydrocarbon receptor:
Implications for aging and healthspan. Exp Gerontol.
130:1107972019. View Article : Google Scholar : PubMed/NCBI
|