Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Possibility of inducing tumor cell senescence during therapy (Review)

  • Authors:
    • Guohui Wang
    • Xianliang Cheng
    • Jingyi Zhang
    • Yuan Liao
    • Yinnong Jia
    • Chen Qing
  • View Affiliations / Copyright

    Affiliations: School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 496
    |
    Published online on: April 27, 2021
       https://doi.org/10.3892/ol.2021.12757
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high‑dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth‑arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β‑galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI

2 

van Deursen JM: The role of senescent cells in ageing. Nature. 509:439–446. 2014. View Article : Google Scholar : PubMed/NCBI

3 

He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI

4 

te Poele RH, Okorokov AL, Jardine L, Cummings J and Joel SP: DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62:1876–1883. 2002.PubMed/NCBI

5 

Wang Z, Liu H and Xu C: Cellular senescence in the treatment of ovarian cancer. Int J Gynecol Cancer. 28:895–902. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Saretzki G and Von Zglinicki T: Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci. 959:24–29. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Feng C, Yang M, Zhang Y, Lan M, Huang B, Liu H and Zhou Y: Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells. Int J Mol Med. 41:3316–3326. 2018.PubMed/NCBI

8 

Chandeck C and Mooi WJ: Oncogene-induced cellular senescence. Adv Anat Pathol. 17:42–48. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Falandry C, Bonnefoy M, Freyer G and Gilson E: Biology of cancer and aging: A complex association with cellular senescence. J Clin Oncol. 32:2604–2610. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Baeeri M, Bahadar H, Rahimifard M, Navaei-Nigjeh M, Khorasani R, Rezvanfar MA, Gholami M and Abdollahi M: α-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress. Pharmacol Res. 141:214–223. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Campisi J: Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell. 120:513–522. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Zhu Y, Armstrong JL, Tchkonia T and Kirkland JL: Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 17:324–328. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113:703–716. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M and Gorgoulis VG: Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 5:37–50. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS and Goldman RD: The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25:2579–2593. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Swanson EC, Manning B, Zhang H and Lawrence JB: Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 203:929–942. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Faget DV, Ren Q and Stewart SA: Unmasking senescence: Context-dependent effects of SASP in cancer. Nat Rev Cancer. 19:439–453. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Qu K, Lin T, Wei J, Meng F, Wang Z, Huang Z, Wan Y, Song S, Liu S, Chang H, et al: Cisplatin induces cell cycle arrest and senescence via upregulating P53 and P21 expression in HepG2 cells. Nan Fang Yi Ke Da Xue Xue Bao. 33:1253–1259. 2013.PubMed/NCBI

19 

Yao GD, Yang J, Li Q, Zhang Y, Qi M, Fan SM, Hayashi T, Tashiro S, Onodera S and Ikejima T: Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro. Acta Pharmacol Sin. 37:919–929. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Zhang JW, Zhang SS, Song JR, Sun K, Zong C, Zhao QD, Liu WT, Li R, Wu MC and Wei LX: Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem Pharmacol. 90:265–275. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Shtutman M, Chang BD, Schools GP and Broude EV: Cellular model of p21-induced senescence. Methods Mol Biol. 1534:31–39. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Rodenak-Kladniew B, Castro A, Stärkel P, De Saeger C, García de Bravo M and Crespo R: Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 199:48–59. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Ewald JA, Desotelle JA, Wilding G and Jarrard DF: Therapy-induced senescence in cancer. J Natl Cancer Inst. 102:1536–1546. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Geng YQ, Guan JT, Xu XH and Fu YC: Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun. 396:866–869. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Aird KM and Zhang R: Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 965:185–196. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Bernardes de Jesus B and Blasco MA: Assessing cell and organ senescence biomarkers. Circ Res. 111:97–109. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Park CW, Bak Y, Kim MJ, Srinivasrao G, Hwang J, Sung NK, Kim BY, Yu JH, Hong JT and Yoon DY: The novel small molecule STK899704 promotes senescence of the human A549 NSCLC cells by inducing DNA damage responses and cell cycle arrest. Front Pharmacol. 9:1632018. View Article : Google Scholar : PubMed/NCBI

28 

Shi J, Pang L and Jiao S: The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture. Biosci Rep. 38:BSR201800642018. View Article : Google Scholar : PubMed/NCBI

29 

Nadeau S, Cheng A, Colmegna I and Rodier F: Quantifying senescence-associated phenotypes in primary multipotent mesenchymal stromal cell cultures. Methods Mol Biol. 2045:93–105. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Bernhart E, Damm S, Heffeter P, Wintersperger A, Asslaber M, Frank S, Hammer A, Strohmaier H, DeVaney T, Mrfka M, et al: Silencing of protein kinase D2 induces glioma cell senescence via p53-dependent and -independent pathways. Neuro Oncol. 16:933–945. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Matjusaitis M, Chin G, Sarnoski EA and Stolzing A: Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 29:1–12. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Aravinthan A, Mells G, Allison M, Leathart J, Kotronen A, Yki-Jarvinen H, Daly AK, Day CP, Anstee QM and Alexander G: Gene polymorphisms of cellular senescence marker p21 and disease progression in non-alcohol-related fatty liver disease. Cell Cycle. 13:1489–1494. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Sasaki M, Kuo FY, Huang CC, Swanson PE, Chen CL, Chuang JH and Yeh MM: Increased expression of senescence-associated cell cycle regulators in the progression of biliary atresia: An immunohistochemical study. Histopathology. 72:1164–1171. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Marcoux S, Le ON, Langlois-Pelletier C, Laverdière C, Hatami A, Robaey P and Beauséjour CM: Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: A pilot study. Radiat Oncol. 8:2522013. View Article : Google Scholar : PubMed/NCBI

35 

Pare R, Shin JS and Lee CS: Increased expression of senescence markers p14 (ARF) and p16(INK4a) in breast cancer is associated with an increased risk of disease recurrence and poor survival outcome. Histopathology. 69:479–491. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Valdiglesias V, Giunta S, Fenech M, Neri M and Bonassi S: γ-H2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 753:24–40. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Noren Hooten N and Evans MK: Techniques to induce and quantify cellular senescence. J Vis Exp. 555332017.doi: 10.3791/55533. PubMed/NCBI

38 

Ko A, Han SY, Choi CH, Cho H, Lee MS, Kim SY, Song JS, Hong KM, Lee HW, Hewitt SM, et al: Oncogene-induced senescence mediated by c-Myc requires USP10 dependent deubiquitination and stabilization of p14ARF. Cell Death Differ. 25:1050–1062. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Salama RH, Sayed ZEA, Ashmawy AM, Elsewify WA, Ezzat GM, Mahmoud MA, Alsanory AA and Alsanory TA: Interrelations of apoptotic and cellular senescence genes methylation in inflammatory bowel disease subtypes and colorectal carcinoma in Egyptians patients. Appl Biochem Biotechnol. 189:330–343. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J and Demaria M: Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 27:2652–2660.e4. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G and Galderisi U: Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). 8:1316–1329. 2016. View Article : Google Scholar

42 

Lim S and Kaldis P: Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Sage J, Attardi L and Dyke TV: Roles of p53 and pRB tumor suppressor networks in human cancer: Insight from studies in the engineered mouse. Genetically Engineered Mice Cancer Res. 293–308. 2012. View Article : Google Scholar

44 

Chellappan SP, Hiebert S, Mudryj M, Horowitz JM and Nevins JR: The E2F transcription factor is a cellular target for the RB protein. Cell. 65:1053–1061. 1991. View Article : Google Scholar : PubMed/NCBI

45 

Was H, Czarnecka J, Kowalczyk A, Barszcz K, Bernas T, Piwocka K and Kaminska B: Some chemotherapeutics-treated colon cancer cells display a specific phenotype being a combination of stem-like and senescent cell features. Cancer Biol Ther. 19:63–75. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Mao Z, Ke Z, Gorbunova V and Seluanov A: Replicatively senescent cells are arrested in G1 and G2 phases. Aging (Albany NY). 4:431–435. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Tao YF, Wang NN, Xu LX, Li ZH, Li XL, Xu YY, Fang F, Li M, Qian GH, Li YH, et al: Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell Int. 17:352017. View Article : Google Scholar : PubMed/NCBI

48 

Vijayaraghavan S and Keyomarsi K: An intact G1/S checkpoint determines response to CDK4/6 inhibitor in breast cancer. Cancer Res. 76:29892016.

49 

Vijayaraghavan S and Keyomarsi K: Abstract P5-08-02: Inhibition of CDK4/6 induces senescence and autophagy in ER positive breast cancers. Cancer Res. 75:P5–08-02. 2015.

50 

Nelson DM, McBryan T, Jeyapalan JC, Sedivy JM and Adams PD: A comparison of oncogene-induced senescence and replicative senescence: Implications for tumor suppression and aging. Age (Dordr). 36:96372014. View Article : Google Scholar : PubMed/NCBI

51 

Zhu Y, Liu X, Ding X, Wang F and Geng X: Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 20:1–16. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Artandi SE and DePinho RA: Role of telomeres and telomerase in cancer. Carcinogenesis. 31:9–18. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Shitara S, Kakeda M, Nagata K, Hiratsuka M, Sano A, Osawa K, Okazaki A, Katoh M, Kazuki Y, Oshimura M and Tomizuka K: Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector. Biochem Biophys Res Commun. 369:807–811. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI

55 

Barma DK, Elayadi A, Falck JR and Corey DR: Inhibition of telomerase by BIBR 1532 and related analogues. Bioorg Med Chem Lett. 13:1333–1336. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Hájek M, Matulová N, Votruba I, Holý A and Tloust'ová E: Inhibition of human telomerase by diphosphates of acyclic nucleoside phosphonates. Biochem Pharmacol. 70:894–900. 2005. View Article : Google Scholar

57 

Ji XM, Xie CH, Fang MH, Zhou FX, Zhang WJ, Zhang MS and Zhou YF: Efficient inhibition of human telomerase activity by antisense oligonucleotides sensitizes cancer cell storadiotherapy. Acta Pharmacol Sin. 27:1185–1191. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Kondo Y and Kondo S: Telomerase RNA inhibition using antisense oligonucleotide against human telomerase RNA linked to a 2′,5′-Oligoadenylate. Methods Mol Biol. 405:97–112. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Shammas MA, Simmons CG, Corey DR and Shmookler Reis RJ: Telomerase inhibition by peptide nucleic acids reverses ‘immortality’ of transformed human cells. Oncogene. 18:6191–6200. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem. 277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U and Castelo-Branco P: Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: Clinical impacts in cancer. J Biomed Sci. 25:222018. View Article : Google Scholar

62 

Reczek CR and Chandel NS: ROS promotes cancer cell survival through calcium signaling. Cancer Cell. 33:949–951. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Zhang W, Huang C, Sun A, Qiao L, Zhang X, Huang J, Sun X, Yang X and Sun S: Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo. Biomed Pharmacother. 106:1126–1134. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Zheng H, Huang Q, Huang S, Yang X, Zhu T, Wang W, Wang H, He S, Ji L, Wang Y, et al: Senescence inducer Shikonin ROS-dependently suppressed lung cancer progression. Front Pharmacol. 9:5192018. View Article : Google Scholar : PubMed/NCBI

65 

Chen Q, Fischer A, Reagan JD, Yan LJ and Ames BN: Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA. 92:4337–4341. 1995. View Article : Google Scholar : PubMed/NCBI

66 

Pan Jing CJ: Advances in study of the mechanisms of cellular senescence. J Pathogen Biol. 10:672–673. 2015.

67 

Probin V, Wang Y and Zhou D: Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med. 42:1858–1865. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Mirzayans R, Andrais B, Kumar P and Murray D: Significance of Wild-type p53 signaling in suppressing apoptosis in response to chemical genotoxic agents: Impact on chemotherapy outcome. Int J Mol Sci. 18:9282017. View Article : Google Scholar : PubMed/NCBI

69 

Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Driscoll DL, Chakravarty A, Bowman D, Shinde V, Lasky K, Shi J, Vos T, Stringer B, Amidon B, D'Amore N and Hyer ML: Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines. PLoS One. 9:e1110602014. View Article : Google Scholar : PubMed/NCBI

71 

Klement K and Goodarzi AA: DNA double strand break responses and chromatin alterations within the aging cell. Exp Cell Res. 329:42–52. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Yanai M, Makino H, Ping B, Takeda K, Tanaka N, Sakamoto T, Yamaguchi K, Kodani M, Yamasaki A, Igishi T and Shimizu E: DNA-PK inhibition by NU7441 enhances Chemosensitivity to topoisomerase inhibitor in non-small cell lung carcinoma cells by blocking DNA damage repair. Yonago Acta Med. 60:9–15. 2017.PubMed/NCBI

73 

Robles SJ, Buehler PW, Negrusz A and Adami GR: Permanent cell cycle arrest in asynchronously proliferating normal human fibroblasts treated with doxorubicin or etoposide but not camptothecin. Biochem Pharmacol. 58:675–685. 1999. View Article : Google Scholar : PubMed/NCBI

74 

Zhao W, Lin ZX and Zhang ZQ: Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts. Cell Res. 14:60–66. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Wang JC and Bennett M: Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 111:245–259. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Finkel T, Serrano M and Blasco MA: The common biology of cancer and ageing. Nature. 448:767–774. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M and Alt FW: DNA repair, genome stability, and aging. Cell. 120:0–512. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Benanti JA and Galloway DA: Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol. 24:2842–2852. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Sheng GY, Yi XR, Ting JS and Ying L: Current advances of Ras induced senescence and the bypass mechanism. Progress Bioch Biophysics. 43:652–660. 2016.

80 

Balmus G, Zhu M, Mukherjee S, Lyndaker AM, Hume KR, Lee J, Riccio ML, Reeves AP, Sutter NB, Noden DM, et al: Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1. Hum Mol Genet. 21:3408–3420. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S and Teng SC: Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res. 45:8314–8328. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Lima CRDO, Rabelo RE, Vulcani VAS, Cardoso LD, de Sousa NLM and de Moura VMBD: P53 gene: Major mutations in neoplasias and anticancer gene therapy. Cienc Rural. 42:845–853. 2012. View Article : Google Scholar

83 

Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C and von Zglinicki T: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 8:311–323. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, et al: p53 mutant mice that display early ageing-associated phenotypes. Nature. 415:45–53. 2002. View Article : Google Scholar : PubMed/NCBI

85 

Jiang C, Liu G, Luckhardt T, Antony V, Zhou Y, Carter AB, Thannickal VJ and Liu RM: Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell. 16:1114–1124. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Tong Y, Zhao W, Zhou C, Wawrowsky K and Melmed S: PTTG1 attenuates drug-induced cellular senescence. PLoS One. 6:e237542011. View Article : Google Scholar : PubMed/NCBI

87 

Ling X, Xu C, Fan C, Zhong K, Li F and Wang X: FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res. 74:7487–7497. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Coppé JP, Rodier F, Patil CK, Freund A, Desprez PY and Campisi J: Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 286:36396–36403. 2011. View Article : Google Scholar

90 

Mirzayans R, Andrais B, Hansen G and Murray D: Role of p16(INK4A) in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Biochem Res Int. 2012:9515742012. View Article : Google Scholar : PubMed/NCBI

91 

Gao S, Gao Y, He HH, Han D, Han W, Avery A, Macoska JA, Liu X, Chen S, Ma F, et al: Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep. 17:966–976. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Passegué E and Wagner EF: JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J. 19:2969–2979. 2000. View Article : Google Scholar

93 

Baek MW, Cho HS, Kim SH, Kim WJ and Jung JY: Ascorbic acid induces necrosis in human laryngeal squamous cell carcinoma via ROS, PKC, and calcium signaling. J Cell Physiol. 232:417–425. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Min EY, Kim IH, Lee J, Kim EY, Choi YH and Nam TJ: The effects of fucodian on senescence are controlled by the p16INK4a-pRb and p14Arf-p53 pathways in hepatocellular carcinoma and hepatic cell lines. Int J Oncol. 45:47–56. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Nakade K, Lin CS, Chen XY, Tsai MH, Wuputra K, Zhu ZW, Pan JZ and Yokoyama KK: Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16Ink4a-pRb and Arf-p53 pathways. FEBS Open Bio. 7:1793–1804. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S and Sharpless NE: p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 443:453–457. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Da Silva-Álvarez S, Picallos-Rabina P, Antelo-Iglesias L, Triana-Martínez F, Barreiro-Iglesias A, Sánchez L and Collado M: The development of cell senescence. Exp Gerontol. 128:1107422019. View Article : Google Scholar

98 

Zhao Y, Aguilar A, Bernard D and Wang S: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J Med Chem. 58:1038–1052. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Zheng S, Huang KE, Pan YL, Zhou Y, Pan SD, Li X, Jia J, Zheng XL and Tao DY: KIT and BRAF heterogeneous mutations in gastrointestinal stromal tumors after secondary imatinib resistance. Gastric Cancer. 18:796–802. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Li Z, Fu J, Rew Y, Gribble MW and Medina JC: Abstract 3663: Discovery of sulfonamide-piperidinones as potent inhibitors of the MDM2-p53 protein-protein interaction. Cancer Res. 75:3663. 2015.PubMed/NCBI

101 

Seipel K, Marques M, Sidler C, Mueller BU and Pabst T: The cellular p53 inhibitor MDM2 and the growth factor receptor FLT3 as biomarkers for treatment responses to the MDM2-inhibitor idasanutlin and the MEK1 inhibitor cobimetinib in acute myeloid leukemia. Cancers. 10:1702018. View Article : Google Scholar : PubMed/NCBI

102 

Yue Z, Rong J, Ping W, Bing Y, Xin Y, Feng LD and Yaping W: Gene expression of the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1. Genet Mol Res. 13:10086–10096. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Wei W, Hemmer RM and Sedivy JM: Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol. 21:6748–6757. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, et al: STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 6:77362015. View Article : Google Scholar : PubMed/NCBI

105 

Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM and Hershko A: Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001. View Article : Google Scholar : PubMed/NCBI

106 

Sharma SS, Ma L and Pledger WJ: p27Kip1 inhibits the cell cycle through non-canonical G1/S phase-specific gatekeeper mechanism. Cell Cycle. 14:3954–3964. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Ma D, Guo D, Li W and Zhao H: Mdig, a lung cancer-associated gene, regulates cell cycle progression through p27(KIP1). Tumour Biol. 36:6909–6917. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Hu X, Liu F, Jiang B and Wang Y: The expression of Skp2 in human non-small cell lung cancer and its correlation with expression of p27 protein. Zhongguo Fei Ai Za Zhi. 11:547–550. 2008.(In Chinese). PubMed/NCBI

109 

Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I and Hershko DD: The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Hafez MM, Alhoshani AR, Al-Hosaini KA, Alsharari SD, Al Rejaie SS, Sayed-Ahmed MM and Al-Shabanah OA: SKP2/P27Kip1 pathway is associated with advanced ovarian cancer in Saudi patients. Asian Pac J Cancer Prev. 16:5807–5815. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J and Krek W: Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA. 98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI

112 

Olins AL, Rhodes G, Welch DBM, Zwerger M and Olins DE: Lamin B receptor: Multi-tasking at the nuclear envelope. Nucleus. 1:53–70. 2010. View Article : Google Scholar : PubMed/NCBI

113 

En A, Takauji Y, Ayusawa D and Fujii M: The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). Exp Cell Res. 390:1119272020. View Article : Google Scholar : PubMed/NCBI

114 

Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita M, Pérez-Mancera PA, Bennett DC, Chong H, et al: Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27:1800–1808. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, et al: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 152:584–598. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Arai R, En A, Takauji Y, Maki K, Miki K, Fujii M and Ayusawa D: Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells. Mech Ageing Dev. 178:25–32. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Latorre E, Ostler EL, Faragher RGA and Harries LW: FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence. FASEB J. 33:1086–1097. 2019. View Article : Google Scholar : PubMed/NCBI

118 

He Q, Xue S, Tan Y, Zhang L, Shao Q, Xing L, Li Y, Xiang T, Luo X and Ren G: Dual inhibition of Akt and ERK signaling induces cell senescence in triple-negative breast cancer. Cancer Lett. 448:94–104. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Lam EW, Francis RE and Petkovic M: FOXO transcription factors: Key regulators of cell fate. Biochem Soc Trans. 34:722–726. 2006. View Article : Google Scholar : PubMed/NCBI

120 

Clark O, Daga S and Stoker AW: Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Lett. 328:44–54. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Wu H, Zhao J, Chen M, Wang H, Yao Q, Fan J and Zhang M: The Anti-aging effect of erythropoietin via the ERK/Nrf2-ARE pathway in aging rats. J Mol Neurosci. 61:449–458. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Kucheryavenko O, Nelson G, von Zglinicki T, Korolchuk VI and Carroll B: The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology. 20:331–335. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Shan HY, Bai XJ and Chen XM: Apoptosis is involved in the senescence of endothelial cells induced by angiotensin II. Cell Biol Int. 32:264–270. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Goruppi S and Dotto GP: Mesenchymal Stroma: Primary determinant and therapeutic target for epithelial cancer. Trends Cell Biol. 23:593–602. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Lee S and Schmitt CA: The dynamic nature of senescence in cancer. Nat Cell Biol. 21:94–101. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Krizhanovsky V, Yon M and Dickins RA: Senescence of activated stellate cells limits liver fibrosis. Cell. 134:657–667. 2008. View Article : Google Scholar : PubMed/NCBI

127 

Burton DGA and Krizhanovsky V: Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 71:4373–4386. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Demaria M, Desprez PY, Campisi J and Velarde MC: Cell Autonomous and Non-autonomous effects of senescent cells in the skin. J Invest Dermatol. 135:1722–1726. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Muller M, Li Z and Maitz PKM: Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: Role for p38 mitogen-activated protein kinase. Burns. 35:500–508. 2009. View Article : Google Scholar : PubMed/NCBI

130 

Bitar MS, Abdel-Halim SM and Al-Mulla F: Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: Implications for evidence-based therapy of delayed wound healing in diabetes. Am J Physiol Endocrinol Metab. 305:E951–E963. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI

132 

Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, et al: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 444:633–637. 2006. View Article : Google Scholar : PubMed/NCBI

133 

Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI

134 

Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dörken B, Jenuwein T and Schmitt CA: Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 436:660–665. 2005. View Article : Google Scholar : PubMed/NCBI

135 

Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguría A, Zaballos A, Flores JM, Barbacid M, et al: Tumour biology: Senescence in premalignant tumours. Nature. 436:6422005. View Article : Google Scholar : PubMed/NCBI

136 

Campisi J: Aging and cancer: The double-edged sword of replicative senescence. J Am Geriatr Soc. 45:482–488. 1997. View Article : Google Scholar : PubMed/NCBI

137 

Mavrogonatou E, Pratsinis H and Kletsas D: The role of senescence in cancer development. Semin Cancer Biol. 62:182–191. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Rao SG and Jackson JG: SASP: Tumor suppressor or promoter? Yes! Trends Cancer. 2:676–687. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W and Xu J: SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 35:4321–4334. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Yang B, Shi L, Lei J, Li B and Jin Y: Advances in optical assays for detecting telomerase activity. Luminescence. 34:136–152. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Yuan X, Larsson C and Xu D: Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene. 38:6172–6183. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang G, Cheng X, Zhang J, Liao Y, Jia Y and Qing C: Possibility of inducing tumor cell senescence during therapy (Review). Oncol Lett 22: 496, 2021.
APA
Wang, G., Cheng, X., Zhang, J., Liao, Y., Jia, Y., & Qing, C. (2021). Possibility of inducing tumor cell senescence during therapy (Review). Oncology Letters, 22, 496. https://doi.org/10.3892/ol.2021.12757
MLA
Wang, G., Cheng, X., Zhang, J., Liao, Y., Jia, Y., Qing, C."Possibility of inducing tumor cell senescence during therapy (Review)". Oncology Letters 22.1 (2021): 496.
Chicago
Wang, G., Cheng, X., Zhang, J., Liao, Y., Jia, Y., Qing, C."Possibility of inducing tumor cell senescence during therapy (Review)". Oncology Letters 22, no. 1 (2021): 496. https://doi.org/10.3892/ol.2021.12757
Copy and paste a formatted citation
x
Spandidos Publications style
Wang G, Cheng X, Zhang J, Liao Y, Jia Y and Qing C: Possibility of inducing tumor cell senescence during therapy (Review). Oncol Lett 22: 496, 2021.
APA
Wang, G., Cheng, X., Zhang, J., Liao, Y., Jia, Y., & Qing, C. (2021). Possibility of inducing tumor cell senescence during therapy (Review). Oncology Letters, 22, 496. https://doi.org/10.3892/ol.2021.12757
MLA
Wang, G., Cheng, X., Zhang, J., Liao, Y., Jia, Y., Qing, C."Possibility of inducing tumor cell senescence during therapy (Review)". Oncology Letters 22.1 (2021): 496.
Chicago
Wang, G., Cheng, X., Zhang, J., Liao, Y., Jia, Y., Qing, C."Possibility of inducing tumor cell senescence during therapy (Review)". Oncology Letters 22, no. 1 (2021): 496. https://doi.org/10.3892/ol.2021.12757
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team