|
1
|
Hayflick L and Moorhead PS: The serial
cultivation of human diploid cell strains. Exp Cell Res.
25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
van Deursen JM: The role of senescent
cells in ageing. Nature. 509:439–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
He S and Sharpless NE: Senescence in
health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
te Poele RH, Okorokov AL, Jardine L,
Cummings J and Joel SP: DNA damage is able to induce senescence in
tumor cells in vitro and in vivo. Cancer Res. 62:1876–1883.
2002.PubMed/NCBI
|
|
5
|
Wang Z, Liu H and Xu C: Cellular
senescence in the treatment of ovarian cancer. Int J Gynecol
Cancer. 28:895–902. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Saretzki G and Von Zglinicki T:
Replicative aging, telomeres, and oxidative stress. Ann N Y Acad
Sci. 959:24–29. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Feng C, Yang M, Zhang Y, Lan M, Huang B,
Liu H and Zhou Y: Cyclic mechanical tension reinforces DNA damage
and activates the p53-p21-Rb pathway to induce premature senescence
of nucleus pulposus cells. Int J Mol Med. 41:3316–3326.
2018.PubMed/NCBI
|
|
8
|
Chandeck C and Mooi WJ: Oncogene-induced
cellular senescence. Adv Anat Pathol. 17:42–48. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Falandry C, Bonnefoy M, Freyer G and
Gilson E: Biology of cancer and aging: A complex association with
cellular senescence. J Clin Oncol. 32:2604–2610. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Baeeri M, Bahadar H, Rahimifard M,
Navaei-Nigjeh M, Khorasani R, Rezvanfar MA, Gholami M and Abdollahi
M: α-Lipoic acid prevents senescence, cell cycle arrest, and
inflammatory cues in fibroblasts by inhibiting oxidative stress.
Pharmacol Res. 141:214–223. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Campisi J: Senescent cells, tumor
suppression, and organismal aging: Good citizens, bad neighbors.
Cell. 120:513–522. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhu Y, Armstrong JL, Tchkonia T and
Kirkland JL: Cellular senescence and the senescent secretory
phenotype in age-related chronic diseases. Curr Opin Clin Nutr
Metab Care. 17:324–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Narita M, Nũnez S, Heard E, Narita M, Lin
AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW: Rb-mediated
heterochromatin formation and silencing of E2F target genes during
cellular senescence. Cell. 113:703–716. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Georgakopoulou EA, Tsimaratou K, Evangelou
K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D,
Bartek J, Serrano M and Gorgoulis VG: Specific lipofuscin staining
as a novel biomarker to detect replicative and stress-induced
senescence. A method applicable in cryo-preserved and archival
tissues. Aging (Albany NY). 5:37–50. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shimi T, Butin-Israeli V, Adam SA,
Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel
NS and Goldman RD: The role of nuclear lamin B1 in cell
proliferation and senescence. Genes Dev. 25:2579–2593. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Swanson EC, Manning B, Zhang H and
Lawrence JB: Higher-order unfolding of satellite heterochromatin is
a consistent and early event in cell senescence. J Cell Biol.
203:929–942. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Faget DV, Ren Q and Stewart SA: Unmasking
senescence: Context-dependent effects of SASP in cancer. Nat Rev
Cancer. 19:439–453. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qu K, Lin T, Wei J, Meng F, Wang Z, Huang
Z, Wan Y, Song S, Liu S, Chang H, et al: Cisplatin induces cell
cycle arrest and senescence via upregulating P53 and P21 expression
in HepG2 cells. Nan Fang Yi Ke Da Xue Xue Bao. 33:1253–1259.
2013.PubMed/NCBI
|
|
19
|
Yao GD, Yang J, Li Q, Zhang Y, Qi M, Fan
SM, Hayashi T, Tashiro S, Onodera S and Ikejima T: Activation of
p53 contributes to pseudolaric acid B-induced senescence in human
lung cancer cells in vitro. Acta Pharmacol Sin. 37:919–929. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang JW, Zhang SS, Song JR, Sun K, Zong
C, Zhao QD, Liu WT, Li R, Wu MC and Wei LX: Autophagy inhibition
switches low-dose camptothecin-induced premature senescence to
apoptosis in human colorectal cancer cells. Biochem Pharmacol.
90:265–275. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Shtutman M, Chang BD, Schools GP and
Broude EV: Cellular model of p21-induced senescence. Methods Mol
Biol. 1534:31–39. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rodenak-Kladniew B, Castro A, Stärkel P,
De Saeger C, García de Bravo M and Crespo R: Linalool induces cell
cycle arrest and apoptosis in HepG2 cells through oxidative stress
generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life
Sci. 199:48–59. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ewald JA, Desotelle JA, Wilding G and
Jarrard DF: Therapy-induced senescence in cancer. J Natl Cancer
Inst. 102:1536–1546. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Geng YQ, Guan JT, Xu XH and Fu YC:
Senescence-associated beta-galactosidase activity expression in
aging hippocampal neurons. Biochem Biophys Res Commun. 396:866–869.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Aird KM and Zhang R: Detection of
senescence-associated heterochromatin foci (SAHF). Methods Mol
Biol. 965:185–196. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bernardes de Jesus B and Blasco MA:
Assessing cell and organ senescence biomarkers. Circ Res.
111:97–109. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Park CW, Bak Y, Kim MJ, Srinivasrao G,
Hwang J, Sung NK, Kim BY, Yu JH, Hong JT and Yoon DY: The novel
small molecule STK899704 promotes senescence of the human A549
NSCLC cells by inducing DNA damage responses and cell cycle arrest.
Front Pharmacol. 9:1632018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shi J, Pang L and Jiao S: The response of
nucleus pulposus cell senescence to static and dynamic compressions
in a disc organ culture. Biosci Rep. 38:BSR201800642018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Nadeau S, Cheng A, Colmegna I and Rodier
F: Quantifying senescence-associated phenotypes in primary
multipotent mesenchymal stromal cell cultures. Methods Mol Biol.
2045:93–105. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bernhart E, Damm S, Heffeter P,
Wintersperger A, Asslaber M, Frank S, Hammer A, Strohmaier H,
DeVaney T, Mrfka M, et al: Silencing of protein kinase D2 induces
glioma cell senescence via p53-dependent and -independent pathways.
Neuro Oncol. 16:933–945. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Matjusaitis M, Chin G, Sarnoski EA and
Stolzing A: Biomarkers to identify and isolate senescent cells.
Ageing Res Rev. 29:1–12. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Aravinthan A, Mells G, Allison M, Leathart
J, Kotronen A, Yki-Jarvinen H, Daly AK, Day CP, Anstee QM and
Alexander G: Gene polymorphisms of cellular senescence marker p21
and disease progression in non-alcohol-related fatty liver disease.
Cell Cycle. 13:1489–1494. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sasaki M, Kuo FY, Huang CC, Swanson PE,
Chen CL, Chuang JH and Yeh MM: Increased expression of
senescence-associated cell cycle regulators in the progression of
biliary atresia: An immunohistochemical study. Histopathology.
72:1164–1171. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Marcoux S, Le ON, Langlois-Pelletier C,
Laverdière C, Hatami A, Robaey P and Beauséjour CM: Expression of
the senescence marker p16INK4a in skin biopsies of acute
lymphoblastic leukemia survivors: A pilot study. Radiat Oncol.
8:2522013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pare R, Shin JS and Lee CS: Increased
expression of senescence markers p14 (ARF) and p16(INK4a) in breast
cancer is associated with an increased risk of disease recurrence
and poor survival outcome. Histopathology. 69:479–491. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Valdiglesias V, Giunta S, Fenech M, Neri M
and Bonassi S: γ-H2AX as a marker of DNA double strand breaks and
genomic instability in human population studies. Mutat Res.
753:24–40. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Noren Hooten N and Evans MK: Techniques to
induce and quantify cellular senescence. J Vis Exp. 555332017.doi:
10.3791/55533. PubMed/NCBI
|
|
38
|
Ko A, Han SY, Choi CH, Cho H, Lee MS, Kim
SY, Song JS, Hong KM, Lee HW, Hewitt SM, et al: Oncogene-induced
senescence mediated by c-Myc requires USP10 dependent
deubiquitination and stabilization of p14ARF. Cell Death Differ.
25:1050–1062. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Salama RH, Sayed ZEA, Ashmawy AM, Elsewify
WA, Ezzat GM, Mahmoud MA, Alsanory AA and Alsanory TA:
Interrelations of apoptotic and cellular senescence genes
methylation in inflammatory bowel disease subtypes and colorectal
carcinoma in Egyptians patients. Appl Biochem Biotechnol.
189:330–343. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hernandez-Segura A, de Jong TV, Melov S,
Guryev V, Campisi J and Demaria M: Unmasking transcriptional
heterogeneity in senescent cells. Curr Biol. 27:2652–2660.e4. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Özcan S, Alessio N, Acar MB, Mert E,
Omerli F, Peluso G and Galderisi U: Unbiased analysis of senescence
associated secretory phenotype (SASP) to identify common components
following different genotoxic stresses. Aging (Albany NY).
8:1316–1329. 2016. View Article : Google Scholar
|
|
42
|
Lim S and Kaldis P: Cdks, cyclins and
CKIs: Roles beyond cell cycle regulation. Development.
140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sage J, Attardi L and Dyke TV: Roles of
p53 and pRB tumor suppressor networks in human cancer: Insight from
studies in the engineered mouse. Genetically Engineered Mice Cancer
Res. 293–308. 2012. View Article : Google Scholar
|
|
44
|
Chellappan SP, Hiebert S, Mudryj M,
Horowitz JM and Nevins JR: The E2F transcription factor is a
cellular target for the RB protein. Cell. 65:1053–1061. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Was H, Czarnecka J, Kowalczyk A, Barszcz
K, Bernas T, Piwocka K and Kaminska B: Some
chemotherapeutics-treated colon cancer cells display a specific
phenotype being a combination of stem-like and senescent cell
features. Cancer Biol Ther. 19:63–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mao Z, Ke Z, Gorbunova V and Seluanov A:
Replicatively senescent cells are arrested in G1 and G2 phases.
Aging (Albany NY). 4:431–435. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tao YF, Wang NN, Xu LX, Li ZH, Li XL, Xu
YY, Fang F, Li M, Qian GH, Li YH, et al: Molecular mechanism of
G1 arrest and cellular senescence induced by LEE011, a
novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell Int.
17:352017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Vijayaraghavan S and Keyomarsi K: An
intact G1/S checkpoint determines response to CDK4/6 inhibitor in
breast cancer. Cancer Res. 76:29892016.
|
|
49
|
Vijayaraghavan S and Keyomarsi K: Abstract
P5-08-02: Inhibition of CDK4/6 induces senescence and autophagy in
ER positive breast cancers. Cancer Res. 75:P5–08-02. 2015.
|
|
50
|
Nelson DM, McBryan T, Jeyapalan JC, Sedivy
JM and Adams PD: A comparison of oncogene-induced senescence and
replicative senescence: Implications for tumor suppression and
aging. Age (Dordr). 36:96372014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhu Y, Liu X, Ding X, Wang F and Geng X:
Telomere and its role in the aging pathways: Telomere shortening,
cell senescence and mitochondria dysfunction. Biogerontology.
20:1–16. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Artandi SE and DePinho RA: Role of
telomeres and telomerase in cancer. Carcinogenesis. 31:9–18. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shitara S, Kakeda M, Nagata K, Hiratsuka
M, Sano A, Osawa K, Okazaki A, Katoh M, Kazuki Y, Oshimura M and
Tomizuka K: Telomerase-mediated life-span extension of human
primary fibroblasts by human artificial chromosome (HAC) vector.
Biochem Biophys Res Commun. 369:807–811. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim NW, Piatyszek MA, Prowse KR, Harley
CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay
JW: Specific association of human telomerase activity with immortal
cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Barma DK, Elayadi A, Falck JR and Corey
DR: Inhibition of telomerase by BIBR 1532 and related analogues.
Bioorg Med Chem Lett. 13:1333–1336. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hájek M, Matulová N, Votruba I, Holý A and
Tloust'ová E: Inhibition of human telomerase by diphosphates of
acyclic nucleoside phosphonates. Biochem Pharmacol. 70:894–900.
2005. View Article : Google Scholar
|
|
57
|
Ji XM, Xie CH, Fang MH, Zhou FX, Zhang WJ,
Zhang MS and Zhou YF: Efficient inhibition of human telomerase
activity by antisense oligonucleotides sensitizes cancer cell
storadiotherapy. Acta Pharmacol Sin. 27:1185–1191. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kondo Y and Kondo S: Telomerase RNA
inhibition using antisense oligonucleotide against human telomerase
RNA linked to a 2′,5′-Oligoadenylate. Methods Mol Biol. 405:97–112.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shammas MA, Simmons CG, Corey DR and
Shmookler Reis RJ: Telomerase inhibition by peptide nucleic acids
reverses ‘immortality’ of transformed human cells. Oncogene.
18:6191–6200. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pascolo E, Wenz C, Lingner J, Hauel N,
Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and
Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a
synthetic, non-nucleosidic drug candidate. J Biol Chem.
277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Leão R, Apolónio JD, Lee D, Figueiredo A,
Tabori U and Castelo-Branco P: Mechanisms of human telomerase
reverse transcriptase (hTERT) regulation: Clinical impacts in
cancer. J Biomed Sci. 25:222018. View Article : Google Scholar
|
|
62
|
Reczek CR and Chandel NS: ROS promotes
cancer cell survival through calcium signaling. Cancer Cell.
33:949–951. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang W, Huang C, Sun A, Qiao L, Zhang X,
Huang J, Sun X, Yang X and Sun S: Hydrogen alleviates cellular
senescence via regulation of ROS/p53/p21 pathway in bone
marrow-derived mesenchymal stem cells in vivo. Biomed Pharmacother.
106:1126–1134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zheng H, Huang Q, Huang S, Yang X, Zhu T,
Wang W, Wang H, He S, Ji L, Wang Y, et al: Senescence inducer
Shikonin ROS-dependently suppressed lung cancer progression. Front
Pharmacol. 9:5192018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen Q, Fischer A, Reagan JD, Yan LJ and
Ames BN: Oxidative DNA damage and senescence of human diploid
fibroblast cells. Proc Natl Acad Sci USA. 92:4337–4341. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pan Jing CJ: Advances in study of the
mechanisms of cellular senescence. J Pathogen Biol. 10:672–673.
2015.
|
|
67
|
Probin V, Wang Y and Zhou D:
Busulfan-induced senescence is dependent on ROS production upstream
of the MAPK pathway. Free Radic Biol Med. 42:1858–1865. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mirzayans R, Andrais B, Kumar P and Murray
D: Significance of Wild-type p53 signaling in suppressing apoptosis
in response to chemical genotoxic agents: Impact on chemotherapy
outcome. Int J Mol Sci. 18:9282017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Campisi J: Aging, cellular senescence, and
cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Driscoll DL, Chakravarty A, Bowman D,
Shinde V, Lasky K, Shi J, Vos T, Stringer B, Amidon B, D'Amore N
and Hyer ML: Plk1 inhibition causes post-mitotic DNA damage and
senescence in a range of human tumor cell lines. PLoS One.
9:e1110602014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Klement K and Goodarzi AA: DNA double
strand break responses and chromatin alterations within the aging
cell. Exp Cell Res. 329:42–52. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yanai M, Makino H, Ping B, Takeda K,
Tanaka N, Sakamoto T, Yamaguchi K, Kodani M, Yamasaki A, Igishi T
and Shimizu E: DNA-PK inhibition by NU7441 enhances
Chemosensitivity to topoisomerase inhibitor in non-small cell lung
carcinoma cells by blocking DNA damage repair. Yonago Acta Med.
60:9–15. 2017.PubMed/NCBI
|
|
73
|
Robles SJ, Buehler PW, Negrusz A and Adami
GR: Permanent cell cycle arrest in asynchronously proliferating
normal human fibroblasts treated with doxorubicin or etoposide but
not camptothecin. Biochem Pharmacol. 58:675–685. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhao W, Lin ZX and Zhang ZQ:
Cisplatin-induced premature senescence with concomitant reduction
of gap junctions in human fibroblasts. Cell Res. 14:60–66. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang JC and Bennett M: Aging and
atherosclerosis: Mechanisms, functional consequences, and potential
therapeutics for cellular senescence. Circ Res. 111:245–259. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Finkel T, Serrano M and Blasco MA: The
common biology of cancer and ageing. Nature. 448:767–774. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lombard DB, Chua KF, Mostoslavsky R,
Franco S, Gostissa M and Alt FW: DNA repair, genome stability, and
aging. Cell. 120:0–512. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Benanti JA and Galloway DA: Normal human
fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol.
24:2842–2852. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sheng GY, Yi XR, Ting JS and Ying L:
Current advances of Ras induced senescence and the bypass
mechanism. Progress Bioch Biophysics. 43:652–660. 2016.
|
|
80
|
Balmus G, Zhu M, Mukherjee S, Lyndaker AM,
Hume KR, Lee J, Riccio ML, Reeves AP, Sutter NB, Noden DM, et al:
Disease severity in a mouse model of ataxia telangiectasia is
modulated by the DNA damage checkpoint gene Hus1. Hum Mol Genet.
21:3408–3420. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang
CY, Pobiega S and Teng SC: Telomere shortening triggers a feedback
loop to enhance end protection. Nucleic Acids Res. 45:8314–8328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lima CRDO, Rabelo RE, Vulcani VAS, Cardoso
LD, de Sousa NLM and de Moura VMBD: P53 gene: Major mutations in
neoplasias and anticancer gene therapy. Cienc Rural. 42:845–853.
2012. View Article : Google Scholar
|
|
83
|
Wang C, Jurk D, Maddick M, Nelson G,
Martin-Ruiz C and von Zglinicki T: DNA damage response and cellular
senescence in tissues of aging mice. Aging Cell. 8:311–323. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tyner SD, Venkatachalam S, Choi J, Jones
S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C,
et al: p53 mutant mice that display early ageing-associated
phenotypes. Nature. 415:45–53. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jiang C, Liu G, Luckhardt T, Antony V,
Zhou Y, Carter AB, Thannickal VJ and Liu RM: Serpine 1 induces
alveolar type II cell senescence through activating p53-p21-Rb
pathway in fibrotic lung disease. Aging Cell. 16:1114–1124. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tong Y, Zhao W, Zhou C, Wawrowsky K and
Melmed S: PTTG1 attenuates drug-induced cellular senescence. PLoS
One. 6:e237542011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ling X, Xu C, Fan C, Zhong K, Li F and
Wang X: FL118 induces p53-dependent senescence in colorectal cancer
cells by promoting degradation of MdmX. Cancer Res. 74:7487–7497.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Coppé JP, Rodier F, Patil CK, Freund A,
Desprez PY and Campisi J: Tumor suppressor and aging biomarker
p16(INK4a) induces cellular senescence without the associated
inflammatory secretory phenotype. J Biol Chem. 286:36396–36403.
2011. View Article : Google Scholar
|
|
90
|
Mirzayans R, Andrais B, Hansen G and
Murray D: Role of p16(INK4A) in replicative senescence and DNA
damage-induced premature senescence in p53-deficient human cells.
Biochem Res Int. 2012:9515742012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gao S, Gao Y, He HH, Han D, Han W, Avery
A, Macoska JA, Liu X, Chen S, Ma F, et al: Androgen receptor tumor
suppressor function is mediated by recruitment of retinoblastoma
protein. Cell Rep. 17:966–976. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Passegué E and Wagner EF: JunB suppresses
cell proliferation by transcriptional activation of p16(INK4a)
expression. EMBO J. 19:2969–2979. 2000. View Article : Google Scholar
|
|
93
|
Baek MW, Cho HS, Kim SH, Kim WJ and Jung
JY: Ascorbic acid induces necrosis in human laryngeal squamous cell
carcinoma via ROS, PKC, and calcium signaling. J Cell Physiol.
232:417–425. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Min EY, Kim IH, Lee J, Kim EY, Choi YH and
Nam TJ: The effects of fucodian on senescence are controlled by the
p16INK4a-pRb and p14Arf-p53 pathways in hepatocellular carcinoma
and hepatic cell lines. Int J Oncol. 45:47–56. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nakade K, Lin CS, Chen XY, Tsai MH,
Wuputra K, Zhu ZW, Pan JZ and Yokoyama KK: Jun dimerization protein
2 controls hypoxia-induced replicative senescence via both the
p16Ink4a-pRb and Arf-p53 pathways. FEBS Open Bio.
7:1793–1804. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Krishnamurthy J, Ramsey MR, Ligon KL,
Torrice C, Koh A, Bonner-Weir S and Sharpless NE: p16INK4a induces
an age-dependent decline in islet regenerative potential. Nature.
443:453–457. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Da Silva-Álvarez S, Picallos-Rabina P,
Antelo-Iglesias L, Triana-Martínez F, Barreiro-Iglesias A, Sánchez
L and Collado M: The development of cell senescence. Exp Gerontol.
128:1107422019. View Article : Google Scholar
|
|
98
|
Zhao Y, Aguilar A, Bernard D and Wang S:
Small-molecule inhibitors of the MDM2-p53 protein-protein
interaction (MDM2 Inhibitors) in clinical trials for cancer
treatment. J Med Chem. 58:1038–1052. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zheng S, Huang KE, Pan YL, Zhou Y, Pan SD,
Li X, Jia J, Zheng XL and Tao DY: KIT and BRAF heterogeneous
mutations in gastrointestinal stromal tumors after secondary
imatinib resistance. Gastric Cancer. 18:796–802. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li Z, Fu J, Rew Y, Gribble MW and Medina
JC: Abstract 3663: Discovery of sulfonamide-piperidinones as potent
inhibitors of the MDM2-p53 protein-protein interaction. Cancer Res.
75:3663. 2015.PubMed/NCBI
|
|
101
|
Seipel K, Marques M, Sidler C, Mueller BU
and Pabst T: The cellular p53 inhibitor MDM2 and the growth factor
receptor FLT3 as biomarkers for treatment responses to the
MDM2-inhibitor idasanutlin and the MEK1 inhibitor cobimetinib in
acute myeloid leukemia. Cancers. 10:1702018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yue Z, Rong J, Ping W, Bing Y, Xin Y, Feng
LD and Yaping W: Gene expression of the p16(INK4a)-Rb and
p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of
hematopoietic stem cell aging by ginsenoside Rg1. Genet Mol Res.
13:10086–10096. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wei W, Hemmer RM and Sedivy JM: Role of
p14(ARF) in replicative and induced senescence of human
fibroblasts. Mol Cell Biol. 21:6748–6757. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Pencik J, Schlederer M, Gruber W, Unger C,
Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O,
et al: STAT3 regulated ARF expression suppresses prostate cancer
metastasis. Nat Commun. 6:77362015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hershko D, Bornstein G, Ben-Izhak O,
Carrano A, Pagano M, Krausz MM and Hershko A: Inverse relation
between levels of p27(Kip1) and of its ubiquitin ligase subunit
Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Sharma SS, Ma L and Pledger WJ: p27Kip1
inhibits the cell cycle through non-canonical G1/S phase-specific
gatekeeper mechanism. Cell Cycle. 14:3954–3964. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ma D, Guo D, Li W and Zhao H: Mdig, a lung
cancer-associated gene, regulates cell cycle progression through
p27(KIP1). Tumour Biol. 36:6909–6917. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hu X, Liu F, Jiang B and Wang Y: The
expression of Skp2 in human non-small cell lung cancer and its
correlation with expression of p27 protein. Zhongguo Fei Ai Za Zhi.
11:547–550. 2008.(In Chinese). PubMed/NCBI
|
|
109
|
Shapira M, Ben-Izhak O, Linn S, Futerman
B, Minkov I and Hershko DD: The prognostic impact of the ubiquitin
ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer.
103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hafez MM, Alhoshani AR, Al-Hosaini KA,
Alsharari SD, Al Rejaie SS, Sayed-Ahmed MM and Al-Shabanah OA:
SKP2/P27Kip1 pathway is associated with advanced ovarian cancer in
Saudi patients. Asian Pac J Cancer Prev. 16:5807–5815. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Gstaiger M, Jordan R, Lim M, Catzavelos C,
Mestan J, Slingerland J and Krek W: Skp2 is oncogenic and
overexpressed in human cancers. Proc Natl Acad Sci USA.
98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Olins AL, Rhodes G, Welch DBM, Zwerger M
and Olins DE: Lamin B receptor: Multi-tasking at the nuclear
envelope. Nucleus. 1:53–70. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
En A, Takauji Y, Ayusawa D and Fujii M:
The role of lamin B receptor in the regulation of
senescence-associated secretory phenotype (SASP). Exp Cell Res.
390:1119272020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sadaie M, Salama R, Carroll T, Tomimatsu
K, Chandra T, Young AR, Narita M, Pérez-Mancera PA, Bennett DC,
Chong H, et al: Redistribution of the Lamin B1 genomic binding
profile affects rearrangement of heterochromatic domains and SAHF
formation during senescence. Genes Dev. 27:1800–1808. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Solovei I, Wang AS, Thanisch K, Schmidt
CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, et
al: LBR and lamin A/C sequentially tether peripheral
heterochromatin and inversely regulate differentiation. Cell.
152:584–598. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Arai R, En A, Takauji Y, Maki K, Miki K,
Fujii M and Ayusawa D: Lamin B receptor (LBR) is involved in the
induction of cellular senescence in human cells. Mech Ageing Dev.
178:25–32. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Latorre E, Ostler EL, Faragher RGA and
Harries LW: FOXO1 and ETV6 genes may represent novel regulators of
splicing factor expression in cellular senescence. FASEB J.
33:1086–1097. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
He Q, Xue S, Tan Y, Zhang L, Shao Q, Xing
L, Li Y, Xiang T, Luo X and Ren G: Dual inhibition of Akt and ERK
signaling induces cell senescence in triple-negative breast cancer.
Cancer Lett. 448:94–104. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lam EW, Francis RE and Petkovic M: FOXO
transcription factors: Key regulators of cell fate. Biochem Soc
Trans. 34:722–726. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Clark O, Daga S and Stoker AW: Tyrosine
phosphatase inhibitors combined with retinoic acid can enhance
differentiation of neuroblastoma cells and trigger ERK- and
AKT-dependent, p53-independent senescence. Cancer Lett. 328:44–54.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wu H, Zhao J, Chen M, Wang H, Yao Q, Fan J
and Zhang M: The Anti-aging effect of erythropoietin via the
ERK/Nrf2-ARE pathway in aging rats. J Mol Neurosci. 61:449–458.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kucheryavenko O, Nelson G, von Zglinicki
T, Korolchuk VI and Carroll B: The mTORC1-autophagy pathway is a
target for senescent cell elimination. Biogerontology. 20:331–335.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Shan HY, Bai XJ and Chen XM: Apoptosis is
involved in the senescence of endothelial cells induced by
angiotensin II. Cell Biol Int. 32:264–270. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Goruppi S and Dotto GP: Mesenchymal
Stroma: Primary determinant and therapeutic target for epithelial
cancer. Trends Cell Biol. 23:593–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lee S and Schmitt CA: The dynamic nature
of senescence in cancer. Nat Cell Biol. 21:94–101. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Krizhanovsky V, Yon M and Dickins RA:
Senescence of activated stellate cells limits liver fibrosis. Cell.
134:657–667. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Burton DGA and Krizhanovsky V:
Physiological and pathological consequences of cellular senescence.
Cell Mol Life Sci. 71:4373–4386. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Demaria M, Desprez PY, Campisi J and
Velarde MC: Cell Autonomous and Non-autonomous effects of senescent
cells in the skin. J Invest Dermatol. 135:1722–1726. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Muller M, Li Z and Maitz PKM: Pseudomonas
pyocyanin inhibits wound repair by inducing premature cellular
senescence: Role for p38 mitogen-activated protein kinase. Burns.
35:500–508. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Bitar MS, Abdel-Halim SM and Al-Mulla F:
Caveolin-1/PTRF upregulation constitutes a mechanism for mediating
p53-induced cellular senescence: Implications for evidence-based
therapy of delayed wound healing in diabetes. Am J Physiol
Endocrinol Metab. 305:E951–E963. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Michaloglou C, Vredeveld LCW, Soengas MS,
Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi
WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle
arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Bartkova J, Rezaei N, Liontos M,
Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E,
Niforou K, Zoumpourlis VC, et al: Oncogene-induced senescence is
part of the tumorigenesis barrier imposed by DNA damage
checkpoints. Nature. 444:633–637. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Chen Z, Trotman LC, Shaffer D, Lin HK,
Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al:
Crucial role of p53-dependent cellular senescence in suppression of
Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Braig M, Lee S, Loddenkemper C, Rudolph C,
Peters AH, Schlegelberger B, Stein H, Dörken B, Jenuwein T and
Schmitt CA: Oncogene-induced senescence as an initial barrier in
lymphoma development. Nature. 436:660–665. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Collado M, Gil J, Efeyan A, Guerra C,
Schuhmacher AJ, Barradas M, Benguría A, Zaballos A, Flores JM,
Barbacid M, et al: Tumour biology: Senescence in premalignant
tumours. Nature. 436:6422005. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Campisi J: Aging and cancer: The
double-edged sword of replicative senescence. J Am Geriatr Soc.
45:482–488. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Mavrogonatou E, Pratsinis H and Kletsas D:
The role of senescence in cancer development. Semin Cancer Biol.
62:182–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Rao SG and Jackson JG: SASP: Tumor
suppressor or promoter? Yes! Trends Cancer. 2:676–687. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Sun Y, Campisi J, Higano C, Beer TM,
Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage
to the tumor microenvironment promotes prostate cancer therapy
resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen
W and Xu J: SFRP2 augments WNT16B signaling to promote therapeutic
resistance in the damaged tumor microenvironment. Oncogene.
35:4321–4334. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Yang B, Shi L, Lei J, Li B and Jin Y:
Advances in optical assays for detecting telomerase activity.
Luminescence. 34:136–152. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Yuan X, Larsson C and Xu D: Mechanisms
underlying the activation of TERT transcription and telomerase
activity in human cancer: Old actors and new players. Oncogene.
38:6172–6183. 2019. View Article : Google Scholar : PubMed/NCBI
|