|
1
|
Li SS, Ma J and Wong AST: Chemoresistance
in ovarian cancer: Exploiting cancer stem cell metabolism. J
Gynecol Oncol. 29:e322018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Agarwal R and Kaye SB: Ovarian cancer:
Strategies for overcoming resistance to chemotherapy. Nat Rev
Cancer. 3:502–516. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu X, Hansen DM, Timko NJ, Zhu Z, Ames A,
Qin C, Nicholl MB, Bai Q, Chen X, Wakefield MR, et al: Association
between interleukin-33 and ovarian cancer. Oncol Rep. 41:1045–1050.
2019.PubMed/NCBI
|
|
5
|
Saied EM and El-Etreby NM: The role and
prognostic value of inducible nitric oxide synthase (iNOS) and
interleukin-33 (IL-33) in serous and mucinous epithelial ovarian
tumours. Ann Diagn Pathol. 27:62–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tong X, Barbour M, Hou K, Gao C, Cao S,
Zheng J, Zhao Y, Mu R and Jiang HR: Interleukin-33 predicts poor
prognosis and promotes ovarian cancer cell growth and metastasis
through regulating ERK and JNK signaling pathways. Mol Oncol.
10:113–125. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
De la Fuente M, MacDonald TT and Hermoso
MA: The IL-33/ST2 axis: Role in health and disease. Cytokine Growth
Factor Rev. 26:615–623. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lozano R, Naghavi M, Foreman K, Lim S,
Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et
al: Global and regional mortality from 235 causes of death for 20
age groups in 1990 and 2010: A systematic analysis for the Global
Burden of Disease Study 2010. Lancet. 380:2095–2128. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hoffman Bl SJ, Schaffer JI, Halvorson LM,
Bradshaw KD and Cunningham FG: Epithelian ovarian cancer. Williams
Gynecology. 2nd edition. McGraw-Hill; New York, NY: pp. 853–878.
2012
|
|
10
|
Gong TT, Wu QJ, Vogtmann E, Lin B and Wang
YL: Age at menarche and risk of ovarian cancer: A meta-analysis of
epidemiological studies. Int J Cancer. 132:2894–2900. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Longo DL, Fauci A, Kasper D, Hauser S,
Jameson JL and Loscalzo J: Harrison's Principles of Internal
Medicine. 18th edition. McGraw-Hill; New York, NY: 2012
|
|
12
|
Kanchi KL, Johnson KJ, Lu C, McLellan MD,
Leiserson MD, Wendl MC, Zhang Q, Koboldt DC, Xie M, Kandoth C, et
al: Integrated analysis of germline and somatic variants in ovarian
cancer. Nat Commun. 5:31562014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Coleman RL, Monk BJ, Sood AK and Herzog
TJ: Latest research and treatment of advanced-stage epithelial
ovarian cancer. Nat Rev Clin Oncol. 10:211–224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Deshmukh A, Deshpande K, Arfuso F,
Newsholme P and Dharmarajan A: Cancer stem cell metabolism: A
potential target for cancer therapy. Mol Cancer. 15:692016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen G and Emens LA: Chemoimmunotherapy:
Reengineering tumor immunity. Cancer Immunol Immunother.
62:203–216. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chu CS, Boyer J, Schullery DS, Gimotty PA,
Gamerman V, Bender J, Levine BL, Coukos G, Rubin SC, Morgan MA, et
al: Phase I/II randomized trial of dendritic cell vaccination with
or without cyclophosphamide for consolidation therapy of advanced
ovarian cancer in first or second remission. Cancer Immunol
Immunother. 61:629–641. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hyman DM, Zhou Q, Iasonos A, Grisham RN,
Arnold AG, Phillips MF, Bhatia J, Levine DA, Aghajanian C, Offit K,
et al: Improved survival for BRCA2-associated serous ovarian cancer
compared with both BRCA-negative and BRCA1-associated serous
ovarian cancer. Cancer. 118:3703–3709. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang D, Khan S, Sun Y, Hess K, Shmulevich
I, Sood AK and Zhang W: Association of BRCA1 and BRCA2 mutations
with survival, chemotherapy sensitivity, and gene mutator phenotype
in patients with ovarian cancer. JAMA. 306:1557–1565. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kanduc D: Oligopeptides for immunotherapy
approaches in ovarian cancer treatment. Curr Drug Discov Technol.
16:285–289. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Argento M, Hoffman P and Gauchez AS:
Ovarian cancer detection and treatment: Current situation and
future prospects. Anticancer Res. 28((5B)): 3135–3138.
2008.PubMed/NCBI
|
|
21
|
Jayson GC, Kohn EC, Kitchener HC and
Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang L, Conejo-Garcia JR, Katsaros D,
Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H,
Schlienger K, Liebman MN, et al: Intratumoral T cells, recurrence,
and survival in epithelial ovarian cancer. N Engl J Med.
348:203–213. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schlienger K, Chu C S, Woo E Y, Rivers P
M, Toll A J, Hudson B, Maus MV, Riley JL, Choi Y and Coucos G:
TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class
I-restricted T cells specific for autologous tumor in late-stage
ovarian cancer patients. Clin Cancer Res. 9:1517–1527.
2003.PubMed/NCBI
|
|
24
|
Goodell V, Salazar LG, Urban N, Drescher
CW, Gray H, Swensen RE, McIntosh MW and Disis ML: Antibody immunity
to the p53 oncogenic protein is a prognostic indicator in ovarian
cancer. J Clin Oncol. 24:762–768. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Curiel TJ, Coukos G, Zou L, Alvarez X,
Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L,
Burow M, et al: Specific recruitment of regulatory T cells in
ovarian carcinoma fosters immune privilege and predicts reduced
survival. Nat Med. 10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hamanishi J, Mandai M, Iwasaki M, Okazaki
T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N,
et al: Programmed cell death 1 ligand 1 and tumor-infiltrating
CD8+ T lymphocytes are prognostic factors of human
ovarian cancer. Proc Natl Acad Sci USA. 104:3360–3365. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hardwick N, Frankel PH and Cristea M: New
approaches for immune directed treatment for ovarian cancer. Curr
Treat Options Oncol. 17:142016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Onda H, Kasuya H, Takakura K, Hori T,
Imaizumi T, Takeuchi T, Inoue I and Takeda J: Identification of
genes differentially expressed in canine vasospastic cerebral
arteries after subarachnoid hemorrhage. J Cereb Blood Flow Metab.
19:1279–1288. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Baekkevold ES, Roussigné M, Yamanaka T,
Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M,
Haraldsen G and Girard JP: Molecular characterization of NF-HEV, a
nuclear factor preferentially expressed in human high endothelial
venules. Am J Pathol. 163:69–79. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schmitz J, Owyang A, Oldham E, Song Y,
Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et
al: IL-33, an interleukin-1-like cytokine that signals via the IL-1
receptor-related protein ST2 and induces T helper type 2-associated
cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sun Z, Chang B, Gao M, Zhang J and Zou Z:
IL-33-ST2 axis in liver disease: Progression and challenge.
Mediators Inflamm. 2017:53142132017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Roussel L, Erard M, Cayrol C and Girard
JP: Molecular mimicry between IL-33 and KSHV for attachment to
chromatin through the H2A-H2B acidic pocket. EMBO Rep. 9:1006–1012.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bessa J, Meyer CA, de Vera Mudry MC,
Schlicht S, Smith SH, Iglesias A and Cote-Sierra J: Altered
subcellular localization of IL-33 leads to non-resolving lethal
inflammation. J Autoimmun. 55:33–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xi H, Katschke KJ Jr, Li Y, Truong T, Lee
WP, Diehl L, Rangell L, Tao J, Arceo R, Eastham-Anderson J, et al:
IL-33 amplifies an innate immune response in the degenerating
retina. J Exp Med. 213:189–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu X, Hammel M, He Y, Tainer JA, Jeng US,
Zhang L, Wang S and Wang X: Structural insights into the
interaction of IL-33 with its receptors. Proc Natl Acad Sci USA.
110:14918–14923. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cayrol C and Girard JP: Interleukin-33
(IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev.
281:154–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cayrol C and Girard JP: IL-33: An alarmin
cytokine with crucial roles in innate immunity, inflammation and
allergy. Curr Opin Immunol. 31:31–37. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mirchandani AS, Salmond RJ and Liew FY:
Interleukin-33 and the function of innate lymphoid cells. Trends
Immunol. 33:389–396. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lingel A, Weiss TM, Niebuhr M, Pan B,
Appleton BA, Wiesmann C, Bazan JF and Fairbrother WJ: Structure of
IL-33 and its interaction with the ST2 and IL-1RAcP
receptors-insight into heterotrimeric IL-1 signaling complexes.
Structure. 17:1398–1410. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tago K, Noda T, Hayakawa M, Iwahana H,
Yanagisawa K, Yashiro T and Tominaga S: Tissue distribution and
subcellular localization of a variant form of the human ST2 gene
product, ST2V. Biochem Biophys Res Commun. 285:1377–1383. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Iwahana H, Yanagisawa K, Ito-Kosaka A,
Kuroiwa K, Tago K, Komatsu N, Katashima R, Itakura M and Tominaga
S: Different promoter usage and multiple transcription initiation
sites of the interleukin-1 receptor-related human ST2 gene in UT-7
and TM12 cells. Eur J Biochem. 264:397–406. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Larsen KM, Minaya MK, Vaish V and Peña
MMO: The role of IL-33/ST2 pathway in tumorigenesis. Int J Mol Sci.
19:E26762018. View Article : Google Scholar
|
|
43
|
Carriere V, Roussel L, Ortega N, Lacorre
DA, Americh L, Aguilar L, Bouche G and Girard JP: IL-33, the
IL-1-like cytokine ligand for ST2 receptor, is a
chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci
(USA). 104:282–287. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ali S, Mohs A, Thomas M, Klare J, Ross R,
Schmitz ML and Martin MU: The dual function cytokine IL-33
interacts with the transcription factor NF-κB to dampen
NF-κB-stimulated gene transcription. J Immunol. 187:1609–1616.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang F, Tossberg JT, Spurlock CF, Yao SY,
Aune TM and Sriram S: Expression of IL-33 and its epigenetic
regulation in Multiple Sclerosis. Ann Clin Transl Neurol.
1:307–318. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Monticelli LA, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ,
Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote
lung-tissue homeostasis after infection with influenza virus. Nat
Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chang YJ, Kim HY, Albacker LA, Baumgarth
N, McKenzie AN, Smith DE, Dekruyff RH and Umetsu DT: Innate
lymphoid cells mediate influenza-induced airway hyper-reactivity
independently of adaptive immunity. Nat Immunol. 12:631–638. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yasuda K, Muto T, Kawagoe T, Matsumoto M,
Sasaki Y, Matsushita K, Taki Y, Futatsugi-Yumikura S, Tsutsui H,
Ishii KJ, et al: Contribution of IL-33-activated type II innate
lymphoid cells to pulmonary eosinophilia in intestinal
nematode-infected mice. Proc Natl Acad Sci (USA). 109:3451–3456.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen WY, Li LC and Yang JL: Emerging roles
of IL-33/ST2 axis in renal diseases. Int J Mol Sci. 18:E7832017.
View Article : Google Scholar
|
|
50
|
Sun M, He C, Wu W, Zhou G, Liu F, Cong Y
and Liu Z: Hypoxia inducible factor-1α-induced interleukin-33
expression in intestinal epithelia contributes to mucosal
homeostasis in inflammatory bowel disease. Clin Exp Immunol.
187:428–440. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yu SL, Wong CK and Tam LS: The alarmin
functions of high-mobility group box-1 and IL-33 in the
pathogenesis of systemic lupus erythematosus. Expert Rev Clin
Immunol. 9:739–749. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen WY, Chang YJ, Su CH, Tsai TH, Chen
SD, Hsing CH and Yang JL: Upregulation of interleukin-33 in
obstructive renal injury. Biochem Biophys Res Commun.
473:1026–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Çekmez F, Fidanci MK, Ayar G, Saldir M,
Karaoglu A, Gündüz RC, Tunc T and Kalkan G: Diagnostic value of
upar, IL-33, and ST2 Levels in childhood sepsis. Clin Lab.
62:751–755. 2016. View Article : Google Scholar
|
|
54
|
Parenica J, Malaska J, Jarkovsky J,
Lipkova J, Dastych M, Helanova K, Litzman J, Tomandl J, Littnerova
S, Sevcikova J, et al: Soluble ST2 levels in patients with
cardiogenic and septic shock are not predictors of mortality. Exp
Clin Cardiol. 17:205–209. 2012.PubMed/NCBI
|
|
55
|
Xu H, Turnquist HR, Hoffman R and Billiar
TR: Role of the IL-33-ST2 axis in sepsis. Mil Med Res.
4:32017.PubMed/NCBI
|
|
56
|
Matsuyama Y, Okazaki H, Tamemoto H, Kimura
H, Kamata Y, Nagatani K, Nagashima T, Hayakawa M, Iwamoto M, Yoshio
T, et al: Increased levels of interleukin-33 in sera and synovial
fluid from patients with active rheumatoid arthritis. J Rheumatol.
37:18–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yang Z, Gao X, Wang J, Xu L, Zheng Y and
Xu Y: Interleukin-33 enhanced the migration and invasiveness of
human lung cancer cells. OncoTargets Ther. 11:843–849. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sun P, Ben Q, Tu S, Dong W, Qi X and Wu Y:
Serum interleukin-33 levels in patients with gastric cancer. Dig
Dis Sci. 56:3596–3601. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hu LA, Fu Y, Zhang DN and Zhang J: Serum
IL-33 as a diagnostic and prognostic marker in non- small cell lung
cancer. Asian Pac J Cancer Prev. 14:2563–2566. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu J, Shen JX, Hu JL, Huang WH and Zhang
GJ: Significance of interleukin-33 and its related cytokines in
patients with breast cancers. Front Immunol. 5:1412014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Eissmann MF, Dijkstra C, Wouters MA,
Baloyan D, Mouradov D, Nguyen PM, Davalos-Salas M, Putoczki TL,
Sieber OM, Mariadason JM, et al: Interleukin-33 signaling restrains
sporadic colon cancer in an interferon-γ-dependent manner. Cancer
Immunol Res. 6:409–421. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Casciaro M, Cardia R, Di Salvo E, Tuccari
G, Ieni A and Gangemi S: Interleukin-33 involvement in nonsmall
cell lung carcinomas: An update. Biomolecules. 9:E2032019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Son J, Cho JW, Park HJ, Moon J, Park S,
Lee H, Lee J, Kim G, Park SM, Lira SA, et al: Tumor-infiltrating
regulatory T-cell accumulation in the tumor microenvironment is
mediated by IL33/ST2 signaling. Cancer Immunol Res. 8:1393–1406.
2020.PubMed/NCBI
|
|
64
|
Carlock CI, Wu J, Zhou C, Tatum K, Adams
HP, Tan F and Lou Y: Unique temporal and spatial expression
patterns of IL-33 in ovaries during ovulation and estrous cycle are
associated with ovarian tissue homeostasis. J Immunol. 193:161–169.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wu J, Carlock C, Zhou C, Nakae S, Hicks J,
Adams HP and Lou Y: IL-33 is required for disposal of unnecessary
cells during ovarian atresia through regulation of autophagy and
macrophage migration. J Immunol. 194:2140–2147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Goff BA, Mandel L, Muntz HG and Melancon
CH: Ovarian carcinoma diagnosis. Cancer. 89:2068–2075. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Heintz AP, Odicino F, Maisonneuve P, Quinn
MA, Benedet JL, Creasman WT, Ngan HY, Pecorelli S and Beller U:
Carcinoma of the ovary. FIGO 26th annual report on the results of
treatment in gynecological cancer. Int J Gynaecol Obstet. 95 (Suppl
1):S161–S192. 2006. View Article : Google Scholar
|
|
68
|
Wang L, Hu J, Qiu D, Gao H, Zhao W, Huang
Y, Jiang T, Zhou J and Chen Y: Dual-specificity phosphatase 5
suppresses ovarian cancer progression by inhibiting IL-33
signaling. Am J Transl Res. 11:844–854. 2019.PubMed/NCBI
|
|
69
|
Rushworth LK, Kidger AM, Delavaine L,
Stewart G, van Schelven S, Davidson J, Bryant CJ, Caddye E, East P,
Caunt CJ, et al: Dual-specificity phosphatase 5 regulates nuclear
ERK activity and suppresses skin cancer by inhibiting mutant
Harvey-Ras (HRasQ61L)-driven SerpinB2 expression. Proc Natl Acad
Sci (USA). 111:18267–18272. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kutty RG, Talipov MR, Bongard RD, Lipinski
RAJ, Sweeney NL, Sem DS, Rathore R and Ramchandran R: Dual
specificity phosphatase 5-substrate interaction: A mechanistic
perspective. Compr Physiol. 7:1449–1461. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang H, Zheng H, Mu W, He Z, Yang B, Ji Y
and Hui L: DUSP16 ablation arrests the cell cycle and induces
cellular senescence. FEBS J. 282:4580–4594. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Schmieder A, Multhoff G and Radons J:
Interleukin-33 acts as a pro-inflammatory cytokine and modulates
its receptor gene expression in highly metastatic human pancreatic
carcinoma cells. Cytokine. 60:514–521. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gao X, Wang X, Yang Q, Zhao X, Wen W, Li
G, Lu J, Qin W, Qi Y, Xie F, et al: Tumoral expression of IL-33
inhibits tumor growth and modifies the tumor microenvironment
through CD8+ T and NK cells. J Immunol. 194:438–445.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Perales-Puchalt A, Svoronos N, Villarreal
DO, Zankharia U, Reuschel E, Wojtak K, Payne KK, Duperret EK,
Muthumani K, Conejo-Garcia JR, et al: IL-33 delays metastatic
peritoneal cancer progression inducing an allergic
microenvironment. OncoImmunology. 8:e15150582018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Melichar B and Freedman R S; Immunology of
the peritoneal cavity, : Relevance for host-tumor relation. Int J
Gynecol Canc. 12:3–17. 2012. View Article : Google Scholar : PubMed/NCBI
|