|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Smith KB and Smith MS: Obesity statistics.
Prim Care. 43:121–135. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
WHO, . Obesity and overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweightDecember
15–2020
|
|
4
|
Memish ZA, El Bcheraoui C, Tuffaha M,
Robinson M, Daoud F, Jaber S, Mikhitarian S, Al Saeedi M, AlMazroa
MA, Mokdad AH and Al Rabeeah AA: Obesity and associated
factors-Kingdom of Saudi Arabia, 2013. Prev Chronic Dis.
11:E1742014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
De Pergola G and Silvestris F: Obesity as
a major risk factor for cancer. J Obes. 2013:2915462013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Argolo DF, Hudis CA and Iyengar NM: The
impact of obesity on breast cancer. Curr Oncol Rep. 20:472018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Iyengar NM, Hudis CA and Dannenberg AJ:
Obesity and cancer: Local and systemic mechanisms. Annu Rev Med.
66:297–309. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chan DS and Norat T: Obesity and breast
cancer: Not only a risk factor of the disease. Curr Treat Options
Oncol. 16:222015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang J, Zhang X, Chen W, Hu X, Li J and
Liu C: Regulatory roles of long noncoding RNAs implicated in cancer
hallmarks. Int J Cancer. 146:906–916. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhao H, Shi J, Zhang Y, Xie A, Yu L, Zhang
C, Lei J, Xu H, Leng Z, Li T, et al: LncTarD: A manually-curated
database of experimentally-supported functional lncRNA-target
regulations in human diseases. Nucleic Acids Res. 48:D118–D126.
2019.PubMed/NCBI
|
|
11
|
Li Z, Zhao W, Wang M and Zhou X: The Role
of Long Noncoding RNAs in Gene Expression Regulation. Gene
Expression Profiling in Cancer IntechOpen London, UK: 2019,
View Article : Google Scholar
|
|
12
|
Zhuang C, Ma Q, Zhuang C, Ye J, Zhang F
and Gui Y: LncRNA GClnc1 promotes proliferation and invasion of
bladder cancer through activation of MYC. FASEB J. 33:11045–11059.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li Y, Yang X, Kang X and Liu S: The
regulatory roles of long noncoding RNAs in the biological behavior
of pancreatic cancer. Saudi J Gastroenterol. 25:145–151. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rohde K, Keller M, la Cour Poulsen L,
Blüher M, Kovacs P and Böttcher Y: Genetics and epigenetics in
obesity. Metabolism. 92:37–50. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sun J, Ruan Y, Wang M, Chen R, Yu N, Sun
L, Liu T and Chen H: Differentially expressed circulating LncRNAs
and mRNA identified by microarray analysis in obese patients. Sci
Rep. 6:354212016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yau MY, Xu L, Huang CL and Wong CM: Long
non-coding RNAs in obesity-induced cancer. Noncoding RNA.
4:192018.PubMed/NCBI
|
|
17
|
Zeng J, Sauter ER and Li B: FABP4: A new
player in obesity-associated breast cancer. Trends Mol Med.
26:437–440. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu Y, Ji Y, Li M, Wang M, Yi X, Yin C,
Wang S, Zhang M, Zhao Z and Xiao Y: Integrated analysis of long
noncoding RNA and mRNA expression profile in children with obesity
by microarray analysis. Sci Rep. 8:87502018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang Y, Fang ZX, Guo X, Dong H, Zhou K,
Huang Z and Xiao Z: lncRNA B4GALT1-AS1 promotes colon cancer cell
stemness and migration by recruiting YAP to the nucleus and
enhancing YAP transcriptional activity. J Cell Physiol.
234:18524–18534. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ouyang S, Zhou X, Chen Z, Wang M, Zheng X
and Xie M: LncRNA BCAR4, targeting to miR-665/STAT3 signaling,
maintains cancer stem cells stemness and promotes tumorigenicity in
colorectal cancer. Cancer Cell Int. 19:722019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mi L, Zhao XY, Li S, Yang G and Lin JD:
Conserved function of the long noncoding RNA Blnc1 in brown
adipocyte differentiation. Mol Metab. 6:101–110. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sun L and Lin JD: Function and mechanism
of long noncoding RNAs in adipocyte biology. Diabetes. 68:887–896.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li GH, Ma ZH and Wang X: Long non-coding
RNA CCAT1 is a prognostic biomarker for the progression of oral
squamous cell carcinoma via miR-181a-mediated Wnt/β-catenin
signaling pathway. Cell Cycle. 18:2902–2913. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hu M, Zhang Q, Tian XH, Wang JL, Niu YX
and Li G: lncRNA CCAT1 is a biomarker for the proliferation and
drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1
axis. Mol Carcinog. 58:2207–2217. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li Y, Zhu G, Ma Y and Qu H: lncRNA CCAT1
contributes to the growth and invasion of gastric cancer via
targeting miR-219-1. J Cell Biochem. 120:19457–19468. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cai Y, He J and Zhang D: Long noncoding
RNA CCAT2 promotes breast tumor growth by regulating the Wnt
signaling pathway. Onco Targets Ther. 8:2657–2664. 2015.PubMed/NCBI
|
|
27
|
Schmidt E, Dhaouadi I, Gaziano I, Oliverio
M, Klemm P, Awazawa M, Mitterer G, Fernandez-Rebollo E, Pradas-Juni
M, Wagner W, et al: LincRNA H19 protects from dietary obesity by
constraining expression of monoallelic genes in brown fat. Nat
Commun. 9:36222018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang X, Xue CY, Line J, Ferguson JF,
Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, et al:
Interrogation of nonconserved human adipose lincRNAs identifies a
regulatory role of linc-ADAL in adipocyte metabolism. Sci Transl
Med. 10:eaar59872018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kong X, Wang J, Cao Y, Zhang H, Lu X, Wang
Y, Bo C, Wang T, Li S, Tian K, et al: The long noncoding RNA
MALAT-1 functions as a competing endogenous RNA to regulate MSL2
expression by sponging miR-338-3p in myasthenia gravis. J Cell
Biochem. 120:5542–5550. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Han X, Xu Z, Tian G, Tang Z, Gao J, Wei Y
and Xu X: Suppression of the long non-coding RNA MALAT-1 impairs
the growth and migration of human tongue squamous cell carcinoma
SCC4 cells. Arch Med Sci. 15:992–1000. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tripathi V, Ellis JD, Shen Z, Song DY, Pan
Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The
nuclear-retained noncoding RNA MALAT1 regulates alternative
splicing by modulating SR splicing factor phosphorylation. Mol
Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gernapudi R, Wolfson B, Zhang Y, Yao Y,
Yang P, Asahara H and Zhou Q: MicroRNA 140 promotes expression of
long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol. 36:30–38.
2015.PubMed/NCBI
|
|
33
|
Cooper DR, Carter G, Li P, Patel R, Watson
JE and Patel NA: Long non-coding RNA NEAT1 associates with SRp40 to
temporally regulate PPARγ2 splicing during adipogenesis in 3T3-L1
cells. Genes (Basel). 5:1050–1063. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Su X and Pan H: Inhibition of lncRNA
PANDAR reduces cell proliferation, cell invasion and suppresses EMT
pathway in breast cancer. Cancer Biomark. 25:185–192. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu J, Ben Q, Lu E, He X, Yang X, Ma J,
Zhang W, Wang Z, Liu T, Zhang J and Wang H: Long noncoding RNA
PANDAR blocks CDKN1A gene transcription by competitive interaction
with p53 protein in gastric cancer. Cell Death Dis. 9:1682018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang H, Fang L, Jiang J, Kuang Y, Wang B,
Shang X, Han P, Li Y, Liu M, Zhang Z and Li P: The
cisplatin-induced lncRNA PANDAR dictates the chemoresistance of
ovarian cancer via regulating SFRS2-mediated p53 phosphorylation.
Cell Death Dis. 9:11032018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xin Y, He X, Zhao W, Zhan M, Li Y, Xiao J,
He K and Lu L: LncRNA PCAT6 increased cholangiocarcinoma cell
proliferation and invasion via modulating miR-330-5p. Am J Transl
Res. 11:6185–6195. 2019.PubMed/NCBI
|
|
38
|
Wu H, Zou Q, He H, Liang Y, Lei M, Zhou Q,
Fan D and Shen L: Long non-coding RNA PCAT6 targets miR-204 to
modulate the chemoresistance of colorectal cancer cells to
5-fluorouracil-based treatment through HMGA2 signaling. Cancer Med.
8:2484–2495. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang WM, Su G, Huang XX, Zou A, Wu J,
Yang Y, Zhu Y, Liang S, Li D, Ma F and Guo L: Long noncoding RNA
PCAT6 inhibits colon cancer cell apoptosis by regulating
anti-apoptotic protein ARC expression via EZH2. Cell Cycle.
18:69–83. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dong F, Ruan S, Wang J, Xia Y, Le K, Xiao
X, Hu T and Wang Q: M2 macrophage-induced lncRNA PCAT6 facilitates
tumorigenesis and angiogenesis of triple-negative breast cancer
through modulation of VEGFR2. Cell Death Dis. 11:7282020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tong H, Zhuang X, Cai J, Ding Y, Si Y,
Zhang H and Shen M: Long noncoding RNA ZFAS1 promotes progression
of papillary thyroid carcinoma by sponging miR-590-3p and
upregulating HMGA2 expression. Onco Targets Ther. 12:7501–7512.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dong D, Mu Z, Wei N, Sun M, Wang W, Xin N,
Shao Y and Zhao C: Long non-coding RNA ZFAS1 promotes proliferation
and metastasis of clear cell renal cell carcinoma via targeting
miR-10a/SKA1 pathway. Biomed Pharmacother. 111:917–925. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hassan MA, Al-Sakkaf K, Shait Mohammed MR,
Dallol A, Al-Maghrabi J, Aldahlawi A, Ashoor S, Maamra M, Ragoussis
J, Wu W, et al: Integration of transcriptome and metabolome
provides unique insights to pathways associated with obese breast
cancer patients. Front Oncol. 10:8042020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mansoori Y, Tabei MB, Askari A, Izadi P,
Daraei A, Bastami M, Naghizadeh MM, Nariman-Saleh-Fam Z, Mansoori B
and Tavakkoly-Bazzaz J: Expression levels of breast cancer-related
GAS5 and LSINCT5 lncRNAs in cancer-free breast tissue: Molecular
associations with age at menarche and obesity. Breast J.
24:876–882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou
A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits
progression of colorectal cancer by interacting with and triggering
YAP phosphorylation and degradation and is negatively regulated by
the m6A reader YTHDF3. Mol Cancer. 18:1432019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ji J, Dai X, Yeung SJ and He X: The role
of long non-coding RNA GAS5 in cancers. Cancer Manag Res.
11:2729–2737. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sun M, Jin FY, Xia R, Kong R, Li JH, Xu
TP, Liu YW, Zhang EB, Liu XH and De W: Decreased expression of long
noncoding RNA GAS5 indicates a poor prognosis and promotes cell
proliferation in gastric cancer. BMC Cancer. 14:3192014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li Z, Jin C, Chen S, Zheng Y, Huang Y, Jia
L, Ge W and Zhou Y: Long non-coding RNA MEG3 inhibits adipogenesis
and promotes osteogenesis of human adipose-derived mesenchymal stem
cells via miR-140-5p. Mol Cell Biochem. 433:51–60. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xu B, Gerin I, Miao H, Vu-Phan D, Johnson
CN, Xu R, Chen XW, Cawthorn WP, MacDougald OA and Koenig RJ:
Multiple roles for the non-coding RNA SRA in regulation of
adipogenesis and insulin sensitivity. PLoS One. 5:e141992010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gong P, Qiao F, Wu H, Cui H, Li Y, Zheng
Y, Zhou M and Fan H: LncRNA UCA1 promotes tumor metastasis by
inducing miR-203/ZEB2 axis in gastric cancer. Cell Death Dis.
9:11582018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu
Y, Feng Y, Liu H, Fei B, Mao Y, et al: LncRNA-UCA1 enhances cell
proliferation and 5-fluorouracil resistance in colorectal cancer by
inhibiting miR-204-5p. Sci Rep. 6:238922016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yao F, Wang Q and Wu Q: The prognostic
value and mechanisms of lncRNA UCA1 in human cancer. Cancer Manag
Res. 11:7685–7696. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
de Onis M and Habicht JP: Anthropometric
reference data for international use: Recommendations from a world
health organization expert committee. Am J Clin Nutr. 64:650–658.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Al-Maghrabi J, Al-Sakkaf K, Qureshi IA,
Butt NS, Damnhory L, Elshal M, Al-Maghrabi B, Aldahlawi A, Ashoor
S, Brown B, et al: AMPK expression patterns are significantly
associated with poor prognosis in breast cancer patients. Ann Diagn
Pathol. 29:62–67. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Khabaz MN, Al-Sakkaf K, Qureshi IA, Butt
NS, Damnhory L, Elshal M, Al-Maghrabi B, Aldahlawi A, Ashoor S,
Brown B, et al: Expression of p-AMPK is associated with hormone
receptor phenotypes and lymph node metastasis in breast cancer. Int
J Clin Exp Patho. 10:7044–7051. 2017.
|
|
56
|
Pfaffl MW, Horgan GW and Dempfle L:
Relative expression software tool (REST) for group-wise comparison
and statistical analysis of relative expression results in
real-time PCR. Nucleic Acids Res. 30:e362002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mandrekar JN: Receiver operating
characteristic curve in diagnostic test assessment. J Thorac Oncol.
5:1315–1316. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Soudyab M, Iranpour M and Ghafouri-Fard S:
The role of long non-coding RNAs in breast cancer. Arch Iran Med.
19:508–517. 2016.PubMed/NCBI
|
|
60
|
Zhu Y, Mao D, Gao W, Han G and Hu H:
Analysis of lncRNA expression in patients with eosinophilic and
neutrophilic asthma focusing on LNC_000127. Front Genet.
10:1412019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fernandes JCR, Acuña SM, Aoki JI,
Floeter-Winter LM and Muxel SM: Long non-coding RNAs in the
regulation of gene expression: Physiology and disease. Noncoding
RNA. 5:172019.PubMed/NCBI
|
|
62
|
Wei JW, Huang K, Yang C and Kang CS:
Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep.
37:3–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ghafouri-Fard S and Taheri M: The
expression profile and role of non-coding RNAs in obesity. Eur J
Pharmacol. 892:1738092021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Butler AE, Hayat S, Dargham SR, Malek JA,
Abdullah SA, Mahmoud YA, Sathyapalan T and Atkin SL: Long
non-coding RNA expression in non-obese women with polycystic ovary
syndrome and weight-matched controls. Reprod Biomed Online.
41:579–583. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liang Y, Song X, Li Y, Chen B, Zhao W,
Wang L, Zhang H, Liu Y, Han D, Zhang N, et al: LncRNA BCRT1
promotes breast cancer progression by targeting miR-1303/PTBP3
axis. Mol Cancer. 19:852020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun Z and Liu J and Liu J: The expression
of lncRNA-MALAT1 in breast cancer patients and its influences on
prognosis. Cell Mol Biol (Noisy-le-grand). 66:72–78. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lv D, Xu K, Jin X, Li J, Shi Y, Zhang M,
Jin X, Li Y, Xu J and Li X: LncSpA: LncRNA spatial atlas of
expression across normal and cancer tissues. Cancer Res.
80:2067–2071. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mohebi M, Ghafouri-Fard S, Modarressi MH,
Dashti S, Zekri A, Kholghi-Oskooei V and Taheri M: Expression
analysis of vimentin and the related lncRNA network in breast
cancer. Exp Mol Pathol. 115:1044392020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Stelzer G, Rosen N, Plaschkes I, Zimmerman
S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et
al: The genecards suite: From gene data mining to disease genome
sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33.
2016.PubMed/NCBI
|
|
70
|
The Rnacentral Consortium, Petrov AI, Kay
SJE, Kalvari I, Howe KL, Gray KA, Bruford EA, Kersey PJ, Cochrane
G, Finn RD, et al: RNAcentral: A comprehensive database of
non-coding RNA sequences. Nucleic Acids Res. 45:D128–D134. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Paraskevopoulou MD, Vlachos IS, Karagkouni
D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P,
Floros E, Dalamagas T and Hatzigeorgiou AG: DIANA-LncBase v2:
Indexing microRNA targets on non-coding transcripts. Nucleic Acids
Res. 44:D231–D238. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Y, Chen L, Wu Z, Wang M, Jin F, Wang
N, Hu X, Liu Z, Zhang CY, Zen K, et al: miR-124-3p functions as a
tumor suppressor in breast cancer by targeting CBL. BMC Cancer.
16:8262016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhu X, Rao X, Yao W and Zou X:
Downregulation of MiR-196b-5p impedes cell proliferation and
metastasis in breast cancer through regulating COL1A1. Am J Transl
Res. 10:3122–3132. 2018.PubMed/NCBI
|
|
74
|
Wang B, Li D, Kovalchuk I, Apel IJ,
Chinnaiyan AM, Wóycicki RK, Cantor CR and Kovalchuk O: miR-34a
directly targets tRNAiMet precursors and affects
cellular proliferation, cell cycle, and apoptosis. Proc Natl Acad
Sci USA. 115:7392–7397. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang L, Wang L, Dong D, Wang Z, Ji W, Yu
M, Zhang F, Niu R and Zhou Y: MiR-34b/c-5p and the neurokinin-1
receptor regulate breast cancer cell proliferation and apoptosis.
Cell Prolif. 52:e125272019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jiang J, Yang X, He X, Ma W, Wang J, Zhou
Q, Li M and Yu S: MicroRNA-449b-5p suppresses the growth and
invasion of breast cancer cells via inhibiting CREPT-mediated
Wnt/β-catenin signaling. Chem Biol Interact. 302:74–82. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hou L, Chen M, Yang H, Xing T, Li J, Li G,
Zhang L, Deng S, Hu J, Zhao X and Jiang J: MiR-940 inhibited cell
growth and migration in triple-negative breast cancer. Med Sci
Monit. 22:3666–3672. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hu Y, Zhu Q and Tang L: MiR-99a antitumor
activity in human breast cancer cells through targeting of mTOR
expression. PLoS One. 9:e920992014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang X, Li Y, Qi W, Zhang N, Sun M, Huo Q,
Cai C, Lv S and Yang Q: MicroRNA-99a inhibits tumor aggressive
phenotypes through regulating HOXA1 in breast cancer cells.
Oncotarget. 6:32737–32747. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang YW, Zhang W and Ma R: Bioinformatic
identification of chemoresistance-associated microRNAs in breast
cancer based on microarray data. Oncol Rep. 39:1003–1010.
2018.PubMed/NCBI
|
|
81
|
Shi W, Bruce J, Lee M, Yue S, Rowe M,
Pintilie M, Kogo R, Bissey PA, Fyles A, Yip KW and Liu FF: MiR-449a
promotes breast cancer progression by targeting CRIP2. Oncotarget.
7:18906–18918. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Dahariya S, Paddibhatla I, Kumar S,
Raghuwanshi S, Pallepati A and Gutti RK: Long non-coding RNA:
Classification, biogenesis and functions in blood cells. Mol
Immunol. 112:82–92. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xu S, Chen P and Sun L: Regulatory
networks of non-coding RNAs in brown/beige adipogenesis. Biosci
Rep. 35:e002622015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jiang MC, Ni JJ, Cui WY, Wang BY and Zhuo
W: Emerging roles of lncRNA in cancer and therapeutic
opportunities. Am J Cancer Res. 9:1354–1366. 2019.PubMed/NCBI
|
|
85
|
Lo PK, Wolfson B, Zhou X, Duru N,
Gernapudi R and Zhou Q: Noncoding RNAs in breast cancer. Brief
Funct Genomics. 15:200–221. 2016. View Article : Google Scholar : PubMed/NCBI
|