|
1
|
Kang X, Zheng Y, Hong W, Chen X, Li H,
Huang B, Huang Z, Tang H and Geng W: Recent advances in immune cell
therapy for glioblastoma. Front Immunol. 11:5445632020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Upadhaya PG, Pulakkat S and Patravale VB:
Nose-to-brain delivery: Exploring newer domains for glioblastoma
multiforme management. Drug Deliv Transl Res. 10:1044–1056. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Alexander BM and Cloughesy TF: Adult
glioblastoma. J Clin Oncol. 35:2402–2409. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ebrahimi S, Makvandi M, Abbasi S,
Azadmanesh K and Teimoori A: Developing oncolytic Herpes simplex
virus type 1 through UL39 knockout by CRISPR-Cas9. Iran J Basic Med
Sci. 23:937–944. 2020.PubMed/NCBI
|
|
5
|
Taylor TJ, Brockman MA, McNamee EE and
Knipe DM: Herpes simplex virus. Front Biosci. 7:d752–764. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Watanabe D and Goshima F: Oncolytic
virotherapy by HSV. Adv Exp Med Biol. 1045:63–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Goldstein DJ and Weller SK: Factor(s)
present in herpes simplex virus type 1-infected cells can
compensate for the loss of the large subunit of the viral
ribonucleotide reductase: Characterization of an ICP6 deletion
mutant. Virology. 166:41–51. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wilcox DR and Longnecker R: The herpes
simplex virus neurovirulence factor γ34.5: Revealing Virus-host
interactions. PLoS Pathog. 12:e10054492016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Varghese S and Rabkin SD: Oncolytic herpes
simplex virus vectors for cancer virotherapy. Cancer Gene Ther.
9:967–978. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Glorioso JC, Cohen JB, Goins WF, Hall B,
Jackson JW, Kohanbash G, Amankulor N, Kaur B, Caligiuri MA, Chiocca
EA, et al: Oncolytic HSV vectors and anti-tumor immunity. Curr
Issues Mol Biol. 41:381–468. 2020.PubMed/NCBI
|
|
11
|
Martuza RL, Malick A, Markert JM, Ruffner
KL and Coen DM: Experimental therapy of human glioma by means of a
genetically engineered virus mutant. Science. 252:854–856. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Peters C, Paget M, Tshilenge KT, Saha D,
Antoszczyk S, Baars A, Frost T, Martuza RL, Wakimoto H and Rabkin
SD: Restriction of replication of oncolytic herpes simplex virus
with a deletion of γ34.5 in glioblastoma stem-like cells. J Virol.
92:e00246–18. 2018. View Article : Google Scholar
|
|
13
|
Mineta T, Rabkin SD, Yazaki T, Hunter WD
and Martuza RL: Attenuated multi-mutated herpes simplex virus-1 for
the treatment of malignant gliomas. Nat Med. 1:938–943. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kanai R, Zaupa C, Sgubin D, Antoszczyk SJ,
Martuza RL, Wakimoto H and Rabkin SD: Effect of gamma34.5 deletions
on oncolytic herpes simplex virus activity in brain tumors. J
Virol. 86:4420–4431. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kambara H, Okano H, Chiocca EA and Saeki
Y: An oncolytic HSV-1 mutant expressing ICP34.5 under control of a
nestin promoter increases survival of animals even when symptomatic
from a brain tumor. Cancer Res. 65:2832–2839. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Connor JH, Weiser DC, Li S, Hallenbeck JM
and Shenolikar S: Growth arrest and DNA damage-inducible protein
GADD34 assembles a novel signaling complex containing protein
phosphatase 1 and inhibitor 1. Mol Cell Biol. 21:6841–6850. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nakashima H, Nguyen T, Kasai K, Passaro C,
Ito H, Goins WF, Shaikh I, Erdelyi R, Nishihara R, Nakano I, et al:
Toxicity and efficacy of a novel GADD34-expressing oncolytic HSV-1
for the treatment of experimental glioblastoma. Clin Cancer Res.
24:2574–2584. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Friedman GK, Nan L, Haas MC, Kelly VM,
Moore BP, Langford CP, Xu H, Han X, Beierle EA, Markert JM, et al:
γ134.5-deleted HSV-1-expressing human cytomegalovirus
IRS1 gene kills human glioblastoma cells as efficiently as
wild-type HSV-1 in normoxia or hypoxia. Gene Ther. 22:348–355.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cassady KA: Human cytomegalovirus TRS1 and
IRS1 gene products block the double-stranded-RNA-activated host
protein shutoff response induced by herpes simplex virus type 1
infection. J Virol. 79:8707–8715. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cassady KA, Bauer DF, Roth J, Chambers MR,
Shoeb T, Coleman J, Prichard M, Gillespie GY and Markert JM:
Pre-clinical assessment of C134, a chimeric oncolytic herpes
simplex virus, in mice and non-human primates. Mol Ther Oncolytics.
5:1–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Campadelli-Fiume G, Petrovic B, Leoni V,
Gianni T, Avitabile E, Casiraghi C and Gatta V: Retargeting
strategies for oncolytic herpes simplex viruses. Viruses. 8:632016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Campadelli-Fiume G, Menotti L, Avitabile E
and Gianni T: Viral and cellular contributions to herpes simplex
virus entry into the cell. Curr Opin Virol. 2:28–36. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang C, Burger MC, Jennewein L, Genssler
S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M,
Tonn T, et al: ErbB2/HER2-specific NK cells for targeted therapy of
glioblastoma. J Natl Cancer Inst. Dec 6–2016.(Epub ahead of print).
doi: 10.1093/jnci/djv375. View Article : Google Scholar
|
|
24
|
Menotti L, Cerretani A, Hengel H and
Campadelli-Fiume G: Construction of a fully retargeted herpes
simplex virus 1 recombinant capable of entering cells solely via
human epidermal growth factor receptor 2. J Virol. 82:10153–10161.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gambini E, Reisoli E, Appolloni I, Gatta
V, Campadelli-Fiume G, Menotti L and Malatesta P:
Replication-competent herpes simplex virus retargeted to HER2 as
therapy for high-grade glioma. Mol Ther. 20:994–1001. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
An Z, Aksoy O, Zheng T, Fan QW and Weiss
WA: Epidermal growth factor receptor and EGFRvIII in glioblastoma:
Signaling pathways and targeted therapies. Oncogene. 37:1561–1575.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Uchida H, Marzulli M, Nakano K, Goins WF,
Chan J, Hong CS, Mazzacurati L, Yoo JY, Haseley A, Nakashima H, et
al: Effective treatment of an orthotopic xenograft model of human
glioblastoma using an EGFR-retargeted oncolytic herpes simplex
virus. Mol Ther. 21:561–569. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mazzacurati L, Marzulli M, Reinhart B,
Miyagawa Y, Uchida H, Goins WF, Li A, Kaur B, Caligiuri M, Cripe T,
et al: Use of miRNA response sequences to block off-target
replication and increase the safety of an unattenuated,
glioblastoma-targeted oncolytic HSV. Mol Ther. 23:99–107. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen Q, Han B, Meng X, Duan C, Yang C, Wu
Z, Magafurov D, Zhao S, Safin S, Jiang C and Cai J: Immunogenomic
analysis reveals LGALS1 contributes to the immune heterogeneity and
immunosuppression in glioma. Int J Cancer. 145:517–530. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang Q and Liu F: Advances and potential
pitfalls of oncolytic viruses expressing immunomodulatory transgene
therapy for malignant gliomas. Cell Death Dis. 11:4852020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kim CY, Jeong M, Mushiake H, Kim BM, Kim
WB, Ko JP, Kim MH, Kim M, Kim TH, Robbins PD, et al: Cancer gene
therapy using a novel secretable trimeric TRAIL. Gene Therapy.
13:330–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Passaro C, Alayo Q, De Laura I, McNulty J,
Grauwet K, Ito H, Bhaskaran V, Mineo M, Lawler SE, Shah K, et al:
Arming an oncolytic herpes simplex virus type 1 with a Single-chain
fragment variable antibody against PD-1 for experimental
glioblastoma therapy. Clin Cancer Res. 25:290–299. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wirsching HG, Zhang H, Szulzewsky F, Arora
S, Grandi P, Cimino PJ, Amankulor N, Campbell JS, McFerrin L,
Pattwell SS, et al: Arming oHSV with ULBP3 drives abscopal immunity
in lymphocyte-depleted glioblastoma. JCI insight. 4:e1282172019.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu B, Ma R, Russell L, Yoo JY, Han J, Cui
H, Yi P, Zhang J, Nakashima H, Dai H, et al: An oncolytic
herpesvirus expressing E-cadherin improves survival in mouse models
of glioblastoma. Nat Biotechnol. Nov 26–2018.(Epub ahead of print).
doi: 10.1038/nbt.4302.
|
|
35
|
Zhu G, Su W, Jin G, Xu F, Hao S, Guan F,
Jia W and Liu F: Glioma stem cells targeted by oncolytic virus
carrying endostatin-angiostatin fusion gene and the expression of
its exogenous gene in vitro. Brain Res. 1390:59–69. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kucerova L, Durinikova E, Toro L, Cihova
M, Miklikova S, Poturnajova M, Kozovska Z and Matuskova M: Targeted
antitumor therapy mediated by prodrug-activating mesenchymal
stromal cells. Cancer Lett. 408:1–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nakamura H, Mullen JT, Chandrasekhar S,
Pawlik TM, Yoon SS and Tanabe KK: Multimodality therapy with a
replication-conditional herpes simplex virus 1 mutant that
expresses yeast cytosine deaminase for intratumoral conversion of
5-fluorocytosine to 5-fluorouracil. Cancer Res. 61:5447–5452.
2001.PubMed/NCBI
|
|
38
|
Yamada S, Kuroda T, Fuchs BC, He X, Supko
JG, Schmitt A, McGinn CM, Lanuti M and Tanabe KK: Oncolytic herpes
simplex virus expressing yeast cytosine deaminase: Relationship
between viral replication, transgene expression, prodrug
bioactivation. Cancer Gene Ther. 19:160–170. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sattiraju A, Sai KKS and Mintz A:
Glioblastoma stem cells and their microenvironment. Adv Exp Med
Biol. 1041:119–140. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kanai R, Rabkin SD, Yip S, Sgubin D, Zaupa
CM, Hirose Y, Louis DN, Wakimoto H and Martuza RL: Oncolytic
virus-mediated manipulation of DNA damage responses: Synergy with
chemotherapy in killing glioblastoma stem cells. J Natl Cancer
Inst. 104:42–55. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Aghi M, Rabkin S and Martuza RL: Effect of
chemotherapy-induced DNA repair on oncolytic herpes simplex viral
replication. J Natl Cancer Inst. 98:38–50. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wade A, Robinson AE, Engler JR, Petritsch
C, James CD and Phillips JJ: Proteoglycans and their roles in brain
cancer. FEBS J. 280:2399–2417. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dmitrieva N, Yu L, Viapiano M, Cripe TP,
Chiocca EA, Glorioso JC and Kaur B: Chondroitinase ABC I-mediated
enhancement of oncolytic virus spread and antitumor efficacy. Clin
Cancer Res. 17:1362–1372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jaime-Ramirez AC, Dmitrieva N, Yoo JY,
Banasavadi-Siddegowda Y, Zhang J, Relation T, Bolyard C, Wojton J
and Kaur B: Humanized chondroitinase ABC sensitizes glioblastoma
cells to temozolomide. J Gene Med. 19:10.1002/jgm.2942. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Saha D, Rabkin SD and Martuza RL:
Temozolomide antagonizes oncolytic immunovirotherapy in
glioblastoma. J Immunother Cancer. 8:e0003452020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Advani SJ, Mezhir JJ, Roizman B and
Weichselbaum RR: ReVOLT: Radiation-enhanced viral oncolytic
therapy. Int J Radiat Oncol Biol Phys. 66:637–646. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kanai R, Wakimoto H, Martuza RL and Rabkin
SD: A novel oncolytic herpes simplex virus that synergizes with
phosphoinositide 3-kinase/Akt pathway inhibitors to target
glioblastoma stem cells. Clin Cancer Res. 17:3686–3696. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cheema TA, Kanai R, Kim GW, Wakimoto H,
Passer B, Rabkin SD and Martuza RL: Enhanced antitumor efficacy of
low-dose Etoposide with oncolytic herpes simplex virus in human
glioblastoma stem cell xenografts. Clin Cancer Res. 17:7383–7393.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang W, Fulci G, Wakimoto H, Cheema TA,
Buhrman JS, Jeyaretna DS, Stemmer Rachamimov AO, Rabkin SD and
Martuza RL: Combination of oncolytic herpes simplex viruses armed
with angiostatin and IL-12 enhances antitumor efficacy in human
glioblastoma models. Neoplasia. 15:591–599. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kurozumi K, Hardcastle J, Thakur R, Yang
M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W,
Chiocca EA and Kaur B: Effect of tumor microenvironment modulation
on the efficacy of oncolytic virus therapy. J Natl Cancer Inst.
99:1768–1781. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang W, Fulci G, Buhrman JS,
Stemmer-Rachamimov AO, Chen JW, Wojtkiewicz GR, Weissleder R,
Rabkin SD and Martuza RL: Bevacizumab with angiostatin-armed oHSV
increases antiangiogenesis and decreases bevacizumab-induced
invasion in U87 glioma. Mol Ther. 20:37–45. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yoo JY, Jaime-Ramirez AC, Bolyard C, Dai
H, Nallanagulagari T, Wojton J, Hurwitz BS, Relation T, Lee TJ,
Lotze MT, et al: Bortezomib treatment sensitizes oncolytic
HSV-1-treated tumors to NK cell immunotherapy. Clin Cancer Res.
22:5265–5276. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yoo JY, Hurwitz BS, Bolyard C, Yu JG,
Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D, et al:
Bortezomib-induced unfolded protein response increases oncolytic
HSV-1 replication resulting in synergistic antitumor effects. Clin
Cancer Res. 20:3787–3798. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ning J, Wakimoto H, Peters C, Martuza RL
and Rabkin SD: Rad51 degradation: Role in oncolytic
Virus-Poly(ADP-Ribose) polymerase inhibitor combination therapy in
glioblastoma. J Natl Cancer Inst. 109:1–13. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Carbonell WS, DeLay M, Jahangiri A, Park
CC and Aghi MK: β1 integrin targeting potentiates antiangiogenic
therapy and inhibits the growth of bevacizumab-resistant
glioblastoma. Cancer Res. 73:3145–3154. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lee TJ, Nair M, Banasavadi-Siddegowda Y,
Liu J, Nallanagulagari T, Jaime-Ramirez AC, Guo JY, Quadri H, Zhang
J, Bockhorst KH, et al: Enhancing therapeutic efficacy of oncolytic
herpes simplex virus-1 with integrin β1 blocking antibody OS2966.
Mol Cancer Ther. 18:1127–1136. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bazzoni R and Bentivegna A: Role of notch
signaling pathway in glioblastoma pathogenesis. Cancers (Basel).
11:2922019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yahyanejad S, King H, Iglesias VS, Granton
PV, Barbeau LM, van Hoof SJ, Groot AJ, Habets R, Prickaerts J,
Chalmers AJ, et al: NOTCH blockade combined with radiation therapy
and temozolomide prolongs survival of orthotopic glioblastoma.
Oncotarget. 7:41251–41264. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kahlert UD, Cheng M, Koch K, Marchionni L,
Fan X, Raabe EH, Maciaczyk J, Glunde K and Eberhart CG: Alterations
in cellular metabolome after pharmacological inhibition of Notch in
glioblastoma cells. Int J Cancer. 138:1246–1255. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu R, Li X, Tulpule A, Zhou Y, Scehnet
JS, Zhang S, Lee JS, Chaudhary PM, Jung J and Gill PS: KSHV-induced
notch components render endothelial and mural cell characteristics
and cell survival. Blood. 115:887–895. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Otani Y, Yoo JY, Chao S, Liu J,
Jaime-Ramirez AC, Lee TJ, Hurwitz B, Yan Y, Dai H, Glorioso JC, et
al: Oncolytic HSV-infected glioma cells activate NOTCH in adjacent
tumor cells sensitizing tumors to gamma secretase inhibition. Clin
Cancer Res. 26:2381–2392. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
de Gooijer MC, Zhang P, Weijer R, Buil
LCM, Beijnen JH and van Tellingen O: The impact of P-glycoprotein
and breast cancer resistance protein on the brain pharmacokinetics
and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer.
142:381–391. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yoo JY, Swanner J, Otani Y, Nair M, Park
F, Banasavadi-Siddegowda Y, Liu J, Jaime-Ramirez AC, Hong B, Geng
F, et al: Oncolytic HSV therapy increases trametinib access to
brain tumors and sensitizes them in vivo. Neuro Oncol.
21:1131–1140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nguyen T, Avci NG, Shin DH, Martinez-Velez
N and Jiang H: Tune up in situ autovaccination against solid tumors
with oncolytic viruses. Cancers (Basel). 10:1712018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yin J, Markert JM and Leavenworth JW:
Modulation of the intratumoral immune landscape by oncolytic herpes
simplex virus virotherapy. Front Oncol. 7:1362017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ma W, He H and Wang H: Oncolytic herpes
simplex virus and immunotherapy. BMC Immunol. 19:402018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Delwar ZM, Kuo Y, Wen YH, Rennie PS and
Jia W: Oncolytic virotherapy blockade by microglia and macrophages
requires STAT1/3. Cancer Res. 78:718–730. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ikeda K, Ichikawa T, Wakimoto H, Silver
JS, Deisboeck TS, Finkelstein D, Harsh GR IV, Louis DN, Bartus RT,
Hochberg FH and Chiocca EA: Oncolytic virus therapy of multiple
tumors in the brain requires suppression of innate and elicited
antiviral responses. Nat Med. 5:881–887. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Han J, Chen X, Chu J, Xu B, Meisen WH,
Chen L, Zhang L, Zhang J, He X, Wang QE, et al: TGFβ treatment
enhances glioblastoma virotherapy by inhibiting the innate immune
response. Cancer Res. 75:5273–5282. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Thorne AH, Meisen WH, Russell L, Yoo JY,
Bolyard CM, Lathia JD, Rich J, Puduvalli VK, Mao H, Yu J, et al:
Role of cysteine-rich 61 protein (CCN1) in macrophage-mediated
oncolytic herpes simplex virus clearance. Mol Ther. 22:1678–1687.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hua L and Wakimoto H: Oncolytic herpes
simplex virus therapy for malignant glioma: Current approaches to
successful clinical application. Expert Opin Biol Ther. 19:845–854.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Duebgen M, Martinez-Quintanilla J, Tamura
K, Hingtgen S, Redjal N, Wakimoto H and Shah K: Stem cells loaded
with multimechanistic oncolytic herpes simplex virus variants for
brain tumor therapy. J Natl Cancer Inst. 106:dju0902014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Simpson GR, Han Z, Liu B, Wang Y, Campbell
G and Coffin RS: Combination of a fusogenic glycoprotein, prodrug
activation, and oncolytic herpes simplex virus for enhanced local
tumor control. Cancer Res. 66:4835–4842. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pan M, Zhang Y, Deng Z, Yan F and Hong G:
Noninvasive and local delivery of adenoviral-mediated herpes
simplex virus thymidine kinase to treat glioma through focused
ultrasound-induced blood-brain barrier opening in rats. J Biomed
Nanotechnol. 14:2031–2041. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Roy DG and Bell JC: Cell carriers for
oncolytic viruses: Current challenges and future directions.
Oncolytic Virother. 2:47–56. 2013.PubMed/NCBI
|
|
76
|
Coukos G, Makrigiannakis A, Kang EH,
Caparelli D, Benjamin I, Kaiser LR, Rubin SC, Albelda SM and
Molnar-Kimber KL: Use of carrier cells to deliver a
replication-selective herpes simplex virus-1 mutant for the
intraperitoneal therapy of epithelial ovarian cancer. Clin Cancer
Res. 5:1523–1537. 1999.PubMed/NCBI
|
|
77
|
Lin W, Huang L, Li Y, Fang B, Li G, Chen L
and Xu L: Mesenchymal stem cells and cancer: Clinical challenges
and opportunities. Biomed Res Int. 2019:28208532019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dührsen L, Hartfuss S, Hirsch D, Geiger S,
Maire CL, Sedlacik J, Guenther C, Westphal M, Lamszus K, Hermann FG
and Schmidt NO: Preclinical analysis of human mesenchymal stem
cells: Tumor tropism and therapeutic efficiency of local HSV-TK
suicide gene therapy in glioblastoma. Oncotarget. 10:6049–6061.
2019. View Article : Google Scholar
|
|
79
|
Dewhirst MW and Secomb TW: Transport of
drugs from blood vessels to tumour tissue. Nature reviews Cancer.
17:738–750. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ribeiro Franco PI, Rodrigues AP, de
Menezes LB and Pacheco Miguel M: Tumor microenvironment components:
Allies of cancer progression. Pathol Res Pract. 216:1527292020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dickson PV, Hamner JB, Sims TL, Fraga CH,
Ng CY, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and
Davidoff AM: Bevacizumab-induced transient remodeling of the
vasculature in neuroblastoma xenografts results in improved
delivery and efficacy of systemically administered chemotherapy.
Clin Cancer Res. 13:3942–3950. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Miller A, Nace R, Ayala-Breton CC, Steele
M, Bailey K, Peng KW and Russell SJ: Perfusion pressure is a
critical determinant of the intratumoral extravasation of oncolytic
viruses. Mol Ther. 24:306–317. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hill C and Carlisle R: Achieving systemic
delivery of oncolytic viruses. Expert Opin Drug Deliv. 16:607–620.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rampling R, Cruickshank G, Papanastassiou
V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J,
McKie E, et al: Toxicity evaluation of replication-competent herpes
simplex virus (ICP 34.5 null mutant 1716) in patients with
recurrent malignant glioma. Gene Ther. 7:859–866. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Papanastassiou V, Rampling R, Fraser M,
Petty R, Hadley D, Nicoll J, Harland J, Mabbs R and Brown M: The
potential for efficacy of the modified (ICP 34.5(−)) herpes simplex
virus HSV1716 following intratumoural injection into human
malignant glioma: A proof of principle study. Gene Ther. 9:398–406.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Harrow S, Papanastassiou V, Harland J,
Mabbs R, Petty R, Fraser M, Hadley D, Patterson J, Brown SM and
Rampling R: HSV1716 injection into the brain adjacent to tumour
following surgical resection of high-grade glioma: Safety data and
long-term survival. Gene Ther. 11:1648–1658. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Markert JM, Medlock MD, Rabkin SD,
Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore
C, Tufaro F and Martuza RL: Conditionally replicating herpes
simplex virus mutant, G207 for the treatment of malignant glioma:
Results of a phase I trial. Gene Ther. 7:867–874. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Markert JM, Liechty PG, Wang W, Gaston S,
Braz E, Karrasch M, Nabors LB, Markiewicz M, Lakeman AD, Palmer CA,
et al: Phase Ib trial of mutant herpes simplex virus G207
inoculated Pre-and Post-tumor resection for recurrent GBM. Mol
Ther. 17:199–207. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Markert JM, Razdan SN, Kuo HC, Cantor A,
Knoll A, Karrasch M, Nabors LB, Markiewicz M, Agee BS, Coleman JM,
et al: A phase 1 trial of oncolytic HSV-1, G207, given in
combination with radiation for recurrent GBM demonstrates safety
and radiographic responses. Mol Ther. 22:1048–1055. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bernstock JD, Wright Z, Bag AK, Gessler F,
Gillespie GY, Markert JM, Friedman GK and Johnston JM: Stereotactic
placement of intratumoral catheters for continuous infusion
delivery of herpes simplex virus-1 G207 in pediatric malignant
supratentorial brain tumors. World Neurosurgery. 122:e1592–e1598.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Taguchi S, Fukuhara H and Todo T:
Oncolytic virus therapy in Japan: Progress in clinical trials and
future perspectives. Jpn J Clin Oncol. 49:201–209. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fukuhara H, Ino Y and Todo T: Oncolytic
virus therapy: A new era of cancer treatment at dawn. Cancer Sci.
107:1373–1379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Desjardins A, Gromeier M, Herndon JE II,
Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F,
Muscat AM, Nair S, et al: Recurrent glioblastoma treated with
recombinant poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jayawardena N, Poirier JT, Burga LN and
Bostina M: Virus-receptor interactions and virus neutralization:
Insights for oncolytic virus development. Oncolytic Virother.
9:1–15. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ning J and Wakimoto H: Oncolytic herpes
simplex virus-based strategies: Toward a breakthrough in
glioblastoma therapy. Front Microbiol. 5:3032014. View Article : Google Scholar : PubMed/NCBI
|