|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.Erratum in: CA
Cancer J Clin 70: 313, 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Digklia A and Wagner AD: Advanced gastric
cancer: Current treatment landscape and future perspectives. World
J Gastroenterol. 22:2403–2414. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hironaka S, Sugimoto N, Yamaguchi K,
Moriwaki T, Komatsu Y, Nishina T, Tsuji A, Nakajima TE, Gotoh M,
Machida N, et al: S-1 plus leucovorin versus S-1 plus leucovorin
and oxaliplatin versus S-1 plus cisplatin in patients with advanced
gastric cancer: A randomised, multicentre, open-label, phase 2
trial. Lancet Oncol. 17:99–108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wagner AD, Syn NL, Moehler M, Grothe W,
Yong WP, Tai BC, Ho J and Unverzagt S: Chemotherapy for advanced
gastric cancer. Cochrane Database Syst Rev.
8:CD0040642017.PubMed/NCBI
|
|
6
|
Van Cutsem E, Sagaert X, Topal B,
Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Muro K, Van Cutsem E, Narita Y,
Pentheroudakis G, Baba E, Li J, Ryu MH, Zamaniah WIW, Yong WP, Yeh
KH, et al: Pan-Asian adapted ESMO Clinical Practice Guidelines for
the management of patients with metastatic gastric cancer: A
JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann
Oncol. 30:19–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hyodo I, Amano N, Eguchi K, Narabayashi M,
Imanishi J, Hirai M, Nakano T and Takashima S: Nationwide survey on
complementary and alternative medicine in cancer patients in Japan.
J Clin Oncol. 23:2645–2654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chan A, Tan HL, Ching TH and Tan HC:
Clinical outcomes for cancer patients using complementary and
alternative medicine. Altern Ther Health Med. 18:12–17.
2012.PubMed/NCBI
|
|
10
|
Liu TG, Xiong SQ, Yan Y, Zhu H and Yi C:
Use of chinese herb medicine in cancer patients: a survey in
southwestern china. Evid Based Complement Alternat Med.
2012:7690422012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Newman DJ and Cragg GM: Natural products
as sources of new drugs from 1981 to 2014. J Nat Prod. 79:629–661.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Singh S, Pandey P, Ghosh S and Banerjee S:
Anti-cancer labdane diterpenoids from adventitious roots of
Andrographis paniculata: Augmentation of production prospect
endowed with pathway gene expression. Protoplasma. 255:1387–1400.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Islam MT, Ali ES, Uddin SJ, Islam MA, Shaw
S, Khan IN, Saravi SSS, Ahmad S, Rehman S, Gupta VK, et al:
Andrographolide, a diterpene lactone from Andrographis
paniculata and its therapeutic promises in cancer. Cancer Lett.
420:129–145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu G and Chu H: Andrographolide inhibits
proliferation and induces cell cycle arrest and apoptosis in human
melanoma cells. Oncol Lett. 15:5301–5305. 2018.PubMed/NCBI
|
|
15
|
Suo XB, Zhang H and Wang YQ: HPLC
determination of andrographolide in rat whole blood: Study on the
pharmacokinetics of andrographolide incorporated in liposomes and
tablets. Biomed Chromatogr. 21:730–734. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lu WJ, Lee JJ, Chou DS, Jayakumar T, Fong
TH, Hsiao G and Sheu JR: A novel role of andrographolide, an
NF-kappa B inhibitor, on inhibition of platelet activation: The
pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP.
J Mol Med (Berl). 89:1261–1273. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jayakumar T, Hsieh CY, Lee JJ and Sheu JR:
Experimental and clinical pharmacology of Andrographis
paniculata and its major bioactive phytoconstituent
andrographolide. Evid Based Complement Alternat Med.
2013:8467402013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Poolsup N, Suthisisang C, Prathanturarug
S, Asawamekin A and Chanchareon U: Andrographis paniculata
in the symptomatic treatment of uncomplicated upper respiratory
tract infection: Systematic review of randomized controlled trials.
J Clin Pharm Ther. 29:37–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dai Y, Chen SR, Chai L, Zhao J and Wang Y
and Wang Y: Overview of pharmacological activities of
Andrographis paniculata and its major compound
andrographolide. Crit Rev Food Sci Nutr. 59 (Suppl 1):S17–S29.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kumar D, Das B, Sen R, Kundu P, Manna A,
Sarkar A, Chowdhury C, Chatterjee M and Das P: Andrographolide
analogue induces apoptosis and autophagy mediated cell death in
U937 cells by inhibition of PI3K/Akt/mTOR pathway. PLoS One.
10:e01396572015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li L, Yue GG, Lee JK, Wong EC, Fung KP, Yu
J, Lau CB and Chiu PW: The adjuvant value of Andrographis
paniculata in metastatic esophageal cancer treatment - from
preclinical perspectives. Sci Rep. 7:8542017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Banerjee M, Chattopadhyay S, Choudhuri T,
Bera R, Kumar S, Chakraborty B and Mukherjee SK: Cytotoxicity and
cell cycle arrest induced by andrographolide lead to programmed
cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci.
23:402016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lai YH, Yu SL, Chen HY, Wang CC, Chen HW
and Chen JJ: The HLJ1-targeting drug screening identified Chinese
herb andrographolide that can suppress tumour growth and invasion
in non-small-cell lung cancer. Carcinogenesis. 34:1069–1080. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li Y, Zhang P, Qiu F, Chen L, Miao C, Li
J, Xiao W and Ma E: Inactivation of PI3K/Akt signaling mediates
proliferation inhibition and G2/M phase arrest induced by
andrographolide in human glioblastoma cells. Life Sci. 90:962–967.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yuan M, Meng W, Liao W and Lian S:
Andrographolide antagonizes TNF-α-induced IL-8 via inhibition of
NADPH oxidase/ROS/NF-κB and Src/MAPKs/AP-1 axis in human colorectal
cancer HCT116 cells. J Agric Food Chem. 66:5139–5148. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang R, Zhao J, Xu J, Jiao DX, Wang J,
Gong ZQ and Jia JH: Andrographolide suppresses proliferation of
human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9
signaling pathway. Oncol Lett. 14:4305–4310. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Deng Y, Bi R, Guo H, Yang J, Du Y, Wang C
and Wei W: Andrographolide enhances TRAIL-induced apoptosis via
p53-mediated death receptors up-regulation and suppression of the
NF-кB pathway in bladder cancer cells. Int J Biol Sci. 15:688–700.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bao GQ, Shen BY, Pan CP, Zhang YJ, Shi MM
and Peng CH: Andrographolide causes apoptosis via inactivation of
STAT3 and Akt and potentiates antitumor activity of gemcitabine in
pancreatic cancer. Toxicol Lett. 222:23–35. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang W, Zhao J, Wang Y, Xu H, Wu Z, Hu Y,
Jiang K, Shen P, Ma C, Guan Z, et al: In vivo inhibitory activity
of andrographolide derivative ADN-9 against liver cancer and its
mechanisms involved in inhibition of tumor angiogenesis. Toxicol
Appl Pharmacol. 327:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lim JC, Chan TK, Ng DS, Sagineedu SR,
Stanslas J and Wong WS: Andrographolide and its analogues:
Versatile bioactive molecules for combating inflammation and
cancer. Clin Exp Pharmacol Physiol. 39:300–310. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yue GG, Li L, Lee JK, Kwok HF, Wong EC, Li
M, Fung KP, Yu J, Chan AW, Chiu PW and Lau CB: Multiple modulatory
activities of Andrographis paniculata on immune responses
and xenograft growth in esophageal cancer preclinical models.
Phytomedicine. 60:1528862019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lim SC, Jeon HJ, Kee KH, Lee MJ, Hong R
and Han SI: Andrographolide induces apoptotic and non-apoptotic
death and enhances tumor necrosis factor-related apoptosis-inducing
ligand-mediated apoptosis in gastric cancer cells. Oncol Lett.
13:3837–3844. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Stewart MJ and Watson ID: Standard units
for expressing drug concentrations in biological fluids. Br J Clin
Pharmacol. 16:3–7. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Takahashi M, Sung B, Shen Y, Hur K, Link
A, Boland CR, Aggarwal BB and Goel A: Boswellic acid exerts
antitumor effects in colorectal cancer cells by modulating
expression of the let-7 and miR-200 microRNA family.
Carcinogenesis. 33:2441–2449. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Schneider CA, Rasband WS and Eliceiri KW:
NIH Image to ImageJ: 25 years of image analysis. Nat Methods.
9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li SG, Wang YY, Ye ZY, Shao QS, Tao HQ,
Shu LS, Zhao YF, Yang YJ, Yang J, Peng T, et al: Proliferative and
apoptotic effects of andrographolide on the BGC-823 human gastric
cancer cell line. Chin Med J (Engl). 126:3739–3744. 2013.PubMed/NCBI
|
|
38
|
Dai L, Wang G and Pan W: Andrographolide
inhibits proliferation and metastasis of SGC7901 gastric cancer
cells. BioMed Res Int. 2017:62421032017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yu AL, Lu CY, Wang TS, Tsai CW, Liu KL,
Cheng YP, Chang HC, Lii CK and Chen HW: Induction of heme oxygenase
1 and inhibition of tumor necrosis factor alpha-induced
intercellular adhesion molecule expression by andrographolide in
EA.hy926 cells. J Agric Food Chem. 58:7641–7648. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Seo JY, Pyo E, An JP, Kim J, Sung SH and
Oh WK: Andrographolide activates Keap1/Nrf2/ARE/HO-1 pathway in
HT22 cells and suppresses microglial activation by Aβ42 through
Nrf2-related inflammatory response. Mediators Inflamm.
2017:59061892017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu CY, Yang YC, Li CC, Liu KL, Lii CK and
Chen HW: Andrographolide inhibits TNFα-induced ICAM-1 expression
via suppression of NADPH oxidase activation and induction of HO-1
and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1
pathways in human endothelial cells. Biochem Pharmacol. 91:40–50.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lee JC, Tseng CK, Young KC, Sun HY, Wang
SW, Chen WC, Lin CK and Wu YH: Andrographolide exerts
anti-hepatitis C virus activity by up-regulating haeme oxygenase-1
via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J
Pharmacol. 171:237–252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Guan SP, Tee W, Ng DS, Chan TK, Peh HY, Ho
WE, Cheng C, Mak JC and Wong WS: Andrographolide protects against
cigarette smoke-induced oxidative lung injury via augmentation of
Nrf2 activity. Br J Pharmacol. 168:1707–1718. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chao CY, Lii CK, Hsu YT, Lu CY, Liu KL, Li
CC and Chen HW: Induction of heme oxygenase-1 and inhibition of
TPA-induced matrix metalloproteinase-9 expression by
andrographolide in MCF-7 human breast cancer cells. Carcinogenesis.
34:1843–1851. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kwon MY, Park E, Lee SJ and Chung SW: Heme
oxygenase-1 accelerates erastin-induced ferroptotic cell death.
Oncotarget. 6:24393–24403. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sharma P, Shimura T, Banwait JK and Goel
A: Andrographis-mediated chemosensitization through activation of
ferroptosis and suppression of β-catenin/Wnt-signaling pathways in
colorectal cancer. Carcinogenesis. 41:1385–1394. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang G, Li X, Li X, Wang L, Li J, Song X,
Chen J, Guo Y, Sun X, Wang S, et al: Traditional chinese medicine
in cancer care: a review of case series published in the chinese
literature. Evid Based Complement Alternat Med. 2012:7510462012.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhou J, Ong CN, Hur GM and Shen HM:
Inhibition of the JAK-STAT3 pathway by andrographolide enhances
chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol.
79:1242–1250. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liang C, Zhang X, Yang M and Dong X:
Recent progress in ferroptosis inducers for cancer therapy. Adv
Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ye Z, Liu W, Zhuo Q, Hu Q, Liu M, Sun Q,
Zhang Z, Fan G, Xu W, Ji S, et al: Ferroptosis: Final destination
for cancer? Cell Prolif. 53:e127612020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hassannia B, Vandenabeele P and Vanden
Berghe T: Targeting Ferroptosis to Iron Out Cancer. Cancer Cell.
35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze
MT, Zeh HJ, Kang R and Tang D: The ferroptosis inducer erastin
enhances sensitivity of acute myeloid leukemia cells to
chemotherapeutic agents. Mol Cell Oncol. 2:e10545492015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang S, Evens AM, Prachand S, Singh AT,
Bhalla S, David K and Gordon LI: Mitochondrial-mediated apoptosis
in lymphoma cells by the diterpenoid lactone andrographolide, the
active component of Andrographis paniculata. Clin Cancer
Res. 16:4755–4768. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Xia X, Fan X, Zhao M and Zhu P: The
relationship between ferroptosis and tumors: a novel landscape for
therapeutic approach. Curr Gene Ther. 19:117–124. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen Y, Fan Z, Yang Y and Gu C: Iron
metabolism and its contribution to cancer (Review). Int J Oncol.
54:1143–1154. 2019.PubMed/NCBI
|
|
56
|
Roh JL, Kim EH, Jang HJ, Park JY and Shin
D: Induction of ferroptotic cell death for overcoming cisplatin
resistance of head and neck cancer. Cancer Lett. 381:96–103. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Louandre C, Ezzoukhry Z, Godin C, Barbare
JC, Mazière JC, Chauffert B and Galmiche A: Iron-dependent cell
death of hepatocellular carcinoma cells exposed to sorafenib. Int J
Cancer. 133:1732–1742. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Puntawee S, Theerasilp M, Reabroi S,
Saeeng R, Piyachaturawat P, Chairoungdua A and Nasongkla N:
Solubility enhancement and in vitro evaluation of PEG-b-PLA
micelles as nanocarrier of semi-synthetic andrographolide analogue
for cholangiocarcinoma chemotherapy. Pharm Dev Technol. 21:437–444.
2016.PubMed/NCBI
|
|
59
|
Basuli D, Tesfay L, Deng Z, Paul B,
Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, et al: Iron
addiction: A novel therapeutic target in ovarian cancer. Oncogene.
36:4089–4099. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Eling N, Reuter L, Hazin J, Hamacher-Brady
A and Brady NR: Identification of artesunate as a specific
activator of ferroptosis in pancreatic cancer cells. Oncoscience.
2:517–532. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu Q and Wang K: The induction of
ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the
sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int.
43:1245–1256. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L:
Erastin/sorafenib induces cisplatin-resistant non-small cell lung
cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway.
Oncol Lett. 19:323–333. 2020.PubMed/NCBI
|
|
63
|
Sugiyama A, Ohta T, Obata M, Takahashi K,
Seino M and Nagase S: xCT inhibitor sulfasalazine depletes
paclitaxel-resistant tumor cells through ferroptosis in uterine
serous carcinoma. Oncol Lett. 20:2689–2700. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bussolati B, Ahmed A, Pemberton H, Landis
RC, Di Carlo F, Haskard DO and Mason JC: Bifunctional role for
VEGF-induced heme oxygenase-1 in vivo: Induction of angiogenesis
and inhibition of leukocytic infiltration. Blood. 103:761–766.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Farombi EO and Surh YJ: Heme oxygenase-1
as a potential therapeutic target for hepatoprotection. J Biochem
Mol Biol. 39:479–491. 2006.PubMed/NCBI
|
|
66
|
Jozkowicz A, Was H and Dulak J: Heme
oxygenase-1 in tumors: Is it a false friend? Antioxid Redox Signal.
9:2099–2117. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chiang SK, Chen SE and Chang LC: A Dual
Role of Heme Oxygenase-1 in Cancer Cells. Int J Mol Sci. 20:202018.
View Article : Google Scholar
|
|
68
|
Trachootham D, Alexandre J and Huang P:
Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Suttner DM and Dennery PA: Reversal of
HO-1 related cytoprotection with increased expression is due to
reactive iron. FASEB J. 13:1800–1809. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chang LC, Chiang SK, Chen SE, Yu YL, Chou
RH and Chang WC: Heme oxygenase-1 mediates BAY 11-7085 induced
ferroptosis. Cancer Lett. 416:124–137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chau LY: Heme oxygenase-1: Emerging target
of cancer therapy. J Biomed Sci. 22:222015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hill M, Pereira V, Chauveau C, Zagani R,
Remy S, Tesson L, Mazal D, Ubillos L, Brion R, Asghar K, et al:
Heme oxygenase-1 inhibits rat and human breast cancer cell
proliferation: Mutual cross inhibition with indoleamine
2,3-dioxygenase. FASEB J. 19:1957–1968. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ferrando M, Gueron G, Elguero B, Giudice
J, Salles A, Leskow FC, Jares-Erijman EA, Colombo L, Meiss R,
Navone N, et al: Heme oxygenase 1 (HO-1) challenges the angiogenic
switch in prostate cancer. Angiogenesis. 14:467–479. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Nishizawa H, Matsumoto M, Shindo T,
Saigusa D, Kato H, Suzuki K, Sato M, Ishii Y, Shimokawa H and
Igarashi K: Ferroptosis is controlled by the coordinated
transcriptional regulation of glutathione and labile iron
metabolism by the transcription factor BACH1. J Biol Chem.
295:69–82. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lu SC: Glutathione synthesis. Biochim
Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huang CS, Lii CK, Lin AH, Yeh YW, Yao HT,
Li CC, Wang TS and Chen HW: Protection by chrysin, apigenin, and
luteolin against oxidative stress is mediated by the Nrf2-dependent
up-regulation of heme oxygenase 1 and glutamate cysteine ligase in
rat primary hepatocytes. Arch Toxicol. 87:167–178. 2013. View Article : Google Scholar : PubMed/NCBI
|