Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cytochrome P450: Implications for human breast cancer (Review)

  • Authors:
    • Bin Luo
    • Dandan Yan
    • Honglin Yan
    • Jingping Yuan
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
    Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 548
    |
    Published online on: May 24, 2021
       https://doi.org/10.3892/ol.2021.12809
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple‑negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4‑chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi‑gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal‑like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.
View Figures

Figure 1

View References

1 

Lakhani SR, Ellis IO, Schnitt SJ, Pan PH and van de Vijver MJ: WHO Classifcation of Tumours of the Breast. WHO Classifcation of Tumours. 4th edition. 4. IARC Press; Lyon: pp. 82–134. 2012

2 

Desantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding SA, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Dumitrescu RG and Cotarla I: Understanding breast cancer risk-where do we stand in 2005? J Cell Mol Med. 9:208–221. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Gonzalez FJ and Gelboin HV: Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev. 26:165–183. 1994. View Article : Google Scholar : PubMed/NCBI

5 

Ding X and Kaminsky LS: Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 43:149–173. 2003. View Article : Google Scholar : PubMed/NCBI

6 

Murray GI: The role of cytochrome P450 in tumour development and progression and its potential in therapy. J Pathol. 192:419–426. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Gajjar K, Martin-Hirsch PL and Martin FL: CYP1B1 and hormone-induced cancer. Cancer Lett. 324:13–30. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Nebert DW and Russell DW: Clinical importance of the cytochromes P450. Lancet. 360:1155–1162. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Luthra A, Denisov IG and Sligar SG: Spectroscopic features of cytochrome P450 reaction intermediates. Arch Biochem Biophys. 507:26–35. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Nelson DR: Cytochrome P450 nomenclature, 2004. Methods Mol Biol. 320:1–10. 2006.PubMed/NCBI

11 

Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J and Raunio H: Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch Toxicol. 82:667–715. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM and Nebert DW: Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 14:1–18. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Thelen K and Dressman JB: Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 61:541–558. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Renaud HJ, Cui JY, Khan M and Klaassen CD: Tissue distribution and gender-divergent expression of 78 cytochrome P450 mRNAs in mice. Toxicol Sci. 124:261–277. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Guengerich FP: Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J Biochem Mol Toxicol. 21:163–168. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Furge LL and Guengerich FP: Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochem Mol Biol Educ. 34:66–74. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Guengerich FP: Cytochrome p450 and chemical toxicology. Chem Res Toxicol. 21:70–83. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Bozina N, Bradamante V and Lovric M: Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol. 60:217–242. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Missmer SA, Eliassen AH, Barbieri RL and Hankinson SE: Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst. 96:1856–1865. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Chan MF, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, Welch A and Khaw KT: Usual physical activity and endogenous sex hormones in postmenopausal women: The European prospective investigation into cancer-norfolk population study. Cancer Epidemiol Biomarkers Prev. 16:900–905. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Baglietto L, Severi G, English DR, Krishnan K, Hopper JL, Mclean C, Morris HA, Tilley WD and Giles GG: Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer Epidemiol Biomarkers Prev. 19:492–502. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Rod NH, Hansen AM, Nielsen J, Schnohr P and Gronbaek M: Low-risk factor profile, estrogen levels, and breast cancer risk among postmenopausal women. Int J Cancer. 124:1935–1940. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Pearce ST and Jordan VC: The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol. 50:3–22. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Chen GG, Zeng Q and Tse GM: Estrogen and its receptors in cancer. Med Res Rev. 28:954–974. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Guillette TC, Jackson TW and Belcher SM: Duality of estrogen receptor β action in cancer progression. Curr Opin Pharmacol. 41:66–73. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Frech MS, Torre KM, Robinson GW and Furth PA: Loss of cyclin D1 in concert with deregulated estrogen receptor alpha expression induces DNA damage response activation and interrupts mammary gland morphogenesis. Oncogene. 27:3186–3193. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Giuliano M, Trivedi MV and Schiff R: Bidirectional Crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: Molecular basis and clinical implications. Breast Care (Basel). 8:256–262. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Levin ER: Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol Endocrinol. 17:309–317. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Sangrajrang S, Sato Y, Sakamoto H, Ohnami S, Laird NM, Khuhaprema T, Brennan P, Boffetta P and Yoshida T: Genetic polymorphisms of estrogen metabolizing enzyme and breast cancer risk in Thai women. Int J Cancer. 125:837–843. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Samavat H and Kurzer MS: Estrogen metabolism and breast cancer. Cancer Lett. 356:231–243. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Liehr JG: 4-hydroxylation of oestrogens as a marker for mammary tumours. Biochem Soc Trans. 27:318–323. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Liehr JG, Ulubelen AA and Strobel HW: Cytochrome P-450-mediated redox cycling of estrogens. J Biol Chem. 261:16865–16870. 1986. View Article : Google Scholar : PubMed/NCBI

33 

Yager JD and Liehr JG: Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 36:203–232. 1996. View Article : Google Scholar : PubMed/NCBI

34 

Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, et al: Molecular origin of cancer: Catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA. 94:10937–10942. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Bradlow HL, Hershcopf RJ, Martucci CP and Fishman J: Estradiol 16 alpha-hydroxylation in the mouse correlates with mammary tumor incidence and presence of murine mammary tumor virus: A possible model for the hormonal etiology of breast cancer in humans. Proc Natl Acad Sci USA. 82:6295–6299. 1985. View Article : Google Scholar : PubMed/NCBI

36 

Kabat GC, Chang CJ, Sparano JA, Sepkovie DW, Hu XP, Khalil A, Rosenblatt R and Bradlow HL: Urinary estrogen metabolites and breast cancer: A case-control study. Cancer Epidemiol Biomarkers Prev. 6:505–509. 1997.PubMed/NCBI

37 

Meilahn EN, De Stavola B, Allen DS, Fentiman I, Bradlow HL, Sepkovic DW and Kuller LH: Do urinary oestrogen metabolites predict breast cancer? Guernsey III cohort follow-up. Br J Cancer. 78:1250–1255. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Lo R, Burgoon L, Macpherson L, Ahmed S and Matthews J: Estrogen receptor-dependent regulation of CYP2B6 in human breast cancer cells. Biochim Biophys Acta. 1799:469–479. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Fukasawa K, Kagaya S, Maruyama S, Kuroiwa S, Masuda K, Kameyama Y, Satoh Y, Akatsu Y, Tomura A, Nishikawa K, et al: A novel compound, NK150460, exhibits selective antitumor activity against breast cancer cell lines through activation of aryl hydrocarbon receptor. Mol Cancer Ther. 14:343–354. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Mcdaniel DO, Thurber T, Lewis-Traylor A, Berry C, Barber WH, Zhou X, Bigler S and Vance R: Differential association of cytochrome P450 3A4 genotypes with onsets of breast tumors in African American versus Caucasian patients. J Investig Med. 59:1096–1103. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Johnson N, Dudbridge F, Orr N, Gibson L, Jones ME, Schoemaker MJ, Folkerd EJ, Haynes BP, Hopper JL, Southey MC, et al: Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: A case-control study. Breast Cancer Res. 16:R512014. View Article : Google Scholar : PubMed/NCBI

42 

Johnson N, Walker K, Gibson LJ, Orr N, Folkerd E, Haynes B, Palles C, Coupland B, Schoemaker M, Jones M, et al: CYP3A variation, premenopausal estrone levels, and breast cancer risk. J Natl Cancer Inst. 104:657–669. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Mao C, Wang XW, He BF, Qiu LX, Liao RY, Luo RC and Chen Q: Lack of association between CYP17 MspA1 polymorphism and breast cancer risk: A meta-analysis of 22,090 cases and 28,498 controls. Breast Cancer Res Treat. 122:259–265. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Kuo SH, Yang SY, Lien HC, Lo C, Lin CH, Lu YS, Cheng AL, Chang KJ and Huang CS: CYP19 genetic polymorphism haplotype AASA is associated with a poor prognosis in premenopausal women with lymph node-negative, hormone receptor-positive breast cancer. Biomed Res Int. 2013:5621972013. View Article : Google Scholar : PubMed/NCBI

45 

Sergentanis TN and Economopoulos KP: Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: A meta-analysis. Breast Cancer Res Treat. 122:459–469. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Cardoso-Filho C, Sarian LO, de Oliveira CB, Da SBL, Lourenco GJ, Lima CS and Gurgel MS: Clinical effects of A4889G and T6235C polymorphisms in cytochrome P-450 CYP1A1 for breast cancer patients treated with tamoxifen: Implications for tumor aggressiveness and patient survival. Cancer Chemother Pharmacol. 72:529–535. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Bai X, Xie J, Sun S, Zhang X, Jiang Y and Pang D: The associations of genetic polymorphisms in CYP1A2 and CYP3A4 with clinical outcomes of breast cancer patients in northern China. Oncotarget. 8:38367–38377. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Raskin L, Lejbkowicz F, Barnett-Griness O, Dishon S, Almog R and Rennert G: BRCA1 breast cancer risk is modified by CYP19 polymorphisms in Ashkenazi Jews. Cancer Epidemiol Biomarkers Prev. 18:1617–1623. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Abraham JE, Harrington P, Driver KE, Tyrer J, Easton DF, Dunning AM and Pharoah PD: Common polymorphisms in the prostaglandin pathway genes and their association with breast cancer susceptibility and survival. Clin Cancer Res. 15:2181–2191. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Mavaddat N, Dunning AM, Ponder BA, Easton DF and Pharoah PD: Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomarkers Prev. 18:255–259. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Justenhoven C, Hamann U, Pierl CB, Baisch C, Harth V, Rabstein S, Spickenheuer A, Pesch B, Bruning T, Winter S, et al: CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat. 115:391–396. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Ruiter R, Bijl MJ, van Schaik RH, Berns EM, Hofman A, Coebergh JW, van Noord C, Visser LE and Stricker BH: CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics. 11:1367–1375. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Gan CQ, Wang XY, Cao YD, Ye WX, Liu H and Sun YY: Association of CYP2C19*3 gene polymorphism with breast cancer in Chinese women. Genet Mol Res. 10:3514–3519. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Yu T and Di G: Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res. 29:237–252. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Chen L, Joseph G, Zhang FF, Nguyen H, Jiang H, Gotlinger KH, Falck JR, Yang J, Schwartzman ML and Guo AM: 20-HETE contributes to ischemia-induced angiogenesis. Vascul Pharmacol. 83:57–65. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Garcia V, Joseph G, Shkolnik B, Ding Y, Zhang FF, Gotlinger K, Falck JR, Dakarapu R, Capdevila JH, Bernstein KE and Schwartzman ML: Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 309:R71–R78. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Seki T, Wang MH, Miyata N and Laniado-Schwartzman M: Cytochrome P450 4A isoform inhibitory profile of N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine (HET0016), a selective inhibitor of 20-HETE synthesis. Biol Pharm Bull. 28:1651–1654. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Garcia V, Shkolnik B, Milhau L, Falck JR and Schwartzman ML: 20-HETE activates the transcription of angiotensin-converting enzyme via nuclear Factor-κB translocation and promoter binding. J Pharmacol Exp Ther. 356:525–533. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Chen L, Ackerman R, Saleh M, Gotlinger KH, Kessler M, Mendelowitz LG, Falck JR, Arbab AS, Scicli AG, Schwartzman ML, et al: 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. J Pharmacol Exp Ther. 348:442–451. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Guo AM, Janic B, Sheng J, Falck JR, Roman RJ, Edwards PA, Arbab AS and Scicli AG: The cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid system: A regulator of endothelial precursor cells derived from human umbilical cord blood. J Pharmacol Exp Ther. 338:421–429. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Borin TF, Shankar A, Angara K, Rashid MH, Jain M, Iskander A, Ara R, Lebedyeva I, Korkaya H, Achyut BR and Arbab AS: HET0016 decreases lung metastasis from breast cancer in immune-competent mouse model. PLoS One. 12:e1788302017. View Article : Google Scholar : PubMed/NCBI

62 

Borin TF, Zuccari DA, Jardim-Perassi BV, Ferreira LC, Iskander AS, Varma NR, Shankar A, Guo AM, Scicli G and Arbab AS: HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice. PLoS One. 9:e1162472014. View Article : Google Scholar : PubMed/NCBI

63 

Shankar A, Borin TF, Iskander A, Varma NR, Achyut BR, Jain M, Mikkelsen T, Guo AM, Chwang WB, Ewing JR, et al: Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma. Onco Targets Ther. 9:1205–1219. 2016.PubMed/NCBI

64 

Jain M, Gamage NH, Alsulami M, Shankar A, Achyut BR, Angara K, Rashid MH, Iskander A, Borin TF, Wenbo Z, et al: Intravenous formulation of HET0016 decreased human glioblastoma growth and implicated survival benefit in rat xenograft models. Sci Rep. 7:418092017. View Article : Google Scholar : PubMed/NCBI

65 

Rieger MA, Ebner R, Bell DR, Kiessling A, Rohayem J, Schmitz M, Temme A, Rieber EP and Weigle B: Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Res. 64:2357–2364. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Yu W, Chai H, Li Y, Zhao H, Xie X, Zheng H, Wang C, Wang X, Yang G, Cai X, et al: Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer. Toxicol Appl Pharmacol. 264:73–83. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Wang B, Zheng L, Chou J, Li C, Zhang Y, Meng X and Xi T: CYP4Z1 3′UTR represses migration of human breast cancer cells. Biochem Biophys Res Commun. 478:900–907. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Zheng L, Li X, Meng X, Chou J, Hu J, Zhang F, Zhang Z, Xing Y, Liu Y and Xi T: Competing endogenous RNA networks of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen resistance in breast cancer. Mol Cell Endocrinol. 427:133–142. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Chen P and Bonaldo P: Role of macrophage polarization in tumor angiogenesis and vessel normalization: Implications for new anticancer therapies. Int Rev Cell Mol Biol. 301:1–35. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Tariq M, Zhang J, Liang G, Ding L, He Q and Yang B: Macrophage polarization: Anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem. 118:2484–2501. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Lao L, Fan S and Song E: Tumor associated macrophages as therapeutic targets for breast cancer. Adv Exp Med Biol. 1026:331–370. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Choi J, Gyamfi J, Jang H and Koo JS: The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol. 33:133–145. 2018.PubMed/NCBI

73 

Chen XW, Yu TJ, Zhang J, Li Y, Chen HL, Yang GF, Yu W, Liu YZ, Liu XX, Duan CF, et al: CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene. 36:5045–5057. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Jia X, Yu F, Wang J, Iwanowycz S, Saaoud F, Wang Y, Hu J, Wang Q and Fan D: Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat. 148:291–302. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Ding L, Liang G, Yao Z, Zhang J, Liu R, Chen H, Zhou Y, Wu H, Yang B and He Q: Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget. 6:36441–36455. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Lewis CE and Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66:605–612. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Hoopes SL, Garcia V, Edin ML, Schwartzman ML and Zeldin DC: Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat. 120:9–16. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Alexanian A and Sorokin A: Targeting 20-HETE producing enzymes in cancer-rationale, pharmacology, and clinical potential. Onco Targets Ther. 6:243–255. 2013.PubMed/NCBI

79 

Edson KZ and Rettie AE: CYP4 enzymes as potential drug targets: Focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid omega-hydroxylase activities. Curr Top Med Chem. 13:1429–1440. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Borin TF, Angara K, Rashid MH, Achyut BR and Arbab AS: Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int J Mol Sci. 18:26612017. View Article : Google Scholar : PubMed/NCBI

81 

Alexanian A, Miller B, Roman RJ and Sorokin A: 20-HETE-producing enzymes are up-regulated in human cancers. Cancer Genomics Proteomics. 9:163–169. 2012.PubMed/NCBI

82 

Zheng H, Li Y, Wang Y, Zhao H, Zhang J, Chai H, Tang T, Yue J, Guo AM and Yang J: Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol Appl Pharmacol. 280:10–20. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Bandala C, Floriano-Sanchez E, Cardenas-Rodriguez N, Lopez-Cruz J and Lara-Padilla E: RNA expression of cytochrome P450 in Mexican women with breast cancer. Asian Pac J Cancer Prev. 13:2647–2653. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Casos K, Siguero L, Fernandez-Figueras MT, Leon X, Sarda MP, Vila L and Camacho M: Tumor cells induce COX-2 and mPGES-1 expression in microvascular endothelial cells mainly by means of IL-1 receptor activation. Microvasc Res. 81:261–268. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Greene ER, Huang S, Serhan CN and Panigrahy D: Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 96:27–36. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, Ning YG, Xiao X, Zeldin DC and Wang DW: Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65:4707–4715. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Wei X, Zhang D, Dou X, Niu N, Huang W, Bai J and Zhang G: Elevated 14,15-epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. BMC Cancer. 14:8412014. View Article : Google Scholar : PubMed/NCBI

88 

Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, Luo X, Clarke D, Lamba J, Schuetz E, et al: CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem. 286:17543–17559. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Yang S, Lin L, Chen JX, Lee CR, Seubert JM, Wang Y, Wang H, Chao ZR, Tao DD, Gong JP, et al: Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am J Physiol Heart Circ Physiol. 293:H142–H151. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S, Zhou J, Xiao X, Zhang XA, Edin ML, et al: Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67:6665–6674. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Murray GI, Patimalla S, Stewart KN, Miller ID and Heys SD: Profiling the expression of cytochrome P450 in breast cancer. Histopathology. 57:202–211. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Haas S, Pierl C, Harth V, Pesch B, Rabstein S, Bruning T, Ko Y, Hamann U, Justenhoven C, Brauch H and Fischer HP: Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas. Int J Cancer. 119:1785–1791. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Gonzalez FJ: Role of cytochromes P450 in chemical toxicity and oxidative stress: Studies with CYP2E1. Mutat Res. 569:101–110. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Vaclavikova R, Hubackova M, Stribrna-Sarmanova J, Kodet R, Mrhalova M, Novotny J, Gut I and Soucek P: RNA expression of cytochrome P450 in breast cancer patients. Anticancer Res. 27:4443–4450. 2007.PubMed/NCBI

95 

Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M and Demonacos C: Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res. 15:R1072013. View Article : Google Scholar : PubMed/NCBI

96 

Cardenas-Rodriguez N, Lara-Padilla E, Bandala C, Lopez-Cruz J, Uscanga-Carmona C, Lucio-Monter PF and Floriano-Sanchez E: CYP2W1, CYP4F11 and CYP8A1 polymorphisms and interaction of CYP2W1 genotypes with risk factors in Mexican women with breast cancer. Asian Pac J Cancer Prev. 13:837–846. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Tan BS, Tiong KH, Muruhadas A, Randhawa N, Choo HL, Bradshaw TD, Stevens MF and Leong CO: CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol Cancer Ther. 10:1982–1992. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Moorthy B, Chu C and Carlin DJ: Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicol Sci. 145:5–15. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Goth-Goldstein R, Stampfer MR, Erdmann CA and Russell M: Interindividual variation in CYP1A1 expression in breast tissue and the role of genetic polymorphism. Carcinogenesis. 21:2119–2122. 2000. View Article : Google Scholar : PubMed/NCBI

100 

Nilsson R, Antic R, Berni A, Dallner G, Dettbarn G, Gromadzinska J, Joksic G, Lundin C, Palitti F, Prochazka G, et al: Exposure to polycyclic aromatic hydrocarbons in women from Poland, Serbia and Italy-relation between PAH metabolite excretion, DNA damage, diet and genotype (the EU DIEPHY project). Biomarkers. 18:165–173. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Al-Dhfyan A, Alhoshani A and Korashy HM: Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and beta-Catenin and Akt activation. Mol Cancer. 16:142017. View Article : Google Scholar : PubMed/NCBI

102 

Hsu MH, Baer BR, Rettie AE and Johnson EF: The crystal structure of cytochrome P450 4B1 (CYP4B1) monooxygenase complexed with octane discloses several structural adaptations for omega-Hydroxylation. J Biol Chem. 292:5610–5621. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Mcfadyen MC, Mcleod HL, Jackson FC, Melvin WT, Doehmer J and Murray GI: Cytochrome P450 CYP1B1 protein expression: A novel mechanism of anticancer drug resistance. Biochem Pharmacol. 62:207–212. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Marsh S, Somlo G, Li X, Frankel P, King CR, Shannon WD, Mcleod HL and Synold TW: Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J. 7:362–365. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Bray J, Sludden J, Griffin MJ, Cole M, Verrill M, Jamieson D and Boddy AV: Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer. 102:1003–1009. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Seredina TA, Goreva OB, Talaban VO, Grishanova AY and Lyakhovich VV: Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients. BMC Med Genet. 13:452012. View Article : Google Scholar : PubMed/NCBI

107 

Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, Simon W, Eichelbaum M and Brauch H: Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 25:5187–5193. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Daraei B, Aghvami M, Pourahmad J and Dinarvand R: A comparison of hepatocyte cytotoxic mechanisms for docetaxel and PLGA-docetaxel Nanoparticls. Iran J Pharm Res. 16:249–265. 2017.PubMed/NCBI

109 

Jenkins P, Scaife J and Freeman S: Validation of a predictive model that identifies patients at high risk of developing febrile neutropaenia following chemotherapy for breast cancer. Ann Oncol. 23:1766–1771. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Hlavac V, Brynychova V, Vaclavikova R, Ehrlichova M, Vrana D, Pecha V, Trnkova M, Kodet R, Mrhalova M, Kubackova K, et al: The role of cytochromes p450 and aldo-keto reductases in prognosis of breast carcinoma patients. Medicine (Baltimore). 93:e2552014. View Article : Google Scholar : PubMed/NCBI

111 

Nakajima M, Komagata S, Fujiki Y, Kanada Y, Ebi H, Itoh K, Mukai H, Yokoi T and Minami H: Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics. 17:431–445. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Luo B, Yan D, Yan H and Yuan J: Cytochrome P450: Implications for human breast cancer (Review). Oncol Lett 22: 548, 2021.
APA
Luo, B., Yan, D., Yan, H., & Yuan, J. (2021). Cytochrome P450: Implications for human breast cancer (Review). Oncology Letters, 22, 548. https://doi.org/10.3892/ol.2021.12809
MLA
Luo, B., Yan, D., Yan, H., Yuan, J."Cytochrome P450: Implications for human breast cancer (Review)". Oncology Letters 22.1 (2021): 548.
Chicago
Luo, B., Yan, D., Yan, H., Yuan, J."Cytochrome P450: Implications for human breast cancer (Review)". Oncology Letters 22, no. 1 (2021): 548. https://doi.org/10.3892/ol.2021.12809
Copy and paste a formatted citation
x
Spandidos Publications style
Luo B, Yan D, Yan H and Yuan J: Cytochrome P450: Implications for human breast cancer (Review). Oncol Lett 22: 548, 2021.
APA
Luo, B., Yan, D., Yan, H., & Yuan, J. (2021). Cytochrome P450: Implications for human breast cancer (Review). Oncology Letters, 22, 548. https://doi.org/10.3892/ol.2021.12809
MLA
Luo, B., Yan, D., Yan, H., Yuan, J."Cytochrome P450: Implications for human breast cancer (Review)". Oncology Letters 22.1 (2021): 548.
Chicago
Luo, B., Yan, D., Yan, H., Yuan, J."Cytochrome P450: Implications for human breast cancer (Review)". Oncology Letters 22, no. 1 (2021): 548. https://doi.org/10.3892/ol.2021.12809
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team