|
1
|
Lakhani SR, Ellis IO, Schnitt SJ, Pan PH
and van de Vijver MJ: WHO Classifcation of Tumours of the Breast.
WHO Classifcation of Tumours. 4th edition. 4. IARC Press; Lyon: pp.
82–134. 2012
|
|
2
|
Desantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding SA, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dumitrescu RG and Cotarla I: Understanding
breast cancer risk-where do we stand in 2005? J Cell Mol Med.
9:208–221. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gonzalez FJ and Gelboin HV: Role of human
cytochromes P450 in the metabolic activation of chemical
carcinogens and toxins. Drug Metab Rev. 26:165–183. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ding X and Kaminsky LS: Human extrahepatic
cytochromes P450: Function in xenobiotic metabolism and
tissue-selective chemical toxicity in the respiratory and
gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 43:149–173.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Murray GI: The role of cytochrome P450 in
tumour development and progression and its potential in therapy. J
Pathol. 192:419–426. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gajjar K, Martin-Hirsch PL and Martin FL:
CYP1B1 and hormone-induced cancer. Cancer Lett. 324:13–30. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nebert DW and Russell DW: Clinical
importance of the cytochromes P450. Lancet. 360:1155–1162. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Luthra A, Denisov IG and Sligar SG:
Spectroscopic features of cytochrome P450 reaction intermediates.
Arch Biochem Biophys. 507:26–35. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nelson DR: Cytochrome P450 nomenclature,
2004. Methods Mol Biol. 320:1–10. 2006.PubMed/NCBI
|
|
11
|
Pelkonen O, Turpeinen M, Hakkola J,
Honkakoski P, Hukkanen J and Raunio H: Inhibition and induction of
human cytochrome P450 enzymes: Current status. Arch Toxicol.
82:667–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nelson DR, Zeldin DC, Hoffman SM, Maltais
LJ, Wain HM and Nebert DW: Comparison of cytochrome P450 (CYP)
genes from the mouse and human genomes, including nomenclature
recommendations for genes, pseudogenes and alternative-splice
variants. Pharmacogenetics. 14:1–18. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Thelen K and Dressman JB: Cytochrome
P450-mediated metabolism in the human gut wall. J Pharm Pharmacol.
61:541–558. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Renaud HJ, Cui JY, Khan M and Klaassen CD:
Tissue distribution and gender-divergent expression of 78
cytochrome P450 mRNAs in mice. Toxicol Sci. 124:261–277. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Guengerich FP: Mechanisms of cytochrome
P450 substrate oxidation: MiniReview. J Biochem Mol Toxicol.
21:163–168. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Furge LL and Guengerich FP: Cytochrome
P450 enzymes in drug metabolism and chemical toxicology: An
introduction. Biochem Mol Biol Educ. 34:66–74. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Guengerich FP: Cytochrome p450 and
chemical toxicology. Chem Res Toxicol. 21:70–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bozina N, Bradamante V and Lovric M:
Genetic polymorphism of metabolic enzymes P450 (CYP) as a
susceptibility factor for drug response, toxicity, and cancer risk.
Arh Hig Rada Toksikol. 60:217–242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Missmer SA, Eliassen AH, Barbieri RL and
Hankinson SE: Endogenous estrogen, androgen, and progesterone
concentrations and breast cancer risk among postmenopausal women. J
Natl Cancer Inst. 96:1856–1865. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chan MF, Dowsett M, Folkerd E, Bingham S,
Wareham N, Luben R, Welch A and Khaw KT: Usual physical activity
and endogenous sex hormones in postmenopausal women: The European
prospective investigation into cancer-norfolk population study.
Cancer Epidemiol Biomarkers Prev. 16:900–905. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Baglietto L, Severi G, English DR,
Krishnan K, Hopper JL, Mclean C, Morris HA, Tilley WD and Giles GG:
Circulating steroid hormone levels and risk of breast cancer for
postmenopausal women. Cancer Epidemiol Biomarkers Prev. 19:492–502.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rod NH, Hansen AM, Nielsen J, Schnohr P
and Gronbaek M: Low-risk factor profile, estrogen levels, and
breast cancer risk among postmenopausal women. Int J Cancer.
124:1935–1940. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pearce ST and Jordan VC: The biological
role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol
Hematol. 50:3–22. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen GG, Zeng Q and Tse GM: Estrogen and
its receptors in cancer. Med Res Rev. 28:954–974. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Guillette TC, Jackson TW and Belcher SM:
Duality of estrogen receptor β action in cancer progression. Curr
Opin Pharmacol. 41:66–73. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Frech MS, Torre KM, Robinson GW and Furth
PA: Loss of cyclin D1 in concert with deregulated estrogen receptor
alpha expression induces DNA damage response activation and
interrupts mammary gland morphogenesis. Oncogene. 27:3186–3193.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Giuliano M, Trivedi MV and Schiff R:
Bidirectional Crosstalk between the estrogen receptor and human
epidermal growth factor receptor 2 signaling pathways in breast
cancer: Molecular basis and clinical implications. Breast Care
(Basel). 8:256–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Levin ER: Bidirectional signaling between
the estrogen receptor and the epidermal growth factor receptor. Mol
Endocrinol. 17:309–317. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sangrajrang S, Sato Y, Sakamoto H, Ohnami
S, Laird NM, Khuhaprema T, Brennan P, Boffetta P and Yoshida T:
Genetic polymorphisms of estrogen metabolizing enzyme and breast
cancer risk in Thai women. Int J Cancer. 125:837–843. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Samavat H and Kurzer MS: Estrogen
metabolism and breast cancer. Cancer Lett. 356:231–243. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liehr JG: 4-hydroxylation of oestrogens as
a marker for mammary tumours. Biochem Soc Trans. 27:318–323. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liehr JG, Ulubelen AA and Strobel HW:
Cytochrome P-450-mediated redox cycling of estrogens. J Biol Chem.
261:16865–16870. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yager JD and Liehr JG: Molecular
mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol.
36:203–232. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cavalieri EL, Stack DE, Devanesan PD,
Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD,
Gross ML, Gooden JK, et al: Molecular origin of cancer: Catechol
estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl
Acad Sci USA. 94:10937–10942. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bradlow HL, Hershcopf RJ, Martucci CP and
Fishman J: Estradiol 16 alpha-hydroxylation in the mouse correlates
with mammary tumor incidence and presence of murine mammary tumor
virus: A possible model for the hormonal etiology of breast cancer
in humans. Proc Natl Acad Sci USA. 82:6295–6299. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kabat GC, Chang CJ, Sparano JA, Sepkovie
DW, Hu XP, Khalil A, Rosenblatt R and Bradlow HL: Urinary estrogen
metabolites and breast cancer: A case-control study. Cancer
Epidemiol Biomarkers Prev. 6:505–509. 1997.PubMed/NCBI
|
|
37
|
Meilahn EN, De Stavola B, Allen DS,
Fentiman I, Bradlow HL, Sepkovic DW and Kuller LH: Do urinary
oestrogen metabolites predict breast cancer? Guernsey III cohort
follow-up. Br J Cancer. 78:1250–1255. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lo R, Burgoon L, Macpherson L, Ahmed S and
Matthews J: Estrogen receptor-dependent regulation of CYP2B6 in
human breast cancer cells. Biochim Biophys Acta. 1799:469–479.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fukasawa K, Kagaya S, Maruyama S, Kuroiwa
S, Masuda K, Kameyama Y, Satoh Y, Akatsu Y, Tomura A, Nishikawa K,
et al: A novel compound, NK150460, exhibits selective antitumor
activity against breast cancer cell lines through activation of
aryl hydrocarbon receptor. Mol Cancer Ther. 14:343–354. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mcdaniel DO, Thurber T, Lewis-Traylor A,
Berry C, Barber WH, Zhou X, Bigler S and Vance R: Differential
association of cytochrome P450 3A4 genotypes with onsets of breast
tumors in African American versus Caucasian patients. J Investig
Med. 59:1096–1103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Johnson N, Dudbridge F, Orr N, Gibson L,
Jones ME, Schoemaker MJ, Folkerd EJ, Haynes BP, Hopper JL, Southey
MC, et al: Genetic variation at CYP3A is associated with age at
menarche and breast cancer risk: A case-control study. Breast
Cancer Res. 16:R512014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Johnson N, Walker K, Gibson LJ, Orr N,
Folkerd E, Haynes B, Palles C, Coupland B, Schoemaker M, Jones M,
et al: CYP3A variation, premenopausal estrone levels, and breast
cancer risk. J Natl Cancer Inst. 104:657–669. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mao C, Wang XW, He BF, Qiu LX, Liao RY,
Luo RC and Chen Q: Lack of association between CYP17 MspA1
polymorphism and breast cancer risk: A meta-analysis of 22,090
cases and 28,498 controls. Breast Cancer Res Treat. 122:259–265.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kuo SH, Yang SY, Lien HC, Lo C, Lin CH, Lu
YS, Cheng AL, Chang KJ and Huang CS: CYP19 genetic polymorphism
haplotype AASA is associated with a poor prognosis in premenopausal
women with lymph node-negative, hormone receptor-positive breast
cancer. Biomed Res Int. 2013:5621972013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sergentanis TN and Economopoulos KP: Four
polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast
cancer risk: A meta-analysis. Breast Cancer Res Treat. 122:459–469.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cardoso-Filho C, Sarian LO, de Oliveira
CB, Da SBL, Lourenco GJ, Lima CS and Gurgel MS: Clinical effects of
A4889G and T6235C polymorphisms in cytochrome P-450 CYP1A1 for
breast cancer patients treated with tamoxifen: Implications for
tumor aggressiveness and patient survival. Cancer Chemother
Pharmacol. 72:529–535. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bai X, Xie J, Sun S, Zhang X, Jiang Y and
Pang D: The associations of genetic polymorphisms in CYP1A2 and
CYP3A4 with clinical outcomes of breast cancer patients in northern
China. Oncotarget. 8:38367–38377. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Raskin L, Lejbkowicz F, Barnett-Griness O,
Dishon S, Almog R and Rennert G: BRCA1 breast cancer risk is
modified by CYP19 polymorphisms in Ashkenazi Jews. Cancer Epidemiol
Biomarkers Prev. 18:1617–1623. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Abraham JE, Harrington P, Driver KE, Tyrer
J, Easton DF, Dunning AM and Pharoah PD: Common polymorphisms in
the prostaglandin pathway genes and their association with breast
cancer susceptibility and survival. Clin Cancer Res. 15:2181–2191.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mavaddat N, Dunning AM, Ponder BA, Easton
DF and Pharoah PD: Common genetic variation in candidate genes and
susceptibility to subtypes of breast cancer. Cancer Epidemiol
Biomarkers Prev. 18:255–259. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Justenhoven C, Hamann U, Pierl CB, Baisch
C, Harth V, Rabstein S, Spickenheuer A, Pesch B, Bruning T, Winter
S, et al: CYP2C19*17 is associated with decreased breast cancer
risk. Breast Cancer Res Treat. 115:391–396. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ruiter R, Bijl MJ, van Schaik RH, Berns
EM, Hofman A, Coebergh JW, van Noord C, Visser LE and Stricker BH:
CYP2C19*2 polymorphism is associated with increased survival in
breast cancer patients using tamoxifen. Pharmacogenomics.
11:1367–1375. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gan CQ, Wang XY, Cao YD, Ye WX, Liu H and
Sun YY: Association of CYP2C19*3 gene polymorphism with breast
cancer in Chinese women. Genet Mol Res. 10:3514–3519. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yu T and Di G: Role of tumor
microenvironment in triple-negative breast cancer and its
prognostic significance. Chin J Cancer Res. 29:237–252. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen L, Joseph G, Zhang FF, Nguyen H,
Jiang H, Gotlinger KH, Falck JR, Yang J, Schwartzman ML and Guo AM:
20-HETE contributes to ischemia-induced angiogenesis. Vascul
Pharmacol. 83:57–65. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Garcia V, Joseph G, Shkolnik B, Ding Y,
Zhang FF, Gotlinger K, Falck JR, Dakarapu R, Capdevila JH,
Bernstein KE and Schwartzman ML: Angiotensin II receptor blockade
or deletion of vascular endothelial ACE does not prevent vascular
dysfunction and remodeling in 20-HETE-dependent hypertension. Am J
Physiol Regul Integr Comp Physiol. 309:R71–R78. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Seki T, Wang MH, Miyata N and
Laniado-Schwartzman M: Cytochrome P450 4A isoform inhibitory
profile of N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine
(HET0016), a selective inhibitor of 20-HETE synthesis. Biol Pharm
Bull. 28:1651–1654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Garcia V, Shkolnik B, Milhau L, Falck JR
and Schwartzman ML: 20-HETE activates the transcription of
angiotensin-converting enzyme via nuclear Factor-κB translocation
and promoter binding. J Pharmacol Exp Ther. 356:525–533. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen L, Ackerman R, Saleh M, Gotlinger KH,
Kessler M, Mendelowitz LG, Falck JR, Arbab AS, Scicli AG,
Schwartzman ML, et al: 20-HETE regulates the angiogenic functions
of human endothelial progenitor cells and contributes to
angiogenesis in vivo. J Pharmacol Exp Ther. 348:442–451. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guo AM, Janic B, Sheng J, Falck JR, Roman
RJ, Edwards PA, Arbab AS and Scicli AG: The cytochrome P450
4A/F-20-hydroxyeicosatetraenoic acid system: A regulator of
endothelial precursor cells derived from human umbilical cord
blood. J Pharmacol Exp Ther. 338:421–429. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Borin TF, Shankar A, Angara K, Rashid MH,
Jain M, Iskander A, Ara R, Lebedyeva I, Korkaya H, Achyut BR and
Arbab AS: HET0016 decreases lung metastasis from breast cancer in
immune-competent mouse model. PLoS One. 12:e1788302017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Borin TF, Zuccari DA, Jardim-Perassi BV,
Ferreira LC, Iskander AS, Varma NR, Shankar A, Guo AM, Scicli G and
Arbab AS: HET0016, a selective inhibitor of 20-HETE synthesis,
decreases pro-angiogenic factors and inhibits growth of triple
negative breast cancer in mice. PLoS One. 9:e1162472014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shankar A, Borin TF, Iskander A, Varma NR,
Achyut BR, Jain M, Mikkelsen T, Guo AM, Chwang WB, Ewing JR, et al:
Combination of vatalanib and a 20-HETE synthesis inhibitor results
in decreased tumor growth in an animal model of human glioma. Onco
Targets Ther. 9:1205–1219. 2016.PubMed/NCBI
|
|
64
|
Jain M, Gamage NH, Alsulami M, Shankar A,
Achyut BR, Angara K, Rashid MH, Iskander A, Borin TF, Wenbo Z, et
al: Intravenous formulation of HET0016 decreased human glioblastoma
growth and implicated survival benefit in rat xenograft models. Sci
Rep. 7:418092017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rieger MA, Ebner R, Bell DR, Kiessling A,
Rohayem J, Schmitz M, Temme A, Rieber EP and Weigle B:
Identification of a novel mammary-restricted cytochrome P450,
CYP4Z1, with overexpression in breast carcinoma. Cancer Res.
64:2357–2364. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yu W, Chai H, Li Y, Zhao H, Xie X, Zheng
H, Wang C, Wang X, Yang G, Cai X, et al: Increased expression of
CYP4Z1 promotes tumor angiogenesis and growth in human breast
cancer. Toxicol Appl Pharmacol. 264:73–83. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang B, Zheng L, Chou J, Li C, Zhang Y,
Meng X and Xi T: CYP4Z1 3′UTR represses migration of human breast
cancer cells. Biochem Biophys Res Commun. 478:900–907. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zheng L, Li X, Meng X, Chou J, Hu J, Zhang
F, Zhang Z, Xing Y, Liu Y and Xi T: Competing endogenous RNA
networks of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen
resistance in breast cancer. Mol Cell Endocrinol. 427:133–142.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen P and Bonaldo P: Role of macrophage
polarization in tumor angiogenesis and vessel normalization:
Implications for new anticancer therapies. Int Rev Cell Mol Biol.
301:1–35. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tariq M, Zhang J, Liang G, Ding L, He Q
and Yang B: Macrophage polarization: Anti-cancer strategies to
target tumor-associated macrophage in breast cancer. J Cell
Biochem. 118:2484–2501. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lao L, Fan S and Song E: Tumor associated
macrophages as therapeutic targets for breast cancer. Adv Exp Med
Biol. 1026:331–370. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Choi J, Gyamfi J, Jang H and Koo JS: The
role of tumor-associated macrophage in breast cancer biology.
Histol Histopathol. 33:133–145. 2018.PubMed/NCBI
|
|
73
|
Chen XW, Yu TJ, Zhang J, Li Y, Chen HL,
Yang GF, Yu W, Liu YZ, Liu XX, Duan CF, et al: CYP4A in
tumor-associated macrophages promotes pre-metastatic niche
formation and metastasis. Oncogene. 36:5045–5057. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jia X, Yu F, Wang J, Iwanowycz S, Saaoud
F, Wang Y, Hu J, Wang Q and Fan D: Emodin suppresses pulmonary
metastasis of breast cancer accompanied with decreased macrophage
recruitment and M2 polarization in the lungs. Breast Cancer Res
Treat. 148:291–302. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ding L, Liang G, Yao Z, Zhang J, Liu R,
Chen H, Zhou Y, Wu H, Yang B and He Q: Metformin prevents cancer
metastasis by inhibiting M2-like polarization of tumor associated
macrophages. Oncotarget. 6:36441–36455. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lewis CE and Pollard JW: Distinct role of
macrophages in different tumor microenvironments. Cancer Res.
66:605–612. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hoopes SL, Garcia V, Edin ML, Schwartzman
ML and Zeldin DC: Vascular actions of 20-HETE. Prostaglandins Other
Lipid Mediat. 120:9–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Alexanian A and Sorokin A: Targeting
20-HETE producing enzymes in cancer-rationale, pharmacology, and
clinical potential. Onco Targets Ther. 6:243–255. 2013.PubMed/NCBI
|
|
79
|
Edson KZ and Rettie AE: CYP4 enzymes as
potential drug targets: Focus on enzyme multiplicity, inducers and
inhibitors, and therapeutic modulation of
20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid
omega-hydroxylase activities. Curr Top Med Chem. 13:1429–1440.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Borin TF, Angara K, Rashid MH, Achyut BR
and Arbab AS: Arachidonic acid metabolite as a novel therapeutic
target in breast cancer metastasis. Int J Mol Sci. 18:26612017.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Alexanian A, Miller B, Roman RJ and
Sorokin A: 20-HETE-producing enzymes are up-regulated in human
cancers. Cancer Genomics Proteomics. 9:163–169. 2012.PubMed/NCBI
|
|
82
|
Zheng H, Li Y, Wang Y, Zhao H, Zhang J,
Chai H, Tang T, Yue J, Guo AM and Yang J: Downregulation of COX-2
and CYP 4A signaling by isoliquiritigenin inhibits human breast
cancer metastasis through preventing anoikis resistance, migration
and invasion. Toxicol Appl Pharmacol. 280:10–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bandala C, Floriano-Sanchez E,
Cardenas-Rodriguez N, Lopez-Cruz J and Lara-Padilla E: RNA
expression of cytochrome P450 in Mexican women with breast cancer.
Asian Pac J Cancer Prev. 13:2647–2653. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Casos K, Siguero L, Fernandez-Figueras MT,
Leon X, Sarda MP, Vila L and Camacho M: Tumor cells induce COX-2
and mPGES-1 expression in microvascular endothelial cells mainly by
means of IL-1 receptor activation. Microvasc Res. 81:261–268. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Greene ER, Huang S, Serhan CN and
Panigrahy D: Regulation of inflammation in cancer by eicosanoids.
Prostaglandins Other Lipid Mediat. 96:27–36. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jiang JG, Chen CL, Card JW, Yang S, Chen
JX, Fu XN, Ning YG, Xiao X, Zeldin DC and Wang DW: Cytochrome P450
2J2 promotes the neoplastic phenotype of carcinoma cells and is
up-regulated in human tumors. Cancer Res. 65:4707–4715. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wei X, Zhang D, Dou X, Niu N, Huang W, Bai
J and Zhang G: Elevated 14,15-epoxyeicosatrienoic acid by
increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of
soluble epoxide hydrolase associated with aggressiveness of human
breast cancer. BMC Cancer. 14:8412014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mitra R, Guo Z, Milani M, Mesaros C,
Rodriguez M, Nguyen J, Luo X, Clarke D, Lamba J, Schuetz E, et al:
CYP3A4 mediates growth of estrogen receptor-positive breast cancer
cells in part by inducing nuclear translocation of phospho-Stat3
through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J
Biol Chem. 286:17543–17559. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yang S, Lin L, Chen JX, Lee CR, Seubert
JM, Wang Y, Wang H, Chao ZR, Tao DD, Gong JP, et al: Cytochrome
P-450 epoxygenases protect endothelial cells from apoptosis induced
by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling
pathways. Am J Physiol Heart Circ Physiol. 293:H142–H151. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ,
Yang S, Zhou J, Xiao X, Zhang XA, Edin ML, et al: Cytochrome p450
epoxygenase promotes human cancer metastasis. Cancer Res.
67:6665–6674. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Murray GI, Patimalla S, Stewart KN, Miller
ID and Heys SD: Profiling the expression of cytochrome P450 in
breast cancer. Histopathology. 57:202–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Haas S, Pierl C, Harth V, Pesch B,
Rabstein S, Bruning T, Ko Y, Hamann U, Justenhoven C, Brauch H and
Fischer HP: Expression of xenobiotic and steroid hormone
metabolizing enzymes in human breast carcinomas. Int J Cancer.
119:1785–1791. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gonzalez FJ: Role of cytochromes P450 in
chemical toxicity and oxidative stress: Studies with CYP2E1. Mutat
Res. 569:101–110. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vaclavikova R, Hubackova M,
Stribrna-Sarmanova J, Kodet R, Mrhalova M, Novotny J, Gut I and
Soucek P: RNA expression of cytochrome P450 in breast cancer
patients. Anticancer Res. 27:4443–4450. 2007.PubMed/NCBI
|
|
95
|
Leung T, Rajendran R, Singh S, Garva R,
Krstic-Demonacos M and Demonacos C: Cytochrome P450 2E1 (CYP2E1)
regulates the response to oxidative stress and migration of breast
cancer cells. Breast Cancer Res. 15:R1072013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cardenas-Rodriguez N, Lara-Padilla E,
Bandala C, Lopez-Cruz J, Uscanga-Carmona C, Lucio-Monter PF and
Floriano-Sanchez E: CYP2W1, CYP4F11 and CYP8A1 polymorphisms and
interaction of CYP2W1 genotypes with risk factors in Mexican women
with breast cancer. Asian Pac J Cancer Prev. 13:837–846. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Tan BS, Tiong KH, Muruhadas A, Randhawa N,
Choo HL, Bradshaw TD, Stevens MF and Leong CO: CYP2S1 and CYP2W1
mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC
721648) sensitivity in breast and colorectal cancer cells. Mol
Cancer Ther. 10:1982–1992. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Moorthy B, Chu C and Carlin DJ: Polycyclic
aromatic hydrocarbons: From metabolism to lung cancer. Toxicol Sci.
145:5–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Goth-Goldstein R, Stampfer MR, Erdmann CA
and Russell M: Interindividual variation in CYP1A1 expression in
breast tissue and the role of genetic polymorphism. Carcinogenesis.
21:2119–2122. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Nilsson R, Antic R, Berni A, Dallner G,
Dettbarn G, Gromadzinska J, Joksic G, Lundin C, Palitti F,
Prochazka G, et al: Exposure to polycyclic aromatic hydrocarbons in
women from Poland, Serbia and Italy-relation between PAH metabolite
excretion, DNA damage, diet and genotype (the EU DIEPHY project).
Biomarkers. 18:165–173. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Al-Dhfyan A, Alhoshani A and Korashy HM:
Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates
breast cancer stem cells expansion through PTEN inhibition and
beta-Catenin and Akt activation. Mol Cancer. 16:142017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hsu MH, Baer BR, Rettie AE and Johnson EF:
The crystal structure of cytochrome P450 4B1 (CYP4B1) monooxygenase
complexed with octane discloses several structural adaptations for
omega-Hydroxylation. J Biol Chem. 292:5610–5621. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mcfadyen MC, Mcleod HL, Jackson FC, Melvin
WT, Doehmer J and Murray GI: Cytochrome P450 CYP1B1 protein
expression: A novel mechanism of anticancer drug resistance.
Biochem Pharmacol. 62:207–212. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Marsh S, Somlo G, Li X, Frankel P, King
CR, Shannon WD, Mcleod HL and Synold TW: Pharmacogenetic analysis
of paclitaxel transport and metabolism genes in breast cancer.
Pharmacogenomics J. 7:362–365. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bray J, Sludden J, Griffin MJ, Cole M,
Verrill M, Jamieson D and Boddy AV: Influence of pharmacogenetics
on response and toxicity in breast cancer patients treated with
doxorubicin and cyclophosphamide. Br J Cancer. 102:1003–1009. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Seredina TA, Goreva OB, Talaban VO,
Grishanova AY and Lyakhovich VV: Association of cytochrome P450
genetic polymorphisms with neoadjuvant chemotherapy efficacy in
breast cancer patients. BMC Med Genet. 13:452012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Schroth W, Antoniadou L, Fritz P, Schwab
M, Muerdter T, Zanger UM, Simon W, Eichelbaum M and Brauch H:
Breast cancer treatment outcome with adjuvant tamoxifen relative to
patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 25:5187–5193.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Daraei B, Aghvami M, Pourahmad J and
Dinarvand R: A comparison of hepatocyte cytotoxic mechanisms for
docetaxel and PLGA-docetaxel Nanoparticls. Iran J Pharm Res.
16:249–265. 2017.PubMed/NCBI
|
|
109
|
Jenkins P, Scaife J and Freeman S:
Validation of a predictive model that identifies patients at high
risk of developing febrile neutropaenia following chemotherapy for
breast cancer. Ann Oncol. 23:1766–1771. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hlavac V, Brynychova V, Vaclavikova R,
Ehrlichova M, Vrana D, Pecha V, Trnkova M, Kodet R, Mrhalova M,
Kubackova K, et al: The role of cytochromes p450 and aldo-keto
reductases in prognosis of breast carcinoma patients. Medicine
(Baltimore). 93:e2552014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Nakajima M, Komagata S, Fujiki Y, Kanada
Y, Ebi H, Itoh K, Mukai H, Yokoi T and Minami H: Genetic
polymorphisms of CYP2B6 affect the
pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese
cancer patients. Pharmacogenet Genomics. 17:431–445. 2007.
View Article : Google Scholar : PubMed/NCBI
|