|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lloyd RV, Osamura RY, Klöppel G and Rosai
J: WHO Classification of Tumours of Endocrine Organs. IARC; Lyon:
2017
|
|
3
|
Luster M, Aktolun C, Amendoeira I,
Barczyński M, Bible KC, Duntas LH, Elisei R, Handkiewicz-Junak D,
Hoffmann M, Jarząb B, et al: European Perspective on 2015 American
Thyroid Association Management Guidelines for adult patients with
thyroid nodules and differentiated thyroid cancer: Proceedings of
an Interactive International Symposium. Thyroid. 29:7–26. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Smallridge RC, Ain KB, Asa SL, Bible KC,
Brierley JD, Burman KD, Kebebew E, Lee NY, Nikiforov YE, Rosenthal
MS, et al: American Thyroid Association guidelines for management
of patients with anaplastic thyroid cancer. Thyroid. 22:1104–1139.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Haddad RI, Nasr C, Bischoff L, Busaidy NL,
Byrd D, Callender G, Dickson P, Duh QY, Ehya H, Goldner W, et al:
NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. J Natl
Compr Canc Netw. 16:1429–1440. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
De Leo S, Trevisan M and Fugazzola L:
Recent advances in the management of anaplastic thyroid cancer.
Thyroid Res. 13:172020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Volante M, Collini P, Nikiforov YE,
Sakamoto A, Kakudo K, Katoh R, Lloyd RV, LiVolsi VA, Papotti M,
Sobrinho-Simoes M, et al: Poorly differentiated thyroid carcinoma:
The Turin proposal for the use of uniform diagnostic criteria and
an algorithmic diagnostic approach. Am J Surg Pathol. 31:1256–1264.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xu B and Ghossein R: Poorly differentiated
thyroid carcinoma. Semin Diagn Pathol. 37:243–247. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Akaishi J, Kondo T, Sugino K, Ogimi Y,
Masaki C, Hames KY, Yabuta T, Tomoda C, Suzuki A, Matsuzu K, et al:
Prognostic impact of the Turin criteria in poorly differentiated
thyroid carcinoma. World J Surg. 43:2235–2244. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Walczyk A, Kopczyński J, Gąsior-Perczak D,
Pałyga I, Kowalik A, Chrapek M, Hejnold M, Góźdź S and Kowalska A:
Histopathology and immunohistochemistry as prognostic factors for
poorly differentiated thyroid cancer in a series of Polish
patients. PLoS One. 15:e02292642020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dettmer M, Schmitt A, Steinert H,
Haldemann A, Meili A, Moch H, Komminoth P and Perren A: Poorly
differentiated thyroid carcinomas: How much poorly differentiated
is needed? Am J Surg Pathol. 35:1866–1872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dettmer M, Schmitt A, Steinert H, Moch H,
Komminoth P and Perren A: Poorly differentiated oncocytic thyroid
carcinoma-diagnostic implications and outcome. Histopathology.
60:1045–1051. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bai S, Baloch ZW, Samulski TD, Montone KT
and LiVolsi VA: Poorly differentiated oncocytic (Hürthle cell)
follicular carcinoma: An institutional experience. Endocr Pathol.
26:164–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang JR, Zafereo ME, Dadu R, Ferrarotto R,
Busaidy NL, Lu C, Ahmed S, Gule-Monroe MK, Williams MD, Sturgis EM,
et al: Complete Surgical resection following neoadjuvant dabrafenib
plus trametinib in BRAF600E-mutated anaplastic thyroid
carcinoma. Thyroid. 29:1036–1043. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Takahashi S, Tahara M, Ito K, Tori M,
Kiyota N, Yoshida K, Sakata Y and Yoshida A: Safety and
effectiveness of lenvatinib in 594 patients with unresectable
thyroid cancer in an all-case post-marketing observational study in
Japan. Adv Ther. 37:3850–3862. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hanna GJ, Busaidy NL, Chau NG, Wirth LJ,
Barletta JA, Calles A, Haddad RI, Kraft S, Cabanillas ME,
Rabinowits G, et al: Genomic correlates of response to everolimus
in aggressive radioiodine-refractory thyroid cancer: A phase II
study. Clin Cancer Res. 24:1546–1553. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Harris EJ, Hanna GJ, Chau N, Rabinowits G,
Haddad R, Margalit DN, Schoenfeld J, Tishler RB, Barletta JA, Nehs
M, et al: Everolimus in anaplastic thyroid cancer: A case series.
Front Oncol. 9:1062019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ha HT, Lee JS, Urba S, Koenig RJ, Sisson
J, Giordano T and Worden FP: A phase II study of imatinib in
patients with advanced anaplastic thyroid cancer. Thyroid.
20:975–980. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Capdevila J, Wirth LJ, Ernst T, Ponce Aix
S, Lin CC, Ramlau R, Butler MO, Delord JP, Gelderblom H, Ascierto
PA, et al: PD-1 Blockade in Anaplastic Thyroid Carcinoma. J Clin
Oncol. 38:2620–2627. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guan J, Lim KS, Mekhail T and Chang CC:
Programmed death ligand-1 (PD-L1) expression in the programmed
death receptor-1 (PD-1)/PD-L1 blockade: A key player against
various cancers. Arch Pathol Lab Med. 141:851–861. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
You W, Shang B, Sun J, Liu X, Su L and
Jiang S: Mechanistic insight of predictive biomarkers for antitumor
PD-1/PD-L1 blockade: A paradigm shift towards immunome evaluation
(Review). Oncol Rep. 44:424–437. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cantara S, Bertelli E, Occhini R, Regoli
M, Brilli L, Pacini F, Castagna MG and Toti P: Blockade of the
programmed death ligand 1 (PD-L1) as potential therapy for
anaplastic thyroid cancer. Endocrine. 64:122–129. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gunda V, Gigliotti B, Ndishabandi D, Ashry
T, McCarthy M, Zhou Z, Amin S, Freeman GJ, Alessandrini A and
Parangi S: Combinations of BRAF inhibitor and anti-PD-1/PD-L1
antibody improve survival and tumour immunity in an immunocompetent
model of orthotopic murine anaplastic thyroid cancer. Br J Cancer.
119:1223–1232. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gunda V, Gigliotti B, Ashry T, Ndishabandi
D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, et al:
Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably
altering the immune microenvironment of murine anaplastic thyroid
cancer. Int J Cancer. 144:2266–2278. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Moretti S, Menicali E, Nucci N, Guzzetti
M, Morelli S and Puxeddu E: Therapy of endocrine disease
Immunotherapy of advanced thyroid cancer: From bench to bedside.
Eur J Endocrinol. 183:R41–R55. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mehnert JM, Varga A, Brose MS, Aggarwal
RR, Lin CC, Prawira A, de Braud F, Tamura K, Doi T, Piha-Paul SA,
et al: Safety and antitumor activity of the anti-PD-1 antibody
pembrolizumab in patients with advanced, PD-L1-positive papillary
or follicular thyroid cancer. BMC Cancer. 19:1962019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chintakuntlawar AV, Yin J, Foote RL,
Kasperbauer JL, Rivera M, Asmus E, Garces NI, Janus JR, Liu M, Ma
DJ, et al: A phase 2 study of pembrolizumab combined with
chemoradiotherapy as initial treatment for anaplastic thyroid
cancer. Thyroid. 29:1615–1622. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Iyer PC, Dadu R, Gule-Monroe M, Busaidy
NL, Ferrarotto R, Habra MA, Zafereo M, Williams MD, Gunn GB, Grosu
H, et al: Salvage pembrolizumab added to kinase inhibitor therapy
for the treatment of anaplastic thyroid carcinoma. J Immunother
Cancer. 6:682018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Girolami I, Pantanowitz L, Mete O,
Brunelli M, Marletta S, Colato C, Trimboli P, Crescenzi A,
Bongiovanni M, Barbareschi M and Eccher A: Programmed Death-Ligand
1 (PD-L1) is a potential biomarker of disease-free survival in
papillary thyroid carcinoma: A systematic review and meta-analysis
of PD-L1 immunoexpression in follicular epithelial derived thyroid
carcinoma. Endocr Pathol. 31:291–300. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bangaraiahgari R, Panchangam RB,
Puthenveetil P, Mayilvaganan S, Bangaraiahgari R, Banala RR,
Karunakaran P and Md R: Is there adenoma-carcinoma sequence between
benign adenoma and papillary cancer of thyroid: A genomic linkage
study. Ann Med Surg (Lond). 60:695–700. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Volante M, Lam AK, Papotti M and Tallini
G: Molecular pathology of poorly differentiated and anaplastic
thyroid cancer: What do pathologists need to know. Endocr Pathol.
32:63–76. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Soares P, Póvoa AA, Melo M, Vinagre J,
Máximo V, Eloy C, Cameselle-Teijeiro JM and Sobrinho-Simões M:
Molecular pathology of Non-familial follicular epithelial-derived
thyroid cancer in adults: From RAS/BRAF-like tumor designations to
molecular risk stratification. Endocr Pathol. 32:44–62. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jung SH, Kim MS, Jung CK, Park HC, Kim SY,
Liu J, Bae JS, Lee SH, Kim TM, Lee SH and Chung YJ: Mutational
burdens and evolutionary ages of thyroid follicular adenoma are
comparable to those of follicular carcinoma. Oncotarget.
7:69638–69648. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chalmers ZR, Connelly CF, Fabrizio D, Gay
L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J,
et al: Analysis of 100,000 human cancer genomes reveals the
landscape of tumor mutational burden. Genome Med. 9:342017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cancer Genome Atlas Research Network, .
Integrated genomic characterization of papillary thyroid carcinoma.
Cell. 159:676–690. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Landa I, Ibrahimpasic T, Boucai L, Sinha
R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP,
Xu B, et al: Genomic and transcriptomic hallmarks of poorly
differentiated and anaplastic thyroid cancers. J Clin Invest.
126:1052–1066. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kunstman JW, Juhlin CC, Goh G, Brown TC,
Stenman A, Healy JM, Rubinstein JC, Choi M, Kiss N, Nelson-Williams
C, et al: Characterization of the mutational landscape of
anaplastic thyroid cancer via whole-exome sequencing. Hum Mol
Genet. 24:2318–2329. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Riesco-Eizaguirre G and Santisteban P:
Endocrine Tumours: Advances in the molecular pathogenesis of
thyroid cancer: Lessons from the cancer genome. Eur J Endocrinol.
175:R203–R217. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Capdevila J, Mayor R, Mancuso FM, Iglesias
C, Caratù G, Matos I, Zafón C, Hernando J, Petit A, Nuciforo P, et
al: Early evolutionary divergence between papillary and anaplastic
thyroid cancers. Ann Oncol. 29:1454–1460. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ragazzi M, Torricelli F, Donati B,
Ciarrocchi A, de Biase D, Tallini G, Zanetti E, Bisagni A, Kuhn E,
Giordano D, et al: Coexisting well-differentiated and anaplastic
thyroid carcinoma in the same primary resection specimen:
Immunophenotypic and genetic comparison of the two components in a
consecutive series of 13 cases and a review of the literature.
Virchows Arch. 478:265–281. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cameselle-Teijeiro JM, Rodríguez-Pérez I,
Celestino R, Eloy C, Piso-Neira M, Abdulkader-Nallib I, Soares P
and Sobrinho-Simões M: Hobnail variant of papillary thyroid
carcinoma: Clinicopathologic and molecular evidence of progression
to undifferentiated carcinoma in 2 cases. Am J Surg Pathol.
41:854–860. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ibrahimpasic T, Ghossein R, Shah JP and
Ganly I: Poorly Differentiated carcinoma of the thyroid gland:
Current status and future prospects. Thyroid. 29:311–321. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yoo SK, Song YS, Lee EK, Hwang J, Kim HH,
Jung G, Kim YA, Kim SJ, Cho SW, Won JK, et al: Integrative analysis
of genomic and transcriptomic characteristics associated with
progression of aggressive thyroid cancer. Nat Commun. 10:27642019.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hiltzik D, Carlson DL, Tuttle RM, Chuai S,
Ishill N, Shaha A, Shah JP, Singh B and Ghossein RA: Poorly
differentiated thyroid carcinomas defined on the basis of mitosis
and necrosis: A clinicopathologic study of 58 patients. Cancer.
106:1286–1295. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gerber TS, Schad A, Hartmann N, Springer
E, Zechner U and Musholt TJ: Targeted next-generation sequencing of
cancer genes in poorly differentiated thyroid cancer. Endocr
Connect. 7:47–55. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cunha LL, Marcello MA, Morari EC, Nonogaki
S, Conte FF, Gerhard R, Soares FA, Vassallo J and Ward LS:
Differentiated thyroid carcinomas may elude the immune system by
B7H1 upregulation. Endocr Relat Cancer. 20:103–110. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ahn S, Kim TH, Kim SW, Ki CS, Jang HW, Kim
JS, Kim JH, Choe JH, Shin JH, Hahn SY, et al: Comprehensive
screening for PD-L1 expression in thyroid cancer. Endocr Relat
Cancer. 24:97–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chowdhury S, Veyhl J, Jessa F, Polyakova
O, Alenzi A, MacMillan C, Ralhan R and Walfish PG: Programmed
death-ligand 1 overexpression is a prognostic marker for aggressive
papillary thyroid cancer and its variants. Oncotarget.
7:32318–32328. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Aghajani M, Graham S, McCafferty C,
Shaheed CA, Roberts T, DeSouza P, Yang T and Niles N:
Clinicopathologic and prognostic significance of programmed cell
death ligand 1 expression in patients with non-medullary thyroid
cancer: A systematic review and meta-analysis. Thyroid. 28:349–361.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rosenbaum MW, Gigliotti BJ, Pai SI,
Parangi S, Wachtel H, Mino-Kenudson M, Gunda V and Faquin WC: PD-L1
and IDO1 are expressed in poorly differentiated thyroid carcinoma.
Endocr Pathol. 29:59–67. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wu H, Sun Y, Ye H, Yang S, Lee SL and de
las Morenas A: Anaplastic thyroid cancer: Outcome and the
mutation/expression profiles of potential targets. Pathol Oncol
Res. 21:695–701. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zwaenepoel K, Jacobs J, De Meulenaere A,
Silence K, Smits E, Siozopoulou V, Hauben E, Rolfo C, Rottey S and
Pauwels P: CD70 and PD-L1 in anaplastic thyroid cancer-promising
targets for immunotherapy. Histopathology. 71:357–365. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bastman JJ, Serracino HS, Zhu Y, Koenig
MR, Mateescu V, Sams SB, Davies KD, Raeburn CD, McIntyre RC Jr,
Haugen BR and French JD: Tumor-Infiltrating T cells and the PD-1
checkpoint pathway in advanced differentiated and anaplastic
thyroid cancer. J Clin Endocrinol Metab. 101:2863–2873. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chintakuntlawar AV, Rumilla KM, Smith CY,
Jenkins SM, Foote RL, Kasperbauer JL, Morris JC, Ryder M, Alsidawi
S, Hilger C and Bible KC: Expression of PD-1 and PD-L1 in
anaplastic thyroid cancer patients treated with multimodal therapy:
Results from a retrospective study. J Clin Endocrinol Metab.
102:1943–1950. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kollipara R, Schneider B, Radovich M, Babu
S and Kiel PJ: Exceptional response with immunotherapy in a patient
with anaplastic thyroid cancer. Oncologist. 22:1149–1151. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Aghajani MJ, Cooper A, McGuire H, Jeffries
T, Saab J, Ismail K, de Souza P, Bray V, Fazekas de St Groth B,
Niles N and Roberts TL: Pembrolizumab for anaplastic thyroid
cancer: A case study. Cancer Immunol Immunother. 68:1921–1934.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Stenman A, Hellgren LS, Jatta K, Hysek M,
Zemmler M, Altena R, Nilsson IL, Bränström R, Zedenius J and Juhlin
CC: Metastatic anaplastic thyroid carcinoma in complete remission:
Morphological, molecular, and clinical work-up of a rare case.
Endocr Pathol. 31:77–83. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Snyder A, Makarov V, Merghoub T, Yuan J,
Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et
al: Genetic basis for clinical response to CTLA-4 blockade in
melanoma. N Engl J Med. 371:2189–2199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mehnert JM, Panda A, Zhong H, Hirshfield
K, Damare S, Lane K, Sokol L, Stein MN, Rodriguez-Rodriquez L,
Kaufman HL, et al: Immune activation and response to pembrolizumab
in POLE-mutant endometrial cancer. J Clin Invest. 126:2334–2340.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Duval A and Hamelin R: Mutations at coding
repeat sequences in mismatch repair-deficient human cancers: Toward
a new concept of target genes for instability. Cancer Res.
62:2447–2454. 2002.PubMed/NCBI
|
|
62
|
Peltomäki P: Role of DNA mismatch repair
defects in the pathogenesis of human cancer. J Clin Oncol.
21:1174–1179. 2003. View Article : Google Scholar
|
|
63
|
Mensenkamp AR, Vogelaar IP, van
Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ,
Kwint MP, Hoogerbrugge N, Nagtegaal ID and Ligtenberg MJ: Somatic
mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair
deficiency in Lynch syndrome-like tumors. Gastroenterology.
146:643–646 e8. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Briggs S and Tomlinson I: Germline and
somatic polymerase ε and δ mutations define a new class of
hypermutated colorectal and endometrial cancers. J Pathol.
230:148–153. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Church DN, Briggs SE, Palles C, Domingo E,
Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV,
et al: DNA polymerase epsilon and δ exonuclease domain mutations in
endometrial cancer. Hum Mol Genet. 22:2820–2828. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Domingo E, Freeman-Mills L, Rayner E,
Glaire M, Briggs S, Vermeulen L, Fessler E, Medema JP, Boot A,
Morreau H, et al: Somatic POLE proofreading domain mutation, immune
response, and prognosis in colorectal cancer: A retrospective,
pooled biomarker study. Lancet Gastroenterol Hepatol. 1:207–216.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Petitjean A, Mathe E, Kato S, Ishioka C,
Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53
functional properties on TP53 mutation patterns and tumor
phenotype: Lessons from recent developments in the IARC TP53
database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lawrence MS, Stojanov P, Polak P, Kryukov
GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH,
Roberts SA, et al: Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature. 499:214–218. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Poulos RC, Wong YT, Ryan R, Pang H and
Wong JWH: Analysis of 7,815 cancer exomes reveals associations
between mutational processes and somatic driver mutations. PLoS
Genet. 14:e10077792018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ahn J, Jin M, Song E, Ryu YM, Song DE, Kim
SY, Kim TY, Kim WB, Shong YK, Jeon MJ and Kim WG: Immune profiling
of advanced thyroid cancers using fluorescent multiplex
immunohistochemistry. Thyroid. 31:61–67. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ferrari SM, Fallahi P, Galdiero MR,
Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V,
Varricchi G, et al: Immune and inflammatory cells in thyroid cancer
microenvironment. Int J Mol Sci. 20:44132019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
French JD, Weber ZJ, Fretwell DL, Said S,
Klopper JP and Haugen BR: Tumor-associated lymphocytes and
increased FoxP3+ regulatory T cell frequency correlate with more
aggressive papillary thyroid cancer. J Clin Endocrinol Metab.
95:2325–2333. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
French JD, Kotnis GR, Said S, Raeburn CD,
McIntyre RC Jr, Klopper JP and Haugen BR: Programmed death-1+ T
cells and regulatory T cells are enriched in tumor-involved lymph
nodes and associated with aggressive features in papillary thyroid
cancer. J Clin Endocrinol Metab. 97:E934–E943. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Severson JJ, Serracino HS, Mateescu V,
Raeburn CD, McIntyre RC Jr, Sams SB, Haugen BR and French JD:
PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional
exhaustion in patients with regionally metastatic differentiated
thyroid cancer. Cancer Immunol Res. 3:620–630. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hilly O, Koren R, Raz R, Rath-Wolfson L,
Mizrachi A, Hamzany Y, Bachar G and Shpitzer T: The role of
s100-positive dendritic cells in the prognosis of papillary thyroid
carcinoma. Am J Clin Pathol. 139:87–92. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Caillou B, Talbot M, Weyemi U,
Pioche-Durieu C, Al Ghuzlan A, Bidart JM, Chouaib S, Schlumberger M
and Dupuy C: Tumor-associated macrophages (TAMs) form an
interconnected cellular supportive network in anaplastic thyroid
carcinoma. PLoS One. 6:e225672011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fang W, Ye L, Shen L, Cai J, Huang F, Wei
Q, Fei X, Chen X, Guan H, Wang W, et al: Tumor-associated
macrophages promote the metastatic potential of thyroid papillary
cancer by releasing CXCL8. Carcinogenesis. 35:1780–1787. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A
and Di W: A high M1/M2 ratio of tumor-associated macrophages is
associated with extended survival in ovarian cancer patients. J
Ovarian Res. 7:192014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yuan A, Hsiao YJ, Chen HY, Chen HW, Ho CC,
Chen YY, Liu YC, Hong TH, Yu SL, Chen JJ and Yang PC: Opposite
effects of M1 and M2 macrophage subtypes on lung cancer
progression. Sci Rep. 5:142732015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li J, Wang P and Xu Y: Prognostic value of
programmed cell death ligand 1 expression in patients with head and
neck cancer: A systematic review and meta-analysis. PLoS One.
12:e01795362017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang Q, Liu F and Liu L: Prognostic
significance of PD-L1 in solid tumor: An updated meta-analysis.
Medicine (Baltimore). 96:e63692017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xu F, Xu L, Wang Q, An G, Feng G and Liu
F: Clinicopathological and prognostic value of programmed death
ligand-1 (PD-L1) in renal cell carcinoma: A meta-analysis. Int J
Clin Exp Med. 8:14595–14603. 2015.PubMed/NCBI
|
|
83
|
Powles T, Walker J, Andrew Williams J and
Bellmunt J: The evolving role of PD-L1 testing in patients with
metastatic urothelial carcinoma. Cancer Treat Rev. 82:1019252020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Pan ZK, Ye F, Wu X, An HX and Wu JX:
Clinicopathological and prognostic significance of programmed cell
death ligand1 (PD-L1) expression in patients with non-small cell
lung cancer: A meta-analysis. J Thorac Dis. 7:462–470.
2015.PubMed/NCBI
|
|
85
|
Siraj AK, Parvathareddy SK,
Annaiyappanaidu P, Haqawi W, Al-Rasheed M, AlManea HM, AlHussaini
HF, Al-Dayel F and Al-Kuraya KS: PD-L1 expression is associated
with deficient mismatch repair and poor prognosis in middle eastern
colorectal cancers. J Pers Med. 11:732021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Walter D, Herrmann E, Schnitzbauer AA,
Zeuzem S, Hansmann ML, Peveling-Oberhag J and Hartmann S: PD-L1
expression in extrahepatic cholangiocarcinoma. Histopathology.
71:383–392. 2017. View Article : Google Scholar : PubMed/NCBI
|