Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

LZTR1: A promising adaptor of the CUL3 family (Review)

  • Authors:
    • Hui Zhang
    • Xinyi Cao
    • Jian Wang
    • Qian Li
    • Yiting Zhao
    • Xiaofeng Jin
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 564
    |
    Published online on: May 29, 2021
       https://doi.org/10.3892/ol.2021.12825
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The study of the disorders of ubiquitin‑mediated proteasomal degradation may unravel the molecular basis of human diseases, such as cancer (prostate cancer, lung cancer and liver cancer, etc.) and nervous system disease (Parkinson's disease, Alzheimer's disease and Huntington's disease, etc.) and help in the design of new therapeutic methods. Leucine zipper‑like transcription regulator 1 (LZTR1) is an important substrate recognition subunit of cullin‑RING E3 ligase that plays an important role in the regulation of cellular functions. Mutations in LZTR1 and dysregulation of associated downstream signaling pathways contribute to the pathogenesis of Noonan syndrome (NS), glioblastoma and chronic myeloid leukemia. Understanding the molecular mechanism of the normal function of LZTR1 is thus critical for its eventual therapeutic targeting. In the present review, the structure and function of LZTR1 are described. Moreover, recent advances in the current knowledge of the functions of LZTR1 in NS, glioblastoma (GBM), chronic myeloid leukemia (CML) and schwannomatosis and the influence of LZTR1 mutations are also discussed, providing insight into how LZTR1 may be targeted for therapeutic purposes.
View Figures

Figure 1

Figure 2

View References

1 

Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Mani RS: The emerging role of speckle-type POZ protein (SPOP) in cancer development. Drug Discov Today. 19:1498–1502. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Zou T and Zhang J: Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J. Oct 6;s2020doi: 10.1111/febs.15584.

4 

Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Asmar AJ, Beck DB and Werner A: Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Exp Cell Res. 396:1123002020. View Article : Google Scholar : PubMed/NCBI

6 

Achim W, Regina B, Nia T, Kaya DU and Michael R: Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions. Elife. 7:e354072018. View Article : Google Scholar

7 

Senft D, Qi J and Ronai ZA: Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 18:69–88. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Rape M: Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 19:59–70. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Enchev RI, Schulman BA and Peter M: Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 16:30–44. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Teixeira LK and Reed SI: Ubiquitin ligases and cell cycle control. Annu Rev Biochem. 82:387–414. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Lipkowitz S and Weissman AM: RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 11:629–643. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Cornelius RJ, Ferdaus MZ, Nelson JW and McCormick JA: Cullin-Ring ubiquitin ligases in kidney health and disease. Curr Opin Nephrol Hypertens. 28:490–497. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Chen RH: Cullin 3 and its role in tumorigenesis. Adv Exp Med Biol. 1217:187–210. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Wu J, McCormick JA and Sigmund CD: Cullin-3: Renal and vascular mechanisms regulating blood pressure. Curr Hypertens Rep. 22:612020. View Article : Google Scholar : PubMed/NCBI

17 

Wang P, Song J and Ye D: CRL3s: The BTB-CUL3-RING E3 ubiquitin Ligases. Adv Exp Med Biol. 1217:211–223. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Cornelius RJ, Yang CL and Ellison DH: Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding. Am J Physiol Renal Physiol. 318:F204–F208. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Jin X, Shi Q, Li Q, Zhou L, Wang J, Jiang L, Zhao X, Feng K, Lin T, Lin Z, et al: CRL3-SPOP ubiquitin ligase complex suppresses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-κB signaling. Leukemia. 34:1305–1314. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ, Price JC, Zhang S, England BM, Godwin AK, et al NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program, : Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 44:1310–1315. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Jin X, Wang J, Gao K, Zhang P, Yao L, Tang Y, Tang L, Ma J, Xiao J, Zhang E, et al: Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet. 13:e10067482017. View Article : Google Scholar : PubMed/NCBI

23 

Wei X, Fried J, Li Y, Hu L, Gao M, Zhang S and Xu B: Functional roles of Speckle-Type Poz (SPOP) protein in genomic stability. J Cancer. 9:3257–3262. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Cuneo MJ and Mittag T: The ubiquitin ligase adaptor SPOP in cancer. FEBS J. 286:3946–3958. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Jin X, Wang J, Li Q, Zhuang H, Yang J, Lin Z, Lin T, Lv Z, Shen L, Yan C, et al: SPOP targets oncogenic protein ZBTB3 for destruction to suppress endometrial cancer. Am J Cancer Res. 9:2797–2812. 2019.PubMed/NCBI

26 

Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei W: The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 17:339–350. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Song Y, Xu Y, Pan C, Yan L, Wang ZW and Zhu X: The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer. 19:22020. View Article : Google Scholar : PubMed/NCBI

28 

Clark A and Burleson M: SPOP and cancer: A systematic review. Am J Cancer Res. 10:704–726. 2020.PubMed/NCBI

29 

Maekawa M and Higashiyama S: The roles of SPOP in DNA damage response and DNA replication. Int J Mol Sci. 21:72932020. View Article : Google Scholar : PubMed/NCBI

30 

Werner A, Iwasaki S, McGourty CA, Medina-Ruiz S, Teerikorpi N, Fedrigo I, Ingolia NT and Rape M: Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 525:523–527. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Li YR, Peng RR, Gao WY, Liu P, Chen LJ, Zhang XL, Zhang NN, Wang Y, Du L, Zhu FY, et al: The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY). 11:1110–1128. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Lührig S, Kolb S, Mellies N and Nolte J: The novel BTB-kelch protein, KBTBD8, is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. Cell Div. 8:32013. View Article : Google Scholar

33 

Jiang T, Sánchez-Rivera F, Soto-Feliciano Y, Yang Q, Song CQ, Bhuatkar A, Haynes CM, Hemann MT and Xue W: Targeting de novo purine synthesis pathway via ADSL depletion impairs liver cancer growth by perturbing mitochondrial function. Hepatology. Dec 17–2020.(Epub ahead of print). doi: 10.1002/hep.31685. View Article : Google Scholar

34 

Madden S and Itzhaki L: Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. Biochim Biophys Acta Proteins Proteom. 1868:1404052020. View Article : Google Scholar : PubMed/NCBI

35 

Dhamodharan U, Ponjayanthi B, Sireesh D, Bhakkiyalakshmi E and Ramkumar KM: Association of single-nucleotide polymorphisms of the KEAP1 gene with the risk of various human diseases and its functional impact using in silico analysis. Pharmacol Res. 137:205–218. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Pintard L, Kurz T, Glaser S, Willis JH, Peter M and Bowerman B: Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol. 13:911–921. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Gray WM, Hellmann H, Dharmasiri S and Estelle M: Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell. 14:2137–2144. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A and Rebsamen M: LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 362:1171–1177. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Wang Y, Zhang J, Zhang P, Zhao Z, Huang Q, Yun D, Chen J, Chen H, Wang C and Lu D: LZTR1 inactivation promotes MAPK/ERK pathway activation in glioblastoma by stabilizing oncoprotein RIT1. bioRxiv. Mar 15–2020.(Epub ahead of print).

40 

Nacak TG, Leptien K, Fellner D, Augustin HG and Kroll J: The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem. 281:5065–5071. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Adams J, Kelso R and Cooley L: The kelch repeat superfamily of proteins: Propellers of cell function. Trends Cell Biol. 10:17–24. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Chen Z, Wasney GA, Picaud S, Filippakopoulos P, Vedadi M, D'Angiolella V and Bullock AN: Identification of a PGXPP degron motif in dishevelled and structural basis for its binding to the E3 ligase KLHL12. Open Biol. 10:2000412020. View Article : Google Scholar : PubMed/NCBI

43 

Heng LZ, Kennedy J, Smithson S, Newbury-Ecob R and Churchill A: New macular findings in individuals with biallelic KLHL7 gene mutation. BMJ Open Ophthalmol. 4:e0002342019. View Article : Google Scholar : PubMed/NCBI

44 

Narahara S, Sakai E, Kadowaki T, Yamaguchi Y, Narahara H, Okamoto K, Asahina I and Tsukuba T: KBTBD11, a novel BTB-Kelch protein, is a negative regulator of osteoclastogenesis through controlling Cullin3-mediated ubiquitination of NFATc1. Sci Rep. 9:35232019. View Article : Google Scholar : PubMed/NCBI

45 

Gao C, Pallett MA, Croll TI, Smith GL and Graham SC: Molecular basis of cullin-3 (Cul3) ubiquitin ligase subversion by vaccinia virus protein A55. J Biol Chem. 294:6416–6429. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Nakaguma M, Jorge AA and Arnhold IJ: Noonan syndrome associated with growth hormone deficiency with biallelic LZTR1 variants. Genet Med:. 21:2602019. View Article : Google Scholar : PubMed/NCBI

47 

Jacquinet A, Bonnard A, Capri Y, Martin D, Sadzot B, Bianchi E, Servais L, Sacré JP, Cavé H and Verloes A: Oligo-astrocytoma in LZTR1-related Noonan syndrome. Eur J Med Genet. 63:1036172020. View Article : Google Scholar : PubMed/NCBI

48 

Deiller C, Van-Gils J, Zordan C, Tinat J, Loiseau H, Fabre T, Delleci C, Cohen J, Vidaud M, Parfait B, et al: Coexistence of schwannomatosis and glioblastoma in two families. Eur J Med Genet. 62:1036802019. View Article : Google Scholar : PubMed/NCBI

49 

Merker VL, Esparza S, Smith MJ, Stemmer-Rachamimov A and Plotkin SR: Clinical features of schwannomatosis: A retrospective analysis of 87 patients. Oncologist. 17:1317–1322. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Kehrer-Sawatzki H, Farschtschi S, Mautner VF and Cooper DN: The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 136:129–148. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Mansouri S, Suppiah S, Mamatjan Y, Paganini I, Liu JC, Karimi S, Patil V, Nassiri F, Singh O, Sundaravadanam Y, et al: Epigenomic, genomic, and transcriptomic landscape of schwannomatosis. Acta Neuropathol. 141:101–116. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Simanshu DK, Nissley DV and McCormick F: RAS proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Schubbert S, Zenker M, Rowe SL, Böll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, et al: Germline KRAS mutations cause Noonan syndrome. Nat Genet. 38:331–336. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, et al: Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 93:173–180. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, Tankka A, Galeas J, Urisman A and McCormick F: RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 363:1226–1230. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Umeki I, Niihori T, Abe T, Kanno SI, Okamoto N, Mizuno S, Kurosawa K, Nagasaki K, Yoshida M, Ohashi H, et al: Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1-PPP1CB complexes. Hum Genet. 138:21–35. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T and Aoki Y: LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 27:1023–1035. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Steklov M, Pandolf S, Baietti MF, Batiuk A, Carai P, Najm P, Zhang M, Jang H, Renzi F, Cai Y, et al: Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 362:1177–1182. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Zinatizadeh MR, Momeni SA, Zarandi PK, Chalbatani GM, Dana H, Mirzaei HR, Akbari ME and Miri SR: The role and function of Ras-association domain family in cancer: A Review. Genes Dis. 6:378–384. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Tidyman WE and Rauen KA: Pathogenetics of the RASopathies. Hum Mol Genet. 25:R123–R132. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Malaquias AC and Jorge AAL: Activation of the MAPK pathway (RASopathies) and partial growth hormone insensitivity. Mol Cell Endocrinol. 519:1110402021. View Article : Google Scholar : PubMed/NCBI

62 

Humphries B, Wang Z and Yang C: Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells. 9:21672020. View Article : Google Scholar : PubMed/NCBI

63 

Lavoie H, Gagnon J and Therrien M: ERK signalling: A master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Moore AR, Rosenberg SC, McCormick F and Malek S: RAS-targeted therapies: Is the undruggable drugged? Nat Rev Drug Discov. 19:533–552. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, König R, et al: A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet. 42:27–29. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Higgins EM, Bos JM, Mason-Suares H, Tester DJ, Ackerman JP, MacRae CA, Sol-Church K, Gripp KW, Urrutia R and Ackerman MJ: Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight. 2:e912252017. View Article : Google Scholar : PubMed/NCBI

67 

Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F, Dvorsky R, et al: Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet. 23:4315–4327. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Ratner N and Miller SJ: A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 15:290–301. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Dunnett-Kane V, Burkitt-Wright E, Blackhall FH, Malliri A, Evans DG and Lindsay CR: Germline and sporadic cancers driven by the RAS pathway: Parallels and contrasts. Ann Oncol. 31:873–883. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, Blair E, Borck G, Brinkmann J, Craigen W, et al Members of the Undiagnosed Diseases Network, : Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med. 20:1175–1185. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Aoki Y, Niihori T, Inoue S and Matsubara Y: Recent advances in RASopathies. J Hum Genet. 61:33–39. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Motta M, Fidan M, Bellacchio E, Pantaleoni F, Schneider-Heieck K, Coppola S, Borck G, Salviati L, Zenker M, Cirstea IC, et al: Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Hum Mol Genet. 28:1007–1022. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Pagnamenta AT, Kaisaki PJ, Bennett F, Burkitt-Wright E, Martin HC, Ferla MP, Taylor JM, Gompertz L, Lahiri N, Tatton-Brown K, et al DDD Study, : Delineation of dominant and recessive forms of LZTR1-associated Noonan syndrome. Clin Genet. 95:693–703. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M and McCormick F: A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell. 22:217–230. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Young LC, Hartig N, Muñoz-Alegre M, Oses-Prieto JA, Durdu S, Bender S, Vijayakumar V, Vietri Rudan M, Gewinner C, Henderson S, et al: An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. Mol Cell. 52:679–692. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Shi GX, Cai W and Andres DA: Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cell Signal. 25:2060–2068. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Khalil A and Nemer G: The potential oncogenic role of the RAS-like GTP-binding gene RIT1 in glioblastoma. Cancer Biomark. 29:509–519. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Van R, Cuevas-Navarro A, Castel P and McCormick F: The molecular functions of RIT1 and its contribution to human disease. Biochem J. 477:2755–2770. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Song Z, Liu T, Chen J, Ge C, Zhao F, Zhu M, Chen T, Cui Y, Tian H, Yao M, et al: HIF-1α-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer Lett. 460:96–107. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Venugopal V and Romero CJ: Endocrine complications of Noonan syndrome beyond short stature. Pediatr Endocrinol Rev. 16 (Suppl 2):465–470. 2019.PubMed/NCBI

81 

Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Jin J, Ang XL, Shirogane T and Wade Harper J: Identification of substrates for F-box proteins. Methods Enzymol. 399:287–309. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Li S, Balmain A and Counter CM: A model for RAS mutation patterns in cancers: Finding the sweet spot. Nat Rev Cancer. 18:767–777. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, et al American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Genomic and Precision Medicine, : Genetic Basis for Congenital Heart Disease: Revisited: A scientific statement from the American Heart Association. Circulation. 138:e653–e711. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Tajan M, Paccoud R, Branka S, Edouard T and Yart A: The RASopathy family: Consequences of germline activation of the RAS/MAPK pathway. Endocr Rev. 39:676–700. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mossé YP, Nakagawara A, Parareda A, Scollon SR, Schneider KW, Skalet AH, et al: Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 23:e98–e106. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Dolecek TA, Propp JM, Stroup NE and Kruchko C: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 14 (Suppl 5):v1–v49. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, et al: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 26:756–784. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Lee E, Yong RL, Paddison P and Zhu J: Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 53:201–211. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, et al: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA. 102:5814–5819. 2005. View Article : Google Scholar : PubMed/NCBI

91 

Mischel PS, Nelson SF and Cloughesy TF: Molecular analysis of glioblastoma: Pathway profiling and its implications for patient therapy. Cancer Biol Ther. 2:242–247. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S and Kuo MD: Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA. 105:5213–5218. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, et al: The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 45:1141–1149. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Lein PJ, Guo X, Shi GX, Moholt-Siebert M, Bruun D and Andres DA: The novel GTPase Rit differentially regulates axonal and dendritic growth. J Neurosci. 27:4725–4736. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Cai W, Rudolph JL, Harrison SM, Jin L, Frantz AL, Harrison DA and Andres DA: An evolutionarily conserved Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress resistance. Mol Biol Cell. 22:3231–3241. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Shi GX and Andres DA: Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol. 25:830–846. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Shi GX, Han J and Andres DA: Rin GTPase couples nerve growth factor signaling to p38 and b-Raf/ERK pathways to promote neuronal differentiation. J Biol Chem. 280:37599–37609. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Rusyn EV, Reynolds ER, Shao H, Grana TM, Chan TO, Andres DA and Cox AD: Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene. 19:4685–4694. 2000. View Article : Google Scholar : PubMed/NCBI

100 

Knudson AG Jr: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA. 68:820–823. 1971. View Article : Google Scholar : PubMed/NCBI

101 

Ren R: Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 5:172–183. 2005. View Article : Google Scholar : PubMed/NCBI

102 

Garcia-Horton A and Lipton JH: Treatment outcomes in chronic myeloid leukemia: Does one size fit all? J Natl Compr Canc Netw. 18:1421–1428. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Crisà E, Nicolosi M, Ferri V, Favini C, Gaidano G and Patriarca A: Atypical chronic myeloid leukemia: Where are we now? Int J Mol Sci. 21:68622020. View Article : Google Scholar

104 

Braun TP, Eide CA and Druker BJ: Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 37:530–542. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Vetrie D, Helgason GV and Copland M: The leukaemia stem cell: Similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 20:158–173. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Evans DG, Bowers NL, Tobi S, Hartley C, Wallace AJ, King AT, Lloyd SK, Rutherford SA, Hammerbeck-Ward C, Pathmanaban ON, et al: Schwannomatosis: A genetic and epidemiological study. J Neurol Neurosurg Psychiatry. 89:1215–1219. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Kehrer-Sawatzki H, Farschtschi S, Mautner VF and Cooper DN: The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 136:129–148. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Smith MJ, Isidor B, Beetz C, Williams SG, Bhaskar SS, Richer W, O'Sullivan J, Anderson B, Daly SB, Urquhart JE, et al: Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology. 84:141–147. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Yamamoto GL, Aguena M, Gos M, Hung C, Pilch J, Fahiminiya S, Abramowicz A, Cristian I, Buscarilli M, Naslavsky MS, et al: Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet. 52:413–421. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J, Frayling I, Efstathiou J, Pack K, Payne S, et al: The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: A new facet to Knudson's ‘two-hit’ hypothesis. Nat Med. 5:1071–1075. 1999. View Article : Google Scholar : PubMed/NCBI

111 

Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F and Wesseling P: Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet. 80:805–810. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Paganini I, Chang VY, Capone GL, Vitte J, Benelli M, Barbetti L, Sestini R, Trevisson E, Hulsebos TJ, Giovannini M, et al: Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur J Hum Genet. 23:963–968. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Smith MJ, Pathmanaban ON, Coope DJ, King AT and Evans DG: Comment on: SMARCB1 gene mutation predisposes to earlier development of glioblastoma: A case report of familial GBM. J Neuropathol Exp Neurol. 80:289–290. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Fonkem E, Peng S, Berens M and Mukherjee S: Authors' reply: SMARCB1 gene mutation predisposes to earlier development of glioblastoma: A case report of familial GBM. J Neuropathol Exp Neurol. 80:290–291. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Louvrier C, Pasmant E, Briand-Suleau A, Cohen J, Nitschké P, Nectoux J, Orhant L, Zordan C, Goizet C, Goutagny S, et al: Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro Oncol. 20:917–929. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Maurer GW, Malita A, Nagy S, Koyama T, Werge TM, Halberg KA, Texada MJ and Rewitz K: Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control. PLoS Genet. 16:e10087272020. View Article : Google Scholar : PubMed/NCBI

117 

Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M and Collins F: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 63:851–859. 1990. View Article : Google Scholar : PubMed/NCBI

118 

Liu P, Wang Y and Li X: Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B. 9:871–879. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Buscail L, Bournet B and Cordelier P: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 17:153–168. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Krastev DB and Buchholz F: Ribosome biogenesis and p53: Who is regulating whom? Cell Cycle. 10:3417–3418. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Weiss RA: A perspective on the early days of RAS research. Cancer Metastasis Rev. 39:1023–1028. 2020. View Article : Google Scholar : PubMed/NCBI

122 

Uprety D and Adjei AA: KRAS: From undruggable to a druggable cancer target. Cancer Treat Rev. 89:1020702020. View Article : Google Scholar : PubMed/NCBI

123 

Chen H and Zhao J: KRAS oncogene may be another target conquered in non-small cell lung cancer (NSCLC). Thorac Cancer. 11:3425–3435. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Goulding RE, Chenoweth M, Carter GC, Boye ME, Sheffield KM, John WJ, Leusch MS, Muehlenbein CE, Li L, Jen MH, et al: KRAS mutation as a prognostic factor and predictive factor in advanced/metastatic non-small cell lung cancer: A systematic literature review and meta-analysis. Cancer Treat Res Commun. 24:1002002020. View Article : Google Scholar : PubMed/NCBI

125 

Passiglia F, Malapelle U, Del Re M, Righi L, Pagni F, Furlan D, Danesi R, Troncone G and Novello S: KRAS inhibition in non-small cell lung cancer: Past failures, new findings and upcoming challenges. Eur J Cancer. 137:57–68. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Matthew B, Juliati R and Field SJ: GOLPH3 links the Golgi, DNA damage, and cancer. Cancer Res. 75:624–627. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang H, Cao X, Wang J, Li Q, Zhao Y and Jin X: LZTR1: A promising adaptor of the CUL3 family (Review). Oncol Lett 22: 564, 2021.
APA
Zhang, H., Cao, X., Wang, J., Li, Q., Zhao, Y., & Jin, X. (2021). LZTR1: A promising adaptor of the CUL3 family (Review). Oncology Letters, 22, 564. https://doi.org/10.3892/ol.2021.12825
MLA
Zhang, H., Cao, X., Wang, J., Li, Q., Zhao, Y., Jin, X."LZTR1: A promising adaptor of the CUL3 family (Review)". Oncology Letters 22.1 (2021): 564.
Chicago
Zhang, H., Cao, X., Wang, J., Li, Q., Zhao, Y., Jin, X."LZTR1: A promising adaptor of the CUL3 family (Review)". Oncology Letters 22, no. 1 (2021): 564. https://doi.org/10.3892/ol.2021.12825
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang H, Cao X, Wang J, Li Q, Zhao Y and Jin X: LZTR1: A promising adaptor of the CUL3 family (Review). Oncol Lett 22: 564, 2021.
APA
Zhang, H., Cao, X., Wang, J., Li, Q., Zhao, Y., & Jin, X. (2021). LZTR1: A promising adaptor of the CUL3 family (Review). Oncology Letters, 22, 564. https://doi.org/10.3892/ol.2021.12825
MLA
Zhang, H., Cao, X., Wang, J., Li, Q., Zhao, Y., Jin, X."LZTR1: A promising adaptor of the CUL3 family (Review)". Oncology Letters 22.1 (2021): 564.
Chicago
Zhang, H., Cao, X., Wang, J., Li, Q., Zhao, Y., Jin, X."LZTR1: A promising adaptor of the CUL3 family (Review)". Oncology Letters 22, no. 1 (2021): 564. https://doi.org/10.3892/ol.2021.12825
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team