|
1
|
Hershko A and Ciechanover A: The ubiquitin
system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mani RS: The emerging role of speckle-type
POZ protein (SPOP) in cancer development. Drug Discov Today.
19:1498–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zou T and Zhang J: Diverse and pivotal
roles of neddylation in metabolism and immunity. FEBS J. Oct
6;s2020doi: 10.1111/febs.15584.
|
|
4
|
Petroski MD and Deshaies RJ: Function and
regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol.
6:9–20. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Asmar AJ, Beck DB and Werner A: Control of
craniofacial and brain development by Cullin3-RING ubiquitin
ligases: Lessons from human disease genetics. Exp Cell Res.
396:1123002020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Achim W, Regina B, Nia T, Kaya DU and
Michael R: Multisite dependency of an E3 ligase controls
monoubiquitylation-dependent cell fate decisions. Elife.
7:e354072018. View Article : Google Scholar
|
|
7
|
Senft D, Qi J and Ronai ZA: Ubiquitin
ligases in oncogenic transformation and cancer therapy. Nat Rev
Cancer. 18:69–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rape M: Ubiquitylation at the crossroads
of development and disease. Nat Rev Mol Cell Biol. 19:59–70. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zheng N, Schulman BA, Song L, Miller JJ,
Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al:
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase
complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Enchev RI, Schulman BA and Peter M:
Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell
Biol. 16:30–44. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang Z, Liu P, Inuzuka H and Wei W: Roles
of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Teixeira LK and Reed SI: Ubiquitin ligases
and cell cycle control. Annu Rev Biochem. 82:387–414. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lipkowitz S and Weissman AM: RINGs of good
and evil: RING finger ubiquitin ligases at the crossroads of tumour
suppression and oncogenesis. Nat Rev Cancer. 11:629–643. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cornelius RJ, Ferdaus MZ, Nelson JW and
McCormick JA: Cullin-Ring ubiquitin ligases in kidney health and
disease. Curr Opin Nephrol Hypertens. 28:490–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen RH: Cullin 3 and its role in
tumorigenesis. Adv Exp Med Biol. 1217:187–210. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wu J, McCormick JA and Sigmund CD:
Cullin-3: Renal and vascular mechanisms regulating blood pressure.
Curr Hypertens Rep. 22:612020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang P, Song J and Ye D: CRL3s: The
BTB-CUL3-RING E3 ubiquitin Ligases. Adv Exp Med Biol. 1217:211–223.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cornelius RJ, Yang CL and Ellison DH:
Hypertension-causing cullin 3 mutations disrupt COP9 signalosome
binding. Am J Physiol Renal Physiol. 318:F204–F208. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jin X, Shi Q, Li Q, Zhou L, Wang J, Jiang
L, Zhao X, Feng K, Lin T, Lin Z, et al: CRL3-SPOP ubiquitin ligase
complex suppresses the growth of diffuse large B-cell lymphoma by
negatively regulating the MyD88/NF-κB signaling. Leukemia.
34:1305–1314. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barbieri CE, Baca SC, Lawrence MS,
Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van
Allen E, Stransky N, et al: Exome sequencing identifies recurrent
SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet.
44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Le Gallo M, O'Hara AJ, Rudd ML, Urick ME,
Hansen NF, O'Neil NJ, Price JC, Zhang S, England BM, Godwin AK, et
al NIH Intramural Sequencing Center (NISC) Comparative Sequencing
Program, : Exome sequencing of serous endometrial tumors identifies
recurrent somatic mutations in chromatin-remodeling and ubiquitin
ligase complex genes. Nat Genet. 44:1310–1315. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jin X, Wang J, Gao K, Zhang P, Yao L, Tang
Y, Tang L, Ma J, Xiao J, Zhang E, et al: Dysregulation of
INF2-mediated mitochondrial fission in SPOP-mutated prostate
cancer. PLoS Genet. 13:e10067482017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wei X, Fried J, Li Y, Hu L, Gao M, Zhang S
and Xu B: Functional roles of Speckle-Type Poz (SPOP) protein in
genomic stability. J Cancer. 9:3257–3262. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cuneo MJ and Mittag T: The ubiquitin
ligase adaptor SPOP in cancer. FEBS J. 286:3946–3958. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jin X, Wang J, Li Q, Zhuang H, Yang J, Lin
Z, Lin T, Lv Z, Shen L, Yan C, et al: SPOP targets oncogenic
protein ZBTB3 for destruction to suppress endometrial cancer. Am J
Cancer Res. 9:2797–2812. 2019.PubMed/NCBI
|
|
26
|
Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei
W: The diverse roles of SPOP in prostate cancer and kidney cancer.
Nat Rev Urol. 17:339–350. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW and
Zhu X: The emerging role of SPOP protein in tumorigenesis and
cancer therapy. Mol Cancer. 19:22020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Clark A and Burleson M: SPOP and cancer: A
systematic review. Am J Cancer Res. 10:704–726. 2020.PubMed/NCBI
|
|
29
|
Maekawa M and Higashiyama S: The roles of
SPOP in DNA damage response and DNA replication. Int J Mol Sci.
21:72932020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Werner A, Iwasaki S, McGourty CA,
Medina-Ruiz S, Teerikorpi N, Fedrigo I, Ingolia NT and Rape M:
Cell-fate determination by ubiquitin-dependent regulation of
translation. Nature. 525:523–527. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li YR, Peng RR, Gao WY, Liu P, Chen LJ,
Zhang XL, Zhang NN, Wang Y, Du L, Zhu FY, et al: The ubiquitin
ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to
ensure oocyte quality. Aging (Albany NY). 11:1110–1128. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lührig S, Kolb S, Mellies N and Nolte J:
The novel BTB-kelch protein, KBTBD8, is located in the Golgi
apparatus and translocates to the spindle apparatus during mitosis.
Cell Div. 8:32013. View Article : Google Scholar
|
|
33
|
Jiang T, Sánchez-Rivera F, Soto-Feliciano
Y, Yang Q, Song CQ, Bhuatkar A, Haynes CM, Hemann MT and Xue W:
Targeting de novo purine synthesis pathway via ADSL depletion
impairs liver cancer growth by perturbing mitochondrial function.
Hepatology. Dec 17–2020.(Epub ahead of print). doi:
10.1002/hep.31685. View Article : Google Scholar
|
|
34
|
Madden S and Itzhaki L: Structural and
mechanistic insights into the Keap1-Nrf2 system as a route to drug
discovery. Biochim Biophys Acta Proteins Proteom. 1868:1404052020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Dhamodharan U, Ponjayanthi B, Sireesh D,
Bhakkiyalakshmi E and Ramkumar KM: Association of single-nucleotide
polymorphisms of the KEAP1 gene with the risk of various human
diseases and its functional impact using in silico analysis.
Pharmacol Res. 137:205–218. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pintard L, Kurz T, Glaser S, Willis JH,
Peter M and Bowerman B: Neddylation and deneddylation of CUL-3 is
required to target MEI-1/Katanin for degradation at the
meiosis-to-mitosis transition in C. elegans. Curr Biol. 13:911–921.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gray WM, Hellmann H, Dharmasiri S and
Estelle M: Role of the Arabidopsis RING-H2 protein RBX1 in RUB
modification and SCF function. Plant Cell. 14:2137–2144. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bigenzahn JW, Collu GM, Kartnig F, Pieraks
M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A and
Rebsamen M: LZTR1 is a regulator of RAS ubiquitination and
signaling. Science. 362:1171–1177. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang Y, Zhang J, Zhang P, Zhao Z, Huang Q,
Yun D, Chen J, Chen H, Wang C and Lu D: LZTR1 inactivation promotes
MAPK/ERK pathway activation in glioblastoma by stabilizing
oncoprotein RIT1. bioRxiv. Mar 15–2020.(Epub ahead of print).
|
|
40
|
Nacak TG, Leptien K, Fellner D, Augustin
HG and Kroll J: The BTB-kelch protein LZTR-1 is a novel Golgi
protein that is degraded upon induction of apoptosis. J Biol Chem.
281:5065–5071. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Adams J, Kelso R and Cooley L: The kelch
repeat superfamily of proteins: Propellers of cell function. Trends
Cell Biol. 10:17–24. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen Z, Wasney GA, Picaud S,
Filippakopoulos P, Vedadi M, D'Angiolella V and Bullock AN:
Identification of a PGXPP degron motif in dishevelled and
structural basis for its binding to the E3 ligase KLHL12. Open
Biol. 10:2000412020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Heng LZ, Kennedy J, Smithson S,
Newbury-Ecob R and Churchill A: New macular findings in individuals
with biallelic KLHL7 gene mutation. BMJ Open Ophthalmol.
4:e0002342019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Narahara S, Sakai E, Kadowaki T, Yamaguchi
Y, Narahara H, Okamoto K, Asahina I and Tsukuba T: KBTBD11, a novel
BTB-Kelch protein, is a negative regulator of osteoclastogenesis
through controlling Cullin3-mediated ubiquitination of NFATc1. Sci
Rep. 9:35232019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gao C, Pallett MA, Croll TI, Smith GL and
Graham SC: Molecular basis of cullin-3 (Cul3) ubiquitin ligase
subversion by vaccinia virus protein A55. J Biol Chem.
294:6416–6429. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Nakaguma M, Jorge AA and Arnhold IJ:
Noonan syndrome associated with growth hormone deficiency with
biallelic LZTR1 variants. Genet Med:. 21:2602019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jacquinet A, Bonnard A, Capri Y, Martin D,
Sadzot B, Bianchi E, Servais L, Sacré JP, Cavé H and Verloes A:
Oligo-astrocytoma in LZTR1-related Noonan syndrome. Eur J Med
Genet. 63:1036172020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Deiller C, Van-Gils J, Zordan C, Tinat J,
Loiseau H, Fabre T, Delleci C, Cohen J, Vidaud M, Parfait B, et al:
Coexistence of schwannomatosis and glioblastoma in two families.
Eur J Med Genet. 62:1036802019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Merker VL, Esparza S, Smith MJ,
Stemmer-Rachamimov A and Plotkin SR: Clinical features of
schwannomatosis: A retrospective analysis of 87 patients.
Oncologist. 17:1317–1322. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kehrer-Sawatzki H, Farschtschi S, Mautner
VF and Cooper DN: The molecular pathogenesis of schwannomatosis, a
paradigm for the co-involvement of multiple tumour suppressor genes
in tumorigenesis. Hum Genet. 136:129–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mansouri S, Suppiah S, Mamatjan Y,
Paganini I, Liu JC, Karimi S, Patil V, Nassiri F, Singh O,
Sundaravadanam Y, et al: Epigenomic, genomic, and transcriptomic
landscape of schwannomatosis. Acta Neuropathol. 141:101–116. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Simanshu DK, Nissley DV and McCormick F:
RAS proteins and their regulators in human disease. Cell.
170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Schubbert S, Zenker M, Rowe SL, Böll S,
Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner
LE, et al: Germline KRAS mutations cause Noonan syndrome. Nat
Genet. 38:331–336. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
54
|
Aoki Y, Niihori T, Banjo T, Okamoto N,
Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, et al:
Gain-of-function mutations in RIT1 cause Noonan syndrome, a
RAS/MAPK pathway syndrome. Am J Hum Genet. 93:173–180. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Castel P, Cheng A, Cuevas-Navarro A,
Everman DB, Papageorge AG, Simanshu DK, Tankka A, Galeas J, Urisman
A and McCormick F: RIT1 oncoproteins escape LZTR1-mediated
proteolysis. Science. 363:1226–1230. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Umeki I, Niihori T, Abe T, Kanno SI,
Okamoto N, Mizuno S, Kurosawa K, Nagasaki K, Yoshida M, Ohashi H,
et al: Delineation of LZTR1 mutation-positive patients with Noonan
syndrome and identification of LZTR1 binding to RAF1-PPP1CB
complexes. Hum Genet. 138:21–35. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Abe T, Umeki I, Kanno SI, Inoue SI,
Niihori T and Aoki Y: LZTR1 facilitates polyubiquitination and
degradation of RAS-GTPases. Cell Death Differ. 27:1023–1035. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Steklov M, Pandolf S, Baietti MF, Batiuk
A, Carai P, Najm P, Zhang M, Jang H, Renzi F, Cai Y, et al:
Mutations in LZTR1 drive human disease by dysregulating RAS
ubiquitination. Science. 362:1177–1182. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zinatizadeh MR, Momeni SA, Zarandi PK,
Chalbatani GM, Dana H, Mirzaei HR, Akbari ME and Miri SR: The role
and function of Ras-association domain family in cancer: A Review.
Genes Dis. 6:378–384. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tidyman WE and Rauen KA: Pathogenetics of
the RASopathies. Hum Mol Genet. 25:R123–R132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Malaquias AC and Jorge AAL: Activation of
the MAPK pathway (RASopathies) and partial growth hormone
insensitivity. Mol Cell Endocrinol. 519:1110402021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Humphries B, Wang Z and Yang C: Rho
GTPases: Big Players in Breast Cancer Initiation, Metastasis and
Therapeutic Responses. Cells. 9:21672020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lavoie H, Gagnon J and Therrien M: ERK
signalling: A master regulator of cell behaviour, life and fate.
Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Moore AR, Rosenberg SC, McCormick F and
Malek S: RAS-targeted therapies: Is the undruggable drugged? Nat
Rev Drug Discov. 19:533–552. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cirstea IC, Kutsche K, Dvorsky R, Gremer
L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, König
R, et al: A restricted spectrum of NRAS mutations causes Noonan
syndrome. Nat Genet. 42:27–29. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
66
|
Higgins EM, Bos JM, Mason-Suares H, Tester
DJ, Ackerman JP, MacRae CA, Sol-Church K, Gripp KW, Urrutia R and
Ackerman MJ: Elucidation of MRAS-mediated Noonan syndrome with
cardiac hypertrophy. JCI Insight. 2:e912252017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Flex E, Jaiswal M, Pantaleoni F,
Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F,
Dvorsky R, et al: Activating mutations in RRAS underlie a phenotype
within the RASopathy spectrum and contribute to leukaemogenesis.
Hum Mol Genet. 23:4315–4327. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ratner N and Miller SJ: A RASopathy gene
commonly mutated in cancer: The neurofibromatosis type 1 tumour
suppressor. Nat Rev Cancer. 15:290–301. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dunnett-Kane V, Burkitt-Wright E,
Blackhall FH, Malliri A, Evans DG and Lindsay CR: Germline and
sporadic cancers driven by the RAS pathway: Parallels and
contrasts. Ann Oncol. 31:873–883. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Johnston JJ, van der Smagt JJ, Rosenfeld
JA, Pagnamenta AT, Alswaid A, Baker EH, Blair E, Borck G, Brinkmann
J, Craigen W, et al Members of the Undiagnosed Diseases Network, :
Autosomal recessive Noonan syndrome associated with biallelic LZTR1
variants. Genet Med. 20:1175–1185. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Aoki Y, Niihori T, Inoue S and Matsubara
Y: Recent advances in RASopathies. J Hum Genet. 61:33–39. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Motta M, Fidan M, Bellacchio E, Pantaleoni
F, Schneider-Heieck K, Coppola S, Borck G, Salviati L, Zenker M,
Cirstea IC, et al: Dominant Noonan syndrome-causing LZTR1 mutations
specifically affect the Kelch domain substrate-recognition surface
and enhance RAS-MAPK signaling. Hum Mol Genet. 28:1007–1022. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pagnamenta AT, Kaisaki PJ, Bennett F,
Burkitt-Wright E, Martin HC, Ferla MP, Taylor JM, Gompertz L,
Lahiri N, Tatton-Brown K, et al DDD Study, : Delineation of
dominant and recessive forms of LZTR1-associated Noonan syndrome.
Clin Genet. 95:693–703. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rodriguez-Viciana P, Oses-Prieto J,
Burlingame A, Fried M and McCormick F: A phosphatase holoenzyme
comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions
as an M-Ras effector to modulate Raf activity. Mol Cell.
22:217–230. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Young LC, Hartig N, Muñoz-Alegre M,
Oses-Prieto JA, Durdu S, Bender S, Vijayakumar V, Vietri Rudan M,
Gewinner C, Henderson S, et al: An MRAS, SHOC2, and SCRIB complex
coordinates ERK pathway activation with polarity and tumorigenic
growth. Mol Cell. 52:679–692. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shi GX, Cai W and Andres DA: Rit subfamily
small GTPases: Regulators in neuronal differentiation and survival.
Cell Signal. 25:2060–2068. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Khalil A and Nemer G: The potential
oncogenic role of the RAS-like GTP-binding gene RIT1 in
glioblastoma. Cancer Biomark. 29:509–519. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Van R, Cuevas-Navarro A, Castel P and
McCormick F: The molecular functions of RIT1 and its contribution
to human disease. Biochem J. 477:2755–2770. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Song Z, Liu T, Chen J, Ge C, Zhao F, Zhu
M, Chen T, Cui Y, Tian H, Yao M, et al: HIF-1α-induced RIT1
promotes liver cancer growth and metastasis and its deficiency
increases sensitivity to sorafenib. Cancer Lett. 460:96–107. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Venugopal V and Romero CJ: Endocrine
complications of Noonan syndrome beyond short stature. Pediatr
Endocrinol Rev. 16 (Suppl 2):465–470. 2019.PubMed/NCBI
|
|
81
|
Soucy TA, Smith PG, Milhollen MA, Berger
AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP,
Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a
new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jin J, Ang XL, Shirogane T and Wade Harper
J: Identification of substrates for F-box proteins. Methods
Enzymol. 399:287–309. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li S, Balmain A and Counter CM: A model
for RAS mutation patterns in cancers: Finding the sweet spot. Nat
Rev Cancer. 18:767–777. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Pierpont ME, Brueckner M, Chung WK, Garg
V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, et
al American Heart Association Council on Cardiovascular Disease in
the Young; Council on Cardiovascular and Stroke Nursing; and
Council on Genomic and Precision Medicine, : Genetic Basis for
Congenital Heart Disease: Revisited: A scientific statement from
the American Heart Association. Circulation. 138:e653–e711. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tajan M, Paccoud R, Branka S, Edouard T
and Yart A: The RASopathy family: Consequences of germline
activation of the RAS/MAPK pathway. Endocr Rev. 39:676–700. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kamihara J, Bourdeaut F, Foulkes WD,
Molenaar JJ, Mossé YP, Nakagawara A, Parareda A, Scollon SR,
Schneider KW, Skalet AH, et al: Retinoblastoma and neuroblastoma
predisposition and surveillance. Clin Cancer Res. 23:e98–e106.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dolecek TA, Propp JM, Stroup NE and
Kruchko C: CBTRUS statistical report: Primary brain and central
nervous system tumors diagnosed in the United States in 2005–2009.
Neuro Oncol. 14 (Suppl 5):v1–v49. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dunn GP, Rinne ML, Wykosky J, Genovese G,
Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, et
al: Emerging insights into the molecular and cellular basis of
glioblastoma. Genes Dev. 26:756–784. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lee E, Yong RL, Paddison P and Zhu J:
Comparison of glioblastoma (GBM) molecular classification methods.
Semin Cancer Biol. 53:201–211. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liang Y, Diehn M, Watson N, Bollen AW,
Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown
PO, et al: Gene expression profiling reveals molecularly and
clinically distinct subtypes of glioblastoma multiforme. Proc Natl
Acad Sci USA. 102:5814–5819. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mischel PS, Nelson SF and Cloughesy TF:
Molecular analysis of glioblastoma: Pathway profiling and its
implications for patient therapy. Cancer Biol Ther. 2:242–247.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Diehn M, Nardini C, Wang DS, McGovern S,
Jayaraman M, Liang Y, Aldape K, Cha S and Kuo MD: Identification of
noninvasive imaging surrogates for brain tumor gene-expression
modules. Proc Natl Acad Sci USA. 105:5213–5218. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Phillips HS, Kharbanda S, Chen R, Forrest
WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et
al: Molecular subclasses of high-grade glioma predict prognosis,
delineate a pattern of disease progression, and resemble stages in
neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Frattini V, Trifonov V, Chan JM, Castano
A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, et al: The
integrated landscape of driver genomic alterations in glioblastoma.
Nat Genet. 45:1141–1149. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lein PJ, Guo X, Shi GX, Moholt-Siebert M,
Bruun D and Andres DA: The novel GTPase Rit differentially
regulates axonal and dendritic growth. J Neurosci. 27:4725–4736.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cai W, Rudolph JL, Harrison SM, Jin L,
Frantz AL, Harrison DA and Andres DA: An evolutionarily conserved
Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress
resistance. Mol Biol Cell. 22:3231–3241. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shi GX and Andres DA: Rit contributes to
nerve growth factor-induced neuronal differentiation via activation
of B-Raf-extracellular signal-regulated kinase and p38
mitogen-activated protein kinase cascades. Mol Cell Biol.
25:830–846. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shi GX, Han J and Andres DA: Rin GTPase
couples nerve growth factor signaling to p38 and b-Raf/ERK pathways
to promote neuronal differentiation. J Biol Chem. 280:37599–37609.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Rusyn EV, Reynolds ER, Shao H, Grana TM,
Chan TO, Andres DA and Cox AD: Rit, a non-lipid-modified
Ras-related protein, transforms NIH3T3 cells without activating the
ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene. 19:4685–4694.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Knudson AG Jr: Mutation and cancer:
Statistical study of retinoblastoma. Proc Natl Acad Sci USA.
68:820–823. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ren R: Mechanisms of BCR-ABL in the
pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer.
5:172–183. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Garcia-Horton A and Lipton JH: Treatment
outcomes in chronic myeloid leukemia: Does one size fit all? J Natl
Compr Canc Netw. 18:1421–1428. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Crisà E, Nicolosi M, Ferri V, Favini C,
Gaidano G and Patriarca A: Atypical chronic myeloid leukemia: Where
are we now? Int J Mol Sci. 21:68622020. View Article : Google Scholar
|
|
104
|
Braun TP, Eide CA and Druker BJ: Response
and resistance to BCR-ABL1-targeted therapies. Cancer Cell.
37:530–542. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Vetrie D, Helgason GV and Copland M: The
leukaemia stem cell: Similarities, differences and clinical
prospects in CML and AML. Nat Rev Cancer. 20:158–173. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Evans DG, Bowers NL, Tobi S, Hartley C,
Wallace AJ, King AT, Lloyd SK, Rutherford SA, Hammerbeck-Ward C,
Pathmanaban ON, et al: Schwannomatosis: A genetic and
epidemiological study. J Neurol Neurosurg Psychiatry. 89:1215–1219.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kehrer-Sawatzki H, Farschtschi S, Mautner
VF and Cooper DN: The molecular pathogenesis of schwannomatosis, a
paradigm for the co-involvement of multiple tumour suppressor genes
in tumorigenesis. Hum Genet. 136:129–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Smith MJ, Isidor B, Beetz C, Williams SG,
Bhaskar SS, Richer W, O'Sullivan J, Anderson B, Daly SB, Urquhart
JE, et al: Mutations in LZTR1 add to the complex heterogeneity of
schwannomatosis. Neurology. 84:141–147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yamamoto GL, Aguena M, Gos M, Hung C,
Pilch J, Fahiminiya S, Abramowicz A, Cristian I, Buscarilli M,
Naslavsky MS, et al: Rare variants in SOS2 and LZTR1 are associated
with Noonan syndrome. J Med Genet. 52:413–421. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lamlum H, Ilyas M, Rowan A, Clark S,
Johnson V, Bell J, Frayling I, Efstathiou J, Pack K, Payne S, et
al: The type of somatic mutation at APC in familial adenomatous
polyposis is determined by the site of the germline mutation: A new
facet to Knudson's ‘two-hit’ hypothesis. Nat Med. 5:1071–1075.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hulsebos TJ, Plomp AS, Wolterman RA,
Robanus-Maandag EC, Baas F and Wesseling P: Germline mutation of
INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet.
80:805–810. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
112
|
Paganini I, Chang VY, Capone GL, Vitte J,
Benelli M, Barbetti L, Sestini R, Trevisson E, Hulsebos TJ,
Giovannini M, et al: Expanding the mutational spectrum of LZTR1 in
schwannomatosis. Eur J Hum Genet. 23:963–968. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Smith MJ, Pathmanaban ON, Coope DJ, King
AT and Evans DG: Comment on: SMARCB1 gene mutation predisposes to
earlier development of glioblastoma: A case report of familial GBM.
J Neuropathol Exp Neurol. 80:289–290. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Fonkem E, Peng S, Berens M and Mukherjee
S: Authors' reply: SMARCB1 gene mutation predisposes to earlier
development of glioblastoma: A case report of familial GBM. J
Neuropathol Exp Neurol. 80:290–291. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Louvrier C, Pasmant E, Briand-Suleau A,
Cohen J, Nitschké P, Nectoux J, Orhant L, Zordan C, Goizet C,
Goutagny S, et al: Targeted next-generation sequencing for
differential diagnosis of neurofibromatosis type 2,
schwannomatosis, and meningiomatosis. Neuro Oncol. 20:917–929.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Maurer GW, Malita A, Nagy S, Koyama T,
Werge TM, Halberg KA, Texada MJ and Rewitz K: Analysis of genes
within the schizophrenia-linked 22q11.2 deletion identifies
interaction of night owl/LZTR1 and NF1 in GABAergic sleep control.
PLoS Genet. 16:e10087272020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ballester R, Marchuk D, Boguski M, Saulino
A, Letcher R, Wigler M and Collins F: The NF1 locus encodes a
protein functionally related to mammalian GAP and yeast IRA
proteins. Cell. 63:851–859. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu P, Wang Y and Li X: Targeting the
untargetable KRAS in cancer therapy. Acta Pharm Sin B. 9:871–879.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Buscail L, Bournet B and Cordelier P: Role
of oncogenic KRAS in the diagnosis, prognosis and treatment of
pancreatic cancer. Nat Rev Gastroenterol Hepatol. 17:153–168. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Krastev DB and Buchholz F: Ribosome
biogenesis and p53: Who is regulating whom? Cell Cycle.
10:3417–3418. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Weiss RA: A perspective on the early days
of RAS research. Cancer Metastasis Rev. 39:1023–1028. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Uprety D and Adjei AA: KRAS: From
undruggable to a druggable cancer target. Cancer Treat Rev.
89:1020702020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Chen H and Zhao J: KRAS oncogene may be
another target conquered in non-small cell lung cancer (NSCLC).
Thorac Cancer. 11:3425–3435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Goulding RE, Chenoweth M, Carter GC, Boye
ME, Sheffield KM, John WJ, Leusch MS, Muehlenbein CE, Li L, Jen MH,
et al: KRAS mutation as a prognostic factor and predictive factor
in advanced/metastatic non-small cell lung cancer: A systematic
literature review and meta-analysis. Cancer Treat Res Commun.
24:1002002020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Passiglia F, Malapelle U, Del Re M, Righi
L, Pagni F, Furlan D, Danesi R, Troncone G and Novello S: KRAS
inhibition in non-small cell lung cancer: Past failures, new
findings and upcoming challenges. Eur J Cancer. 137:57–68. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Matthew B, Juliati R and Field SJ: GOLPH3
links the Golgi, DNA damage, and cancer. Cancer Res. 75:624–627.
2015. View Article : Google Scholar : PubMed/NCBI
|