Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes

  • Authors:
    • Amany Samir
    • Reda Abdel Tawab
    • Hend M. El Tayebi
  • View Affiliations

  • Published online on: June 7, 2021     https://doi.org/10.3892/ol.2021.12854
  • Article Number: 593
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long non‑coding RNAs (lncRNAs) have attracted widespread attention as potential biological and pathological regulators. lncRNAs are involved in several biological processes in cancer. Triple negative breast cancer (TNBC) is characterized by strong heterogeneity and aggressiveness. At present, the implication of microRNAs (miRs) and lncRNAs in immunotherapy has been poorly studied. Nevertheless, the blockade of immune checkpoints, particularly that of the programmed cell‑death protein‑1/programmed cell‑death ligand‑1 (PD‑L1) axis, is considered as a principle approach in breast cancer (BC) therapy. The present study aimed to investigate the interaction between immune‑modulatory upstream signaling pathways of the PD‑L1 transcript that could enhance personalized targeted therapy. MDA‑MB‑231 cells were transfected with miR‑182‑5p mimics followed by RNA extraction and cDNA synthesis using a reverse transcription kit, and the expression levels of the target genes were assessed by reverse transcription‑quantitative PCR. Furthermore, the expression levels of target genes were measured in tissues derived from 41 patients with BC, including patients with luminal BC and TNBC, as well as their adjacent lymph nodes. The results revealed that the expression levels of miR‑182‑5p, PD‑L1 and metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) were upregulated in MDA‑MB‑231 cells and BC tissues. However, X‑inactive specific transcript (XIST) expression was downregulated in cancer tissues and TNBC cells. Following co‑transfection of cells with small interfering RNAs specific for each target gene and miR‑182‑5p antagomirs, the effect of miR‑182‑5p was abolished in the presence of lncRNAs. Therefore, the results of the present study indicated that although miR‑182‑5p exhibited an oncogenic effect, XIST exerted a dominant effect on the regulation of the PD‑L1 signaling pathway via the inhibition of the oncogenic function of MALAT1.
View Figures
View References

Related Articles

Journal Cover

August-2021
Volume 22 Issue 2

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Samir A, Tawab RA and El Tayebi HM: Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes. Oncol Lett 22: 593, 2021
APA
Samir, A., Tawab, R.A., & El Tayebi, H.M. (2021). Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes. Oncology Letters, 22, 593. https://doi.org/10.3892/ol.2021.12854
MLA
Samir, A., Tawab, R. A., El Tayebi, H. M."Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes". Oncology Letters 22.2 (2021): 593.
Chicago
Samir, A., Tawab, R. A., El Tayebi, H. M."Long non‑coding RNAs XIST and MALAT1 hijack the PD‑L1 regulatory signaling pathway in breast cancer subtypes". Oncology Letters 22, no. 2 (2021): 593. https://doi.org/10.3892/ol.2021.12854