Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2021 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the MALAT1/yes‑associated protein signaling pathway

  • Authors:
    • Xudong Jiu
    • Yang Liu
    • Jin Wen
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China, Department of Ophthalmology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
    Copyright: © Jiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 597
    |
    Published online on: June 9, 2021
       https://doi.org/10.3892/ol.2021.12858
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Uveal melanoma (UM) is the most common ocular malignancy and has no effective clinical treatment. Therefore, novel drugs to suppress UM tumor progression are urgently required. The present study aimed to clarify the underlying mechanism of the inhibitory effects of artesunate on UM. By using plasmid transfection and detecting apoptotic level, the present study identified artesunate as a potential candidate for UM treatment. Compared with those in the vehicle (DMSO)‑treated control cells, artesunate enhanced the apoptotic rate and increased lactate dehydrogenase release, reactive oxygen species and IL1b and IL18 levels in C918 cells. Overexpression of yes‑associated protein (YAP) or metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) in C918 cells reversed the effects of artesunate and reduced the apoptotic rate compared with those observed in cells transfected with the negative control plasmid. Notably, verteporfin enhanced the effects of artesunate on C918 cells by increasing the apoptotic rate, indicating that combined therapy was more effective compared with treatment with artesunate alone. In conclusion, the results of the present study demonstrated that artesunate elevated the apoptotic rate and suppressed C918 cell viability by regulating the MALAT1/YAP signaling pathway, and these effects were enhanced by supplementation with verteporfin. These results suggested that artesunate may exert an inhibitory effect on C918 cells and that the MALAT1/YAP signaling may serve important role in mediating these effects, providing evidence of its potential for treating UM in the clinic.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM and Chen VW: Incidence of noncutaneous melanomas in the U.S. Cancer. 103:1000–1007. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Ortega MA, Fraile-Martinez O, Garcia-Honduvilla N, Álvarez-Mon M, Buján J and Teus MA: Update on uveal melanoma: Translational research from biology to clinical practice (review). Int J Oncol. 57:1262–1279. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Landreville S, Agapova OA and Harbour JW: Emerging insights into the molecular pathogenesis of uveal melanoma. Future Oncol. 4:629–636. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Singh AD, Bergman L and Seregard S: Uveal melanoma: Epidemiologic aspects. Ophthalmol Clin North Am. 1875–84. (viii)2005. View Article : Google Scholar : PubMed/NCBI

5 

Chandran SS, Somerville RPT, Yang JC, Sherry RM, Klebanoff CA, Goff SL, Wunderlich JR, Danforth DN, Zlott D, Paria BC, et al: Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 18:792–802. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Basile MS, Mazzon E, Russo A, Mammana S, Longo A, Bonfiglio V, Fallico M, Caltabiano R, Fagone P, Nicoletti F, et al: Differential modulation and prognostic values of immune-escape genes in uveal melanoma. PLoS One. 14:e02102762019. View Article : Google Scholar : PubMed/NCBI

7 

Petralia MC, Mazzon E, Fagone P, Russo A, Longo A, Avitabile T, Nicoletti F, Reibaldi M and Basile MS: Characterization of the pathophysiological role of CD47 in uveal melanoma. Molecules. 24:24502019. View Article : Google Scholar : PubMed/NCBI

8 

Basile MS, Mazzon E, Fagone P, Longo A, Russo A, Fallico M, Bonfiglio V, Nicoletti F, Avitabile T and Reibaldi M: Immunobiology of uveal melanoma: State of the art and therapeutic targets. Front Oncol. 9:11452019. View Article : Google Scholar : PubMed/NCBI

9 

Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, Falchook GS, Pant S, Whiteside M, Rasco DR, et al: Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol. 34:3562–3569. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Parker T, Rigney G, Kallos J, Stefko ST, Kano H, Niranjan A, Green AL, Aziz T, Rath P and Lunsford LD: Gamma knife radiosurgery for uveal melanomas and metastases: A systematic review and meta-analysis. Lancet Oncol. 21:1526–1536. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Selumetinib shows promise in metastatic uveal melanoma. Cancer Discov. 3:OF82013. View Article : Google Scholar

12 

Pelster MS, Gruschkus SK, Bassett R, Gombos DS, Shephard M, Posada L, Glover MS, Simien R, Diab A, Hwu P, et al: Nivolumab and ipilimumab in metastatic uveal melanoma: Results from a single-arm phase II study. J Clin Oncol. 39:599–607. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, Piulats JM, Wolter P, Cocquyt V, Chmielowski B, et al: Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: A phase III, multicenter, randomized trial (SUMIT). J Clin Oncol. 36:1232–1239. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Judd R, Bagley MC, Li M, Zhu Y, Lei C, Yuzuak S, Ekelöf M, Pu G, Zhao X, Muddiman DC and Xie DY: Artemisinin biosynthesis in non-glandular trichome cells of artemisia annua. Mol Plant. 12:704–714. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, et al: Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): An open-label, randomised trial. Lancet. 376:1647–1657. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Vivas L, Rattray L, Stewart L, Bongard E, Robinson BL, Peters W and Croft SL: Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo. Acta Trop. 105:222–228. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Zeng XZ, Zhang YY, Yang Q, Wang S, Zou BH, Tan YH, Zou M, Liu SW and Li XJ: Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca2+-NFATc1 signaling pathway. Acta Pharmacol Sin. 41:229–236. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Uzun T, Toptas O, Saylan A, Carver H and Turkoglu SA: Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg. 77:1092.e1–1092.e12. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Vatsveen TK, Myhre MR, Steen CB, Wälchli S, Lingjærde OC, Bai B, Dillard P, Theodossiou TA, Holien T, Sundan A, et al: Artesunate shows potent anti-tumor activity in B-cell lymphoma. J Hematol Oncol. 11:232018. View Article : Google Scholar : PubMed/NCBI

20 

Ishikawa C, Senba M and Mori N: Evaluation of artesunate for the treatment of adult T-cell leukemia/lymphoma. Eur J Pharmacol. 872:1729532020. View Article : Google Scholar : PubMed/NCBI

21 

Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Yao X, Zhao CR, Yin H, Wang K and Gao JJ: Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin. 41:1609–1620. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Chen S, Gan S, Han L, Li X, Xie X, Zou D and Sun H: Artesunate induces apoptosis and inhibits the proliferation, stemness, and tumorigenesis of leukemia. Ann Transl Med. 8:7672020. View Article : Google Scholar : PubMed/NCBI

24 

Beccafico S, Morozzi G, Marchetti MC, Riccardi C, Sidoni A, Donato R and Sorci G: Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells. Carcinogenesis. 36:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Zheng L and Pan J: The anti-malarial drug artesunate blocks Wnt/β-catenin pathway and inhibits growth, migration and invasion of uveal melanoma cells. Curr Cancer Drug Targets. 18:988–998. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A and Schuler G: Artesunate in the treatment of metastatic uveal melanoma-first experiences. Oncol Rep. 14:1599–1603. 2005.PubMed/NCBI

27 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Lin J, Zhang D, Fan Y, Chao Y, Chang J, Li N, Han L and Han C: Regulation of cancer stem cell self-renewal by HOXB9 antagonizes endoplasmic reticulum stress-induced melanoma cell apoptosis via the miR-765-FOXA2 axis. J Invest Dermatol. 138:1609–1619. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, et al: Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 26:919–931. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, Haber DA and Settleman J: TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell. 148:639–650. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Ogawa S, Fukuda A, Matsumoto Y, Hanyu Y, Sono M, Fukunaga Y, Masuda T, Araki O, Nagao M, Yoshikawa T, et al: SETDB1 inhibits p53-mediated apoptosis and is required for formation of pancreatic ductal adenocarcinomas in mice. Gastroenterology. 159:682–696.e13. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, et al: Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell. 32:490–505.e10. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Nangia V, Siddiqui FM, Caenepeel S, Timonina D, Bilton SJ, Phan N, Gomez-Caraballo M, Archibald HL, Li C, Fraser C, et al: Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer. Cancer Discov. 8:1598–1613. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Mao J, Tian Y, Wang C, Jiang K, Li R, Yao Y, Zhang R, Sun D, Liang R, Gao Z, et al: CBX2 regulates proliferation and apoptosis via the phosphorylation of YAP in hepatocellular carcinoma. J Cancer. 10:2706–2719. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Zhou X, Chen Y, Wang F, Wu H, Zhang Y, Liu J, Cai Y, Huang S, He N, Hu Z and Jin X: Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem Biol Interact. 331:1092732020. View Article : Google Scholar : PubMed/NCBI

36 

Zhou Y, Shan T, Ding W, Hua Z, Shen Y, Lu Z, Chen B and Dai T: Study on mechanism about long noncoding RNA MALAT1 affecting pancreatic cancer by regulating Hippo-YAP signaling. J Cell Physiol. 233:5805–5814. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Wu X, Wang Y, Zhong W, Cheng H and Tian Z: The long non-coding RNA MALAT1 enhances ovarian cancer cell stemness by inhibiting YAP translocation from nucleus to cytoplasm. Med Sci Monit. 26:e9220122020. View Article : Google Scholar : PubMed/NCBI

38 

Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y, et al: Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity. 48:675–687.e7. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Li H, Li Q, Dang K, Ma S, Cotton JL, Yang S, Zhu LJ, Deng AC, Ip YT, Johnson RL, et al: YAP/TAZ activation drives uveal melanoma initiation and progression. Cell Rep. 29:3200–3211.e4. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, et al: Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 50:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Matthews DR, Paldanius PM, Proot P, Chiang Y, Stumvoll M and Del Prato S; VERIFY study group, : Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet. 394:1519–1529. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D, Grauer O, et al: Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet. 393:678–688. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe D and Bombardier C: Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: Abridged Cochrane systematic review and network meta-analysis. BMJ. 353:i17772016. View Article : Google Scholar : PubMed/NCBI

45 

Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MR, Scudamore CL, Cereser B, Crnogorac-Jurcevic T, McDonald S, Elia G, et al: Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 27:123–137. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y and Liu Z: Intelligent albumin-MnO2 nanoparticles as pH-/H2 O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater. 28:7129–7136. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med. 7:987–989. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong J, Sun X and Li J: Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci. 108:478–487. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Singh AD, Turell ME and Topham AK: Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology. 118:1881–1885. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Alvarez-Rodriguez B, Latorre A, Posch C and Somoza A: Recent advances in uveal melanoma treatment. Med Res Rev. 37:1350–1372. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Prasad S, Yadav VR, Sundaram C, Reuter S, Hema PS, Nair MS, Chaturvedi MM and Aggarwal BB: Crotepoxide chemosensitizes tumor cells through inhibition of expression of proliferation, invasion, and angiogenic proteins linked to proinflammatory pathway. J Biol Chem. 291:169212016. View Article : Google Scholar : PubMed/NCBI

53 

Chian S, Thapa R, Chi Z, Wang XJ and Tang X: Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem Biophys Res Commun. 447:602–608. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Wilding JP: Combination therapy for obesity. J Psychopharmacol. 31:1503–1508. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Matsunaga S, Kishi T and Iwata N: Combination therapy with cholinesterase inhibitors and memantine for Alzheimer's disease: A systematic review and meta-analysis. Int J Neuropsychopharmacol. 18:pyu1152014.PubMed/NCBI

56 

Mijatović S, Savić-Radojević A, Plješa-Ercegovac M, Simić T, Nicoletti F and Maksimović-Ivanić D: The double-faced role of nitric oxide and reactive oxygen species in solid tumors. Antioxidants (Basel). 9:3742020. View Article : Google Scholar

57 

Assi M: The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol. 313:R646–R653. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H and LLeonart ME: Oxidative stress and cancer: An overview. Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y and Huang P: Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 69:2375–2383. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Mao X, Yu CR, Li WH and Li WX: Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Res. 18:879–888. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Takahashi M, Higuchi M, Makokha GN, Matsuki H, Yoshita M, Tanaka Y and Fujii M: HTLV-1 Tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10. Blood. 122:715–725. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Qin G, Wu L, Liu H, Pang Y, Zhao C, Wu S, Wang X and Chen T: Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells. Exp Cell Res. 336:308–317. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Koo JH and Guan KL: Interplay between YAP/TAZ and metabolism. Cell Metab. 28:196–206. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Zanconato F, Cordenonsi M and Piccolo S: YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Huang J, Wu S, Barrera J, Matthews K and Pan D: The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the drosophila homolog of YAP. Cell. 122:421–434. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Piccolo S, Dupont S and Cordenonsi M: The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev. 94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI

68 

White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB and Yi C: YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev Cell. 49:425–443.e9. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Dent P, Booth L, Roberts JL, Liu J, Poklepovic A, Lalani AS, Tuveson D, Martinez J and Hancock JF: Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene. 38:5890–5904. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Brouwer NJ, Konstantinou EK, Gragoudas ES, Marinkovic M, Luyten GPM, Kim IK, Jager MJ and Vavvas DG: Targeting the YAP/TAZ pathway in uveal and conjunctival melanoma with verteporfin. Invest Ophthalmol Vis Sci. 62:32021. View Article : Google Scholar : PubMed/NCBI

71 

Kumar VL, Verma S and Das P: Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. Drug Dev Res. 80:1089–1097. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Feng FB and Qiu HY: Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother. 102:1209–1220. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI

75 

He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ and Han J: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25:1285–1298. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Lv Y, Kim K, Sheng Y, Cho J, Qian Z, Zhao YY and Hu G, Pan D, Malik AB and Hu G: YAP controls endothelial activation and vascular inflammation through TRAF6. Circ Res. 123:43–56. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB and Chess A: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 8:392007. View Article : Google Scholar : PubMed/NCBI

78 

Zhang X, Hamblin MH and Yin KJ: The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol. 14:1705–1714. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, Di W, Hu B, An J, Kong L, et al: m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 12:1352019. View Article : Google Scholar : PubMed/NCBI

80 

Sun Y, Jiang T, Jia Y, Zou J, Wang X and Gu W: LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle. 18:2509–2523. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Wang J, Wang H, Zhang Y, Zhen N, Zhang L, Qiao Y, Weng W, Liu X, Ma L, Xiao W, et al: Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cell Signal. 26:1048–1059. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiu X, Liu Y and Wen J: Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway. Oncol Lett 22: 597, 2021.
APA
Jiu, X., Liu, Y., & Wen, J. (2021). Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway. Oncology Letters, 22, 597. https://doi.org/10.3892/ol.2021.12858
MLA
Jiu, X., Liu, Y., Wen, J."Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway". Oncology Letters 22.2 (2021): 597.
Chicago
Jiu, X., Liu, Y., Wen, J."Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway". Oncology Letters 22, no. 2 (2021): 597. https://doi.org/10.3892/ol.2021.12858
Copy and paste a formatted citation
x
Spandidos Publications style
Jiu X, Liu Y and Wen J: Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway. Oncol Lett 22: 597, 2021.
APA
Jiu, X., Liu, Y., & Wen, J. (2021). Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway. Oncology Letters, 22, 597. https://doi.org/10.3892/ol.2021.12858
MLA
Jiu, X., Liu, Y., Wen, J."Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway". Oncology Letters 22.2 (2021): 597.
Chicago
Jiu, X., Liu, Y., Wen, J."Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the <em>MALAT1</em>/yes‑associated protein signaling pathway". Oncology Letters 22, no. 2 (2021): 597. https://doi.org/10.3892/ol.2021.12858
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team