|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dekker E, Tanis PJ, Vleugels JL, Kasi PM
and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ,
Meester RG, Barzi A and Jemal A: Colorectal cancer statistics,
2017. CA Cancer J Clin. 67:177–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Piawah S and Venook AP: Targeted therapy
for colorectal cancer metastases: A review of current methods of
molecularly targeted therapy and the use of tumor biomarkers in the
treatment of metastatic colorectal cancer. Cancer. 125:4139–4147.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu J, Liu T, Wang X and He A: Circles
reshaping the RNA world: From waste to treasure. Mol Cancer.
16:582017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cao Q, Guo Z, Du S, Ling H and Song C:
Circular RNAs in the pathogenesis of atherosclerosis. Life Sci.
255:1178372020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zaiou M: The emerging role and promise of
circular RNAs in obesity and related metabolic disorders. Cells.
9:92020. View Article : Google Scholar
|
|
10
|
Zaiou M: circRNAs signature as potential
diagnostic and prognostic biomarker for diabetes mellitus and
related cardiovascular complications. Cells. 9:92020. View Article : Google Scholar
|
|
11
|
Ma Y, Liu Y and Jiang Z: CircRNAs: A new
perspective of biomarkers in the nervous system. Biomed
Pharmacother. 128:1102512020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bachmayr-Heyda A, Reiner AT, Auer K,
Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW,
Zeillinger R and Pils D: Correlation of circular RNA abundance with
proliferation - exemplified with colorectal and ovarian cancer,
idiopathic lung fibrosis, and normal human tissues. Sci Rep.
5:80572015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Patop IL and Kadener S: circRNAs in
Cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen LL: The biogenesis and emerging roles
of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kristensen LS, Andersen MS, Stagsted LV,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nilsen TW and Graveley BR: Expansion of
the eukaryotic proteome by alternative splicing. Nature.
463:457–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen LL: The expanding regulatory
mechanisms and cellular functions of circular RNAs. Nat Rev Mol
Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang C, Liang D, Tatomer DC and Wilusz
JE: A length-dependent evolutionarily conserved pathway controls
nuclear export of circular RNAs. Genes Dev. 32:639–644. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Park OH, Ha H, Lee Y, Boo SH, Kwon DH,
Song HK and Kim YK: Endoribonucleolytic cleavage of m6A-containing
RNAs by RNase P/MRP complex. Mol Cell. 74:494–507.e8. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin
D, Liu J and Sun Z: The role of N6-methyladenosine (m6A)
modification in the regulation of circRNAs. Mol Cancer. 19:1052020.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Thomson DW and Dinger ME: Endogenous
microRNA sponges: Evidence and controversy. Nat Rev Genet.
17:272–283. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zang J, Lu D and Xu A: The interaction of
circRNAs and RNA binding proteins: An important part of circRNA
maintenance and function. J Neurosci Res. 98:87–97. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Huang A, Zheng H, Wu Z, Chen M and Huang
Y: Circular RNA-protein interactions: Functions, mechanisms, and
identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Holdt LM, Stahringer A, Sass K, Pichler G,
Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou
A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA
maturation and atherosclerosis in humans. Nat Commun. 7:124292016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang
Z and Yang BB: Induction of tumor apoptosis through a circular RNA
enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu B, Ye B, Zhu X, Yang L, Li H, Liu N,
Zhu P, Lu T, He L, Tian Y, et al: An inducible circular RNA
circKcnt2 inhibits ILC3 activation to facilitate colitis
resolution. Nat Commun. 11:40762020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q,
Tang Q, Shan C, Lv Y, Zhang K, et al: CircMRPS35 suppresses gastric
cancer progression via recruiting KAT7 to govern histone
modification. Mol Cancer. 19:562020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kong S, Tao M, Shen X and Ju S:
Translatable circRNAs and lncRNAs: Driving mechanisms and functions
of their translation products. Cancer Lett. 483:59–65. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Prats AC, David F, Diallo LH, Roussel E,
Tatin F, Garmy-Susini B and Lacazette E: Circular RNA, the key for
translation. Int J Mol Sci. 21:212020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 is a circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liang WC, Wong CW, Liang PP, Shi M, Cao Y,
Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM, et al: Translation of the
circular RNA circβ-catenin promotes liver cancer cell growth
through activation of the Wnt pathway. Genome Biol. 20:842019.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ge J, Jin Y, Lv X, Liao Q, Luo C, Ye G and
Zhang X: Expression profiles of circular RNAs in human colorectal
cancer based on RNA deep sequencing. J Clin Lab Anal.
33:e229522019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ding B, Yao M, Fan W and Lou W:
Whole-transcriptome analysis reveals a potential
hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory
sub-network in colorectal cancer. Aging (Albany NY). 12:5259–5279.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu
H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in
body fluids as cancer biomarkers: The new frontier of liquid
biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen HY, Li XN, Ye CX, Chen ZL and Wang
ZJ: Circular RNA circHUWE1 is upregulated and promotes cell
proliferation, migration and invasion in colorectal cancer by
sponging miR-486. OncoTargets Ther. 13:423–434. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li XN, Wang ZJ, Ye CX, Zhao BC, Huang XX
and Yang L: Circular RNA circVAPA is up-regulated and exerts
oncogenic properties by sponging miR-101 in colorectal cancer.
Biomed Pharmacother. 112:1086112019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang J, Li X, Lu L, He L, Hu H and Xu Z:
Circular RNA hsa_circ_0000567 can be used as a promising diagnostic
biomarker for human colorectal cancer. J Clin Lab Anal.
32:e223792018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ye DX, Wang SS, Huang Y and Chi P: A
3-circular RNA signature as a noninvasive biomarker for diagnosis
of colorectal cancer. Cancer Cell Int. 19:2762019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin J, Cai D, Li W, Yu T, Mao H, Jiang S
and Xiao B: Plasma circular RNA panel acts as a novel diagnostic
biomarker for colorectal cancer. Clin Biochem. 74:60–68. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hsiao KY, Lin YC, Gupta SK, Chang N, Yen
L, Sun HS and Tsai SJ: Noncoding effects of circular RNA CCDC66
promote colon cancer growth and metastasis. Cancer Res.
77:2339–2350. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xie Y, Li J, Li P, Li N, Zhang Y, Binang
H, Zhao Y, Duan W, Chen Y, Wang Y, et al: RNA-Seq profiling of
serum exosomal circular RNAs reveals Circ-PNN as a potential
biomarker for human colorectal cancer. Front Oncol. 10:9822020.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pan B, Qin J, Liu X, He B, Wang X, Pan Y,
Sun H, Xu T, Xu M, Chen X, et al: Identification of serum exosomal
hsa-circ-0004771 as a novel diagnostic biomarker of colorectal
cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen P, Yao Y, Yang N, Gong L, Kong Y and
Wu A: Circular RNA circCTNNA1 promotes colorectal cancer
progression by sponging miR-149-5p and regulating FOXM1 expression.
Cell Death Dis. 11:5572020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhou C, Liu HS, Wang FW, Hu T, Liang ZX,
Lan N, He XW, Zheng XB, Wu XJ, Xie D, et al: circCAMSAP1 Promotes
tumor growth in colorectal cancer via the miR-328-5p/E2F1 axis. Mol
Ther. 28:914–928. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang W, Yang S, Liu Y, Wang Y, Lin T, Li
Y and Zhang R: Hsa_circ_0007534 as a blood-based marker for the
diagnosis of colorectal cancer and its prognostic value. Int J Clin
Exp Pathol. 11:1399–1406. 2018.PubMed/NCBI
|
|
48
|
Zhang R, Xu J, Zhao J and Wang X:
Silencing of hsa_circ_0007534 suppresses proliferation and induces
apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci.
22:118–126. 2018.PubMed/NCBI
|
|
49
|
Ji W, Qiu C, Wang M, Mao N, Wu S and Dai
Y: Hsa_circ_0001649: A circular RNA and potential novel biomarker
for colorectal cancer. Biochem Biophys Res Commun. 497:122–126.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang Y, Li Z, Xu S and Guo J: Novel
potential tumor biomarkers: Circular RNAs and exosomal circular
RNAs in gastrointestinal malignancies. J Clin Lab Anal.
34:e233592020.PubMed/NCBI
|
|
51
|
Zhuo F, Lin H, Chen Z, Huang Z and Hu J:
The expression profile and clinical significance of circRNA0003906
in colorectal cancer. OncoTargets Ther. 10:5187–5193. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ruan H, Deng X, Dong L, Yang D, Xu Y, Peng
H and Guan M: Circular RNA circ_0002138 is down-regulated and
suppresses cell proliferation in colorectal cancer. Biomed
Pharmacother. 111:1022–1028. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang X, Zhang Y, Huang L, Zhang J, Pan F,
Li B, Yan Y, Jia B, Liu H, Li S, et al: Decreased expression of
hsa_circ_001988 in colorectal cancer and its clinical
significances. Int J Clin Exp Pathol. 8:16020–16025.
2015.PubMed/NCBI
|
|
54
|
Li J, Ni S, Zhou C and Ye M: The
expression profile and clinical application potential of
hsa_circ_0000711 in colorectal cancer. Cancer Manag Res.
10:2777–2784. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yuan Y, Liu W, Zhang Y, Zhang Y and Sun S:
CircRNA circ_0026344 as a prognostic biomarker suppresses
colorectal cancer progression via microRNA-21 and microRNA-31.
Biochem Biophys Res Commun. 503:870–875. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang Z, Su M, Xiang B, Zhao K and Qin B:
Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC.
Biochem Biophys Res Commun. 512:716–722. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ge Z, Li LF, Wang CY, Wang Y and Ma WL:
CircMTO1 inhibits cell proliferation and invasion by regulating
Wnt/β-catenin signaling pathway in colorectal cancer. Eur Rev Med
Pharmacol Sci. 22:8203–8209. 2018.PubMed/NCBI
|
|
58
|
Ren C, Zhang Z, Wang S, Zhu W, Zheng P and
Wang W: Circular RNA hsa_circ_0001178 facilitates the invasion and
metastasis of colorectal cancer through upregulating ZEB1 via
sponging multiple miRNAs. Biol Chem. 401:487–496. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen Z, Ren R, Wan D, Wang Y, Xue X, Jiang
M, Shen J, Han Y, Liu F, Shi J, et al: Hsa_circ_101555 functions as
a competing endogenous RNA of miR-597-5p to promote colorectal
cancer progression. Oncogene. 38:6017–6034. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li C and Zhou H: Circular RNA
hsa_circRNA_102209 promotes the growth and metastasis of colorectal
cancer through miR-761-mediated Ras and Rab interactor 1 signaling.
Cancer Med. 9:6710–6725. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li XN, Wang ZJ, Ye CX, Zhao BC, Li ZL and
Yang Y: RNA sequencing reveals the expression profiles of circRNA
and indicates that circDDX17 acts as a tumor suppressor in
colorectal cancer. J Exp Clin Cancer Res. 37:3252018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhu CL, Sha X, Wang Y, Li J, Zhang MY, Guo
ZY, Sun SA and He JD: Circular RNA hsa_circ_0007142 is upregulated
and targets miR-103a-2-5p in colorectal cancer. J Oncol.
2019:98368192019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yin W, Xu J, Li C, Dai X, Wu T and Wen J:
Circular RNA circ_0007142 facilitates colorectal cancer progression
by modulating CDC25A expression via miR-122-5p. OncoTargets Ther.
13:3689–3701. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu L, Xia J, Yang J, Shi Y, Xia H, Xiang X
and Yu X: Circ-ZNF609 promotes migration of colorectal cancer by
inhibiting Gli1 expression via microRNA-150. J BUON. 23:1343–1349.
2018.PubMed/NCBI
|
|
65
|
Zhang X, Zhao Y, Kong P, Han M and Li B:
Expression of circZNF609 is down-regulated in colorectal cancer
tissue and promotes apoptosis in colorectal cancer cells by
upregulating p53. Med Sci Monit. 25:5977–5985. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang J, Antin P, Berx G, Blanpain C,
Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori
G, et al EMT International Association (TEMTIA), : Guidelines and
definitions for research on epithelial-mesenchymal transition. Nat
Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Xu H, Wang C, Song H, Xu Y and Ji G:
RNA-Seq profiling of circular RNAs in human colorectal Cancer liver
metastasis and the potential biomarkers. Mol Cancer. 18:82019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ma X, Lv L and Xing C: Circ_ 0115744 acts
as miR-144 sponge to promote and predict the metastasis of
colorectal cancer. Aging (Albany NY). 13:5892–5905. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xiao H and Liu M: Circular RNA
hsa_circ_0053277 promotes the development of colorectal cancer by
upregulating matrix metallopeptidase 14 via miR-2467-3p
sequestration. J Cell Physiol. 235:2881–2890. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Slack A, Chen Z, Tonelli R, Pule M, Hunt
L, Pession A and Shohet JM: The p53 regulatory gene MDM2 is a
direct transcriptional target of MYCN in neuroblastoma. Proc Natl
Acad Sci USA. 102:731–736. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Haupt Y, Maya R, Kazaz A and Oren M: Mdm2
promotes the rapid degradation of p53. Nature. 387:296–299. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chaudhary R, Muys BR, Grammatikakis I, De
S, Abdelmohsen K, Li XL, Zhu Y, Daulatabad SV, Tsitsipatis D,
Meltzer PS, et al: A circular RNA from the MDM2 locus controls cell
cycle progression by suppressing p53 levels. Mol Cell Biol.
40:402020. View Article : Google Scholar
|
|
73
|
Jin C, Wang A, Liu L, Wang G and Li G:
Hsa_circ_0136666 promotes the proliferation and invasion of
colorectal cancer through miR-136/SH2B1 axis. J Cell Physiol.
234:7247–7256. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang F, Wang J, Cao X, Xu L and Chen L:
Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits
tumor growth by promoting p16 expression. Biomed Pharmacother.
98:775–782. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang ZJ, Zhang YH, Qin XJ, Wang YX and Fu
J: Circular RNA circDENND4C facilitates proliferation, migration
and glycolysis of colorectal cancer cells through miR-760/GLUT1
axis. Eur Rev Med Pharmacol Sci. 24:2387–2400. 2020.PubMed/NCBI
|
|
76
|
Liu Y, Li H, Ye X, Ji A, Fu X, Wu H and
Zeng X: Hsa_circ_0000231 knockdown inhibits the glycolysis and
progression of colorectal cancer cells by regulating
miR-502-5p/MYO6 axis. World J Surg Oncol. 18:2552020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R,
Thorne RF, Zhang XD, Hu W and Wu M: CircACC1 regulates assembly and
activation of AMPK complex under metabolic stress. Cell Metab.
30:157–173.e7. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yu J, Chen X, Li J and Wang F: CircRUNX1
functions as an oncogene in colorectal cancer by regulating
circRUNX1/miR-485-5p/SLC38A1 axis. Eur J Clin Invest. Mar
26–2021.(Epub ahead of print). doi: 10.1111/eci.13540. View Article : Google Scholar
|
|
79
|
Chen C, Huang Z, Mo X, Song Y, Li X, Li X
and Zhang M: The circular RNA 001971/miR-29c-3p axis modulates
colorectal cancer growth, metastasis, and angiogenesis through
VEGFA. J Exp Clin Cancer Res. 39:912020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen LY, Wang L, Ren YX, Pang Z, Liu Y,
Sun XD, Tu J, Zhi Z, Qin Y, Sun LN, et al: The circular RNA
circ-ERBIN promotes growth and metastasis of colorectal cancer by
miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α
translation. Mol Cancer. 19:1642020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zeng W, Liu Y, Li WT, Li Y and Zhu JF:
CircFNDC3B sequestrates miR-937-5p to derepress TIMP3 and inhibit
colorectal cancer progression. Mol Oncol. 14:2960–2984. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang L, Dong X, Yan B, Yu W and Shan L:
CircAGFG1 drives metastasis and stemness in colorectal cancer by
modulating YY1/CTNNB1. Cell Death Dis. 11:5422020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhan W, Liao X, Wang Y, Li L, Li J, Chen
Z, Tian T and He J: circCTIC1 promotes the self-renewal of colon
TICs through BPTF-dependent c-Myc expression. Carcinogenesis.
40:560–568. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vinay DS, Ryan EP, Pawelec G, Talib WH,
Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, et
al: Immune evasion in cancer: Mechanistic basis and therapeutic
strategies. Semin Cancer Biol. 35 (Suppl 1):S185–S198. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Su R, Dong L, Li Y, Gao M, Han L,
Wunderlich M, Deng X, Li H, Huang Y, Gao L, et al: Targeting FTO
suppresses cancer stem cell maintenance and immune evasion. Cancer
Cell. 38:79–96.e11. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jiang Z, Hou Z, Liu W, Yu Z, Liang Z and
Chen S: Circ-KRT6C promotes malignant progression and immune
evasion of colorectal cancer through miR-485-3p/PDL1 axis. J
Pharmacol Exp Ther. Mar 26–2021.(Epub ahead of print). doi:
10.1124/jpet.121.000518. View Article : Google Scholar
|
|
87
|
Lu C, Fu L, Qian X, Dou L and Cang S:
Knockdown of circular RNA circ-FARSA restricts colorectal cancer
cell growth through regulation of miR-330-5p/LASP1 axis. Arch
Biochem Biophys. 689:1084342020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lu H, Yao B, Wen X and Jia B: FBXW7
circular RNA regulates proliferation, migration and invasion of
colorectal carcinoma through NEK2, mTOR, and PTEN signaling
pathways in vitro and in vivo. BMC Cancer. 19:9182019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen LY, Zhi Z, Wang L, Zhao YY, Deng M,
Liu YH, Qin Y, Tian MM, Liu Y, Shen T, et al: NSD2 circular RNA
promotes metastasis of colorectal cancer by targeting
miR-199b-5p-mediated DDR1 and JAG1 signalling. J Pathol.
248:103–115. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen ZL, Li XN, Ye CX, Chen HY and Wang
ZJ: Elevated levels of circRUNX1 in colorectal cancer promote cell
growth and metastasis via miR-145-5p/IGF1 signalling. OncoTargets
Ther. 13:4035–4048. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cui W, Dai J, Ma J and Gu H:
circCDYL/microRNA-105-5p participates in modulating growth and
migration of colon cancer cells. Gen Physiol Biophys. 38:485–495.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Du H, He Z, Feng F, Chen D, Zhang L, Bai
J, Wu H, Han E and Zhang J: Hsa_circ_0038646 promotes cell
proliferation and migration in colorectal cancer via
miR-331-3p/GRIK3. Oncol Lett. 20:266–274. 2020.PubMed/NCBI
|
|
93
|
Geng Y, Zheng X, Hu W, Wang Q, Xu Y, He W,
Wu C, Zhu D, Wu C and Jiang J: Hsa_circ_0009361 acts as the sponge
of miR-582 to suppress colorectal cancer progression by regulating
APC2 expression. Clin Sci (Lond). 133:1197–1213. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Han K, Wang FW, Cao CH, Ling H, Chen JW,
Chen RX, Feng ZH, Luo J, Jin XH, Duan JL, et al: CircLONP2 enhances
colorectal carcinoma invasion and metastasis through modulating the
maturation and exosomal dissemination of microRNA-17. Mol Cancer.
19:602020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
He JH, Li YG, Han ZP, Zhou JB, Chen WM, Lv
YB, He ML, Zuo JD and Zheng L: The CircRNA-ACAP2/Hsa-miR-21-5p/
Tiam1 regulatory feedback circuit affects the proliferation,
migration, and invasion of colon cancer SW480 cells. Cell Physiol
Biochem. 49:1539–1550. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jian X, He H, Zhu J, Zhang Q, Zheng Z,
Liang X, Chen L, Yang M, Peng K, Zhang Z, et al: Hsa_circ_001680
affects the proliferation and migration of CRC and mediates its
chemoresistance by regulating BMI1 through miR-340. Mol Cancer.
19:202020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jin Y, Yu LL, Zhang B, Liu CF and Chen Y:
Circular RNA hsa_circ_0000523 regulates the proliferation and
apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med
Biol Res. 51:e78112018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li H, Jin X, Liu B, Zhang P, Chen W and Li
Q: CircRNA CBL.11 suppresses cell proliferation by sponging
miR-6778-5p in colorectal cancer. BMC Cancer. 19:8262019.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Li R, Wu B, Xia J, Ye L and Yang X:
Circular RNA hsa_circRNA_102958 promotes tumorigenesis of
colorectal cancer via miR-585/CDC25B axis. Cancer Manag Res.
11:6887–6893. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li W, Xu Y, Wang X, Cao G, Bu W, Wang X,
Fang Z, Xu Y, Dong M and Tao Q: circCCT3 modulates vascular
endothelial growth factor A and Wnt signaling to enhance colorectal
cancer metastasis through sponging miR-613. DNA Cell Biol.
39:118–125. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z,
Xu B, Wu C, Zhou Q, Hu W, Wu C, et al: A novel protein encoded by a
circular RNA circPPP1R12A promotes tumor pathogenesis and
metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer.
18:472019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhao H, Chen S and Fu Q: Exosomes from
CD133+ cells carrying circ-ABCC1 mediate cell stemness
and metastasis in colorectal cancer. J Cell Biochem. 121:3286–3297.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang Y, Zhang Z, Yi Y, Wang Y and Fu J:
CircNOL10 acts as a sponge of miR-135a/b-5p in suppressing
colorectal cancer progression via regulating KLF9. OncoTargets
Ther. 13:5165–5176. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang XL, Xu LL and Wang F:
Hsa_circ_0020397 regulates colorectal cancer cell viability,
apoptosis and invasion by promoting the expression of the miR-138
targets TERT and PD-L1. Cell Biol Int. 41:1056–1064. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang X, Xu Y, Yamaguchi K, Hu J, Zhang L,
Wang J, Tian J and Chen W: Circular RNA circVAPA knockdown
suppresses colorectal cancer cell growth process by regulating
miR-125a/CREB5 axis. Cancer Cell Int. 20:1032020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang Q, Zhang C, Ma JX, Ren H, Sun Y and
Xu JZ: Circular RNA PIP5K1A promotes colon cancer development
through inhibiting miR-1273a. World J Gastroenterol. 25:5300–5309.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T,
Sun H, Pan Y, He B and Wang S: CircHIPK3 promotes colorectal cancer
growth and metastasis by sponging miR-7. Cell Death Dis. 9:4172018.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shen T, Cheng X, Liu X, Xia C, Zhang H,
Pan D, Zhang X and Li Y: Circ_0026344 restrains metastasis of human
colorectal cancer cells via miR-183. Artif Cells Nanomed
Biotechnol. 47:4038–4045. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yong W, Zhuoqi X, Baocheng W, Dongsheng Z,
Chuan Z and Yueming S: Hsa_circ_0071589 promotes carcinogenesis via
the miR-600/EZH2 axis in colorectal cancer. Biomed Pharmacother.
102:1188–1194. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yang Z, Zhang J, Lu D, Sun Y, Zhao X, Wang
X, Zhou W, He Q and Jiang Z: Hsa_circ_0137008 suppresses the
malignant phenotype in colorectal cancer by acting as a
microRNA-338-5p sponge. Cancer Cell Int. 20:672020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yang L, Sun H, Liu X, Chen J, Tian Z, Xu
J, Xiang B and Qin B: Circular RNA hsa_circ_0004277 contributes to
malignant phenotype of colorectal cancer by sponging miR-512-5p to
upregulate the expression of PTMA. J Cell Physiol. Jan
21–2020.(Epub ahead of print). doi: 10.1002/jcp.29484.
|
|
112
|
Li X, Wang J, Zhang C, Lin C, Zhang J,
Zhang W, Zhang W, Lu Y, Zheng L and Li X: Circular RNA circITGA7
inhibits colorectal cancer growth and metastasis by modulating the
Ras pathway and upregulating transcription of its host gene ITGA7.
J Pathol. 246:166–179. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yang G, Zhang T, Ye J, Yang J, Chen C, Cai
S and Ma J: Circ-ITGA7 sponges miR-3187-3p to upregulate ASXL1,
suppressing colorectal cancer proliferation. Cancer Manag Res.
11:6499–6509. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang B, Du K, Yang C, Xiang L, Xu Y, Cao
C, Zhang J and Liu W: CircPRMT5 circular RNA promotes proliferation
of colorectal cancer through sponging miR-377 to induce E2F3
expression. J Cell Mol Med. 24:3431–3437. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Xu XW, Zheng BA, Hu ZM, Qian ZY, Huang CJ,
Liu XQ and Wu WD: Circular RNA hsa_circ_000984 promotes colon
cancer growth and metastasis by sponging miR-106b. Oncotarget.
8:91674–91683. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Xian ZY, Hu B, Wang T, Cai JL, Zeng JY,
Zou Q and Zhu PX: CircABCB10 silencing inhibits the cell
ferroptosis and apoptosis by regulating the miR-326/CCL5 axis in
rectal cancer. Neoplasma. 67:1063–1073. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang X, Ren Y, Ma S and Wang S: Circular
RNA 0060745, a novel circRNA, promotes colorectal cancer cell
proliferation and metastasis through miR-4736 sponging. OncoTargets
Ther. 13:1941–1951. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang J, Luo J, Liu G and Li X: Circular
RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation
and migration via the miR-382-5p/PTEN axis. Biochem Biophys Res
Commun. 527:503–510. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang DK, Chong RF, Song BL, Fan KF and Liu
YF: Circular RNA circ-SMAD7 is downregulated in colorectal cancer
and suppresses tumor metastasis by regulating epithelial
mesenchymal transition. Eur Rev Med Pharmacol Sci. 24:1736–1742.
2020.PubMed/NCBI
|
|
120
|
Pei FL, Cao MZ and Li YF: Circ_0000218
plays a carcinogenic role in colorectal cancer progression by
regulating miR-139-3p/RAB1A axis. J Biochem. 167:55–65. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ma Z, Han C, Xia W, Wang S, Li X, Fang P,
Yin R, Xu L and Yang L: circ5615 functions as a ceRNA to promote
colorectal cancer progression by upregulating TNKS. Cell Death Dis.
11:3562020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lu X, Yu Y, Liao F and Tan S: Homo sapiens
circular RNA 0079993 (hsa_circ_0079993) of the POLR2J4 gene acts as
an oncogene in colorectal cancer through the microRNA-203a-3p.1 and
CREB1 axis. Med Sci Monit. 25:6872–6883. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Li YF, Pei FL and Cao MZ: CircRNA_101951
promotes migration and invasion of colorectal cancer cells by
regulating the KIF3A-mediated EMT pathway. Exp Ther Med.
19:3355–3361. 2020.PubMed/NCBI
|
|
124
|
Li Y, Li C, Xu R, Wang Y, Li D and Zhang
B: A novel circFMN2 promotes tumor proliferation in CRC by
regulating the miR-1182/hTERT signaling pathways. Clin Sci (Lond).
133:2463–2479. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chen C, Yuan W, Zhou Q, Shao B, Guo Y,
Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al:
N6-methyladenosine-induced circ1662 promotes metastasis of
colorectal cancer by accelerating YAP1 nuclear localization.
Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Liu X, Qin Y, Tang X, Wang Y, Bian C and
Zhong J: Circular RNA circ_0000372 contributes to the
proliferation, migration and invasion of colorectal cancer by
elevating IL6 expression via sponging miR-495. Anticancer Drugs.
32:296–305. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wang X, Zhang H, Yang H, Bai M, Ning T,
Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA
promotes glycolysis to induce chemoresistance through the
miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang L, Peng X, Lu X, Wei Q, Chen M and
Liu L: Inhibition of hsa_circ_0001313 (circCCDC66) induction
enhances the radio-sensitivity of colon cancer cells via tumor
suppressor miR-338-3p: Effects of cicr_0001313 on colon cancer
radio-sensitivity. Pathol Res Pract. 215:689–696. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lin YC, Yu YS, Lin HH and Hsiao KY:
Oxaliplatin-Induced DHX9 phosphorylation promotes oncogenic
circular RNA CCDC66 expression and development of chemoresistance.
Cancers (Basel). 12:122020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Chen H, Pei L, Xie P and Guo G: Circ-PRKDC
contributes to 5-fluorouracil resistance of colorectal cancer cells
by regulating miR-375/FOXM1 axis and Wnt/β-catenin pathway.
OncoTargets Ther. 13:5939–5953. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
He X, Ma J, Zhang M, Cui J and Yang H:
Circ_0007031 enhances tumor progression and promotes 5-fluorouracil
resistance in colorectal cancer through regulating miR-133b/ABCC5
axis. Cancer Biomark. 29:531–542. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Wang Y, Wang H, Zhang J, Chu Z, Liu P,
Zhang X, Li C and Gu X: Circ_0007031 serves as a sponge of miR-760
to regulate the growth and chemoradiotherapy resistance of
colorectal cancer via regulating DCP1A. Cancer Manag Res.
12:8465–8479. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Xiong W, Ai YQ, Li YF, Ye Q, Chen ZT, Qin
JY, Liu QY, Wang H, Ju YH, Li WH, et al: Microarray analysis of
circular RNA expression profile associated with
5-fluorouracil-based chemoradiation resistance in colorectal cancer
cells. BioMed Res Int. 2017:84216142017. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Xu Y, Qiu A, Peng F, Tan X, Wang J and
Gong X: Exosomal transfer of circular RNA FBXW7 ameliorates the
chemoresistance to oxaliplatin in colorectal cancer by sponging
miR-18b-5p. Neoplasma. 68:108–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Abu N, Hon KW, Jeyaraman S, Yahaya A,
Abdullah NM, Mustangin M, Sulaiman SA, Jamal R and Ab-Mutalib NS:
Identification of differentially expressed circular RNAs in
chemoresistant colorectal cancer. Epigenomics. 11:875–884. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Ren TJ, Liu C, Hou JF and Shan FX:
CircDDX17 reduces 5-fluorouracil resistance and hinders
tumorigenesis in colorectal cancer by regulating miR-31-5p/KANK1
axis. Eur Rev Med Pharmacol Sci. 24:1743–1754. 2020.PubMed/NCBI
|
|
138
|
Zhang W, Wang Z, Cai G and Huang P:
Downregulation of Circ_0071589 suppresses cisplatin resistance in
colorectal cancer by regulating the miR-526b-3p/KLF12 axis. Cancer
Manag Res. 13:2717–2731. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zhao K, Cheng X, Ye Z, Li Y, Peng W, Wu Y
and Xing C: Exosome-mediated transfer of circ_0000338 enhances 5-FU
resistance in colorectal cancer through regulating miR-217 and
miR-485-3p. Mol Cell Biol. 41:e00517–20. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Xi L, Liu Q, Zhang W, Luo L, Song J, Liu
R, Wei S and Wang Y: Circular RNA circCSPP1 knockdown attenuates
doxorubicin resistance and suppresses tumor progression of
colorectal cancer via miR-944/FZD7 axis. Cancer Cell Int.
21:1532021. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Liu X, Abraham JM, Cheng Y, Wang Z, Wang
Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al:
Synthetic circular RNA functions as a miR-21 sponge to suppress
gastric carcinoma cell proliferation. Mol Ther Nucleic Acids.
13:312–321. 2018. View Article : Google Scholar : PubMed/NCBI
|