|
1
|
Fabian ID, Onadim Z, Karaa E, Duncan C,
Chowdhury T, Scheimberg I, Ohnuma SI, Reddy MA and Sagoo MS: The
management of retinoblastoma. Oncogene. 37:1551–1560. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mallipatna A, Marino M and Singh AD:
Genetics of Retinoblastoma. Asia Pac J Ophthalmol (Phila).
5:260–264. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Doherty J and Baehrecke EH: Life, death
and autophagy. Nat Cell Biol. 20:1110–1117. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bartsch K, Knittler K, Borowski C, Rudnik
S, Damme M, Aden K, Spehlmann ME, Frey N, Saftig P, Chalaris A, et
al: Absence of RNase H2 triggers generation of immunogenic
micronuclei removed by autophagy. Hum Mol Genet. 26:3960–3972.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Takamura A, Komatsu M, Hara T, Sakamoto A,
Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K and Mizushima N:
Autophagy-deficient mice develop multiple liver tumors. Genes Dev.
25:795–800. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kimmelman AC and White E: Autophagy and
tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Poillet-Perez L and White E: Role of tumor
and host autophagy in cancer metabolism. Genes Dev. 33:610–619.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Eskelinen EL: Autophagy: Supporting
cellular and organismal homeostasis by self-eating. Int J Biochem
Cell Biol. 111:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhou S, Chen X, Xue R, Zhou Q, Hu P,
Ouyang X, Dai T, Zhu W and Tian S: Autophagy is involved in the
pathogenesis of experimental autoimmune neuritis in rats.
Neuroreport. 27:337–344. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Parzych KR and Klionsky DJ: An overview of
autophagy: Morphology, mechanism, and regulation. Antioxid Redox
Signal. 20:460–473. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Antonucci L, Fagman JB, Kim JY, Todoric J,
Gukovsky I, Mackey M, Ellisman MH and Karin M: Basal autophagy
maintains pancreatic acinar cell homeostasis and protein synthesis
and prevents ER stress. Proc Natl Acad Sci USA. 112:E6166–E6174.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Honda S, Arakawa S, Yamaguchi H, Torii S,
Tajima Sakurai H, Tsujioka M, Murohashi M and Shimizu S:
Association between Atg5-independent alternative autophagy and
neurodegenerative diseases. J Mol Biol. 432:2622–2632. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Keller MD, Torres VJ and Cadwell K:
Autophagy and microbial pathogenesis. Cell Death Differ.
27:872–886. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rybstein MD, Bravo-San Pedro JM, Kroemer G
and Galluzzi L: The autophagic network and cancer. Nat Cell Biol.
20:243–251. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mariño G, Niso-Santano M, Baehrecke EH and
Kroemer G: Self-consumption: The interplay of autophagy and
apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar
|
|
16
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nazio F, Strappazzon F, Antonioli M,
Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J,
Piacentini M, Fimia GM, et al: mTOR inhibits autophagy by
controlling ULK1 ubiquitylation, self-association and function
through AMBRA1 and TRAF6. Nat Cell Biol. 15:406–416. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li Z, Tian X, Ji X, Wang J, Chen H, Wang D
and Zhang X: ULK1-ATG13 and their mitotic phospho-regulation by
CDK1 connect autophagy to cell cycle. PLoS Biol. 18:e30002882020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Araki Y, Ku WC, Akioka M, May AI, Hayashi
Y, Arisaka F, Ishihama Y and Ohsumi Y: Atg38 is required for
autophagy-specific phosphatidylinositol 3-kinase complex integrity.
J Cell Biol. 203:299–313. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kotani T, Kirisako H, Koizumi M, Ohsumi Y
and Nakatogawa H: The Atg2-Atg18 complex tethers pre-autophagosomal
membranes to the endoplasmic reticulum for autophagosome formation.
Proc Natl Acad Sci USA. 115:10363–10368. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hanada T, Noda NN, Satomi Y, Ichimura Y,
Fujioka Y, Takao T, Inagaki F and Ohsumi Y: The Atg12-Atg5
conjugate has a novel E3-like activity for protein lipidation in
autophagy. J Biol Chem. 282:37298–37302. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guo H, Chitiprolu M, Roncevic L, Javalet
C, Hemming FJ, Trung MT, Meng L, Latreille E, Tanese de Souza C,
McCulloch D, et al: Atg5 Disassociates the V1V0-ATPase to Promote
exosome production and tumor metastasis independent of canonical
macroautophagy. Dev Cell. 43:716–730.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
B'Chir W, Maurin AC, Carraro V, Averous J,
Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P and Bruhat
A: The eIF2α/ATF4 pathway is essential for stress-induced autophagy
gene expression. Nucleic Acids Res. 41:7683–7699. 2013. View Article : Google Scholar
|
|
24
|
Settembre C, Di Malta C, Polito VA, Garcia
Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D,
Colella P, et al: TFEB links autophagy to lysosomal biogenesis.
Science. 332:1429–1433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Russell RC, Yuan HX and Guan KL: Autophagy
regulation by nutrient signaling. Cell Res. 24:42–57. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pietrocola F, Lachkar S, Enot DP,
Niso-Santano M, Bravo-San Pedro JM, Sica V, Izzo V, Maiuri MC,
Madeo F, Mariño G, et al: Spermidine induces autophagy by
inhibiting the acetyltransferase EP300. Cell Death Differ.
22:509–516. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma
K, Li X, Wang L, Wang J, Zhang H, et al: Autophagy regulates
chromatin ubiquitination in DNA damage response through elimination
of SQSTM1/p62. Mol Cell. 63:34–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Huang T, Song X, Yang Y, Wan X, Alvarez
AA, Sastry N, Feng H, Hu B and Cheng SY: Autophagy and Hallmarks of
Cancer. Crit Rev Oncog. 23:247–267. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Takamura A, Komatsu M, Hara T, Sakamoto A,
Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K and Mizushima N:
Autophagy-deficient mice develop multiple liver tumors. Genes Dev.
25:795–800. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Poulogiannis G, McIntyre RE, Dimitriadi M,
Apps JR, Wilson CH, Ichimura K, Luo F, Cantley LC, Wyllie AH, Adams
DJ, et al: PARK2 deletions occur frequently in sporadic colorectal
cancer and accelerate adenoma development in Apc mutant mice. Proc
Natl Acad Sci USA. 107:15145–15150. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li L, Ishdorj G and Gibson SB: Reactive
oxygen species regulation of autophagy in cancer: Implications for
cancer treatment. Free Radic Biol Med. 53:1399–1410. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pattingre S, Bauvy C and Codogno P: Amino
acids interfere with the ERK1/2-dependent control of macroautophagy
by controlling the activation of Raf-1 in human colon cancer HT-29
cells. J Biol Chem. 278:16667–16674. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
White E: The role for autophagy in cancer.
J Clin Invest. 125:42–46. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yang S, Wang X, Contino G, Liesa M, Sahin
E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, et al:
Pancreatic cancers require autophagy for tumor growth. Genes Dev.
25:717–729. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Guo JY, Chen HY, Mathew R, Fan J,
Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM,
Karantza V, et al: Activated Ras requires autophagy to maintain
oxidative metabolism and tumorigenesis. Genes Dev. 25:460–470.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Strohecker AM and White E: Autophagy
promotes BrafV600E-driven lung tumorigenesis by preserving
mitochondrial metabolism. Autophagy. 10:384–385. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Guo JY, Karsli-Uzunbas G, Mathew R, Aisner
SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, et
al: Autophagy suppresses progression of K-ras-induced lung tumors
to oncocytomas and maintains lipid homeostasis. Genes Dev.
27:1447–1461. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ma XH, Piao SF, Dey S, McAfee Q,
Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al:
Targeting ER stress-induced autophagy overcomes BRAF inhibitor
resistance in melanoma. J Clin Invest. 124:1406–1417. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Levy JM, Thompson JC, Griesinger AM, Amani
V, Donson AM, Birks DK, Morgan MJ, Mirsky DM, Handler MH, Foreman
NK, et al: Autophagy inhibition improves chemosensitivity in
BRAF(V600E) brain tumors. Cancer Discov. 4:773–780. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Perera RM, Stoykova S, Nicolay BN, Ross
KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK,
Ferrone CR, et al: Transcriptional control of autophagy-lysosome
function drives pancreatic cancer metabolism. Nature. 524:361–365.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu K, Lee J, Kim JY, Wang L, Tian Y, Chan
ST, Cho C, Machida K, Chen D and Ou JJ: Mitophagy controls the
activities of tumor suppressor p53 to regulate hepatic cancer stem
cells. Mol Cell. 68:281–292.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wu HB, Yang S, Weng HY, Chen Q, Zhao XL,
Fu WJ, Niu Q, Ping YF, Wang JM, Zhang X, et al: Autophagy-induced
KDR/VEGFR-2 activation promotes the formation of vasculogenic
mimicry by glioma stem cells. Autophagy. 13:1528–1542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Amaravadi RK, Kimmelman AC and Debnath J:
Targeting autophagy in cancer: Recent advances and future
directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Soliman SE, Racher H, Zhang C, MacDonald H
and Gallie BL: Genetics and Molecular Diagnostics in Retinoblastoma
- An Update. Asia Pac J Ophthalmol (Phila). 6:197–207.
2017.PubMed/NCBI
|
|
45
|
Laurie NA, Donovan SL, Shih CS, Zhang J,
Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, et al:
Inactivation of the p53 pathway in retinoblastoma. Nature.
444:61–66. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dimaras H, Khetan V, Halliday W, Orlic M,
Prigoda NL, Piovesan B, Marrano P, Corson TW, Eagle RC Jr, Squire
JA, et al: Loss of RB1 induces non-proliferative retinoma:
Increasing genomic instability correlates with progression to
retinoblastoma. Hum Mol Genet. 17:1363–1372. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu Y, Wan ST, Zhang P, Zhang WX, Zheng
JL, Lin JX and Li YP: Expression levels of autophagy related
proteins and their prognostic significance in retinocytoma and
retinoblastoma. Int J Ophthalmol. 7:594–601. 2014.PubMed/NCBI
|
|
48
|
Indovina P, Acquaviva A, De Falco G, Rizzo
V, Onnis A, Luzzi A, Giorgi F, Hadjistilianou T, Toti P, Tomei V,
et al: Downregulation and aberrant promoter methylation of
p16INK4A: A possible novel heritable susceptibility marker to
retinoblastoma. J Cell Physiol. 223:143–150. 2010.PubMed/NCBI
|
|
49
|
Jiang H, Martin V, Gomez-Manzano C,
Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N and
Fueyo J: The RB-E2F1 pathway regulates autophagy. Cancer Res.
70:7882–7893. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Biasoli D, Kahn SA, Cornélio TA, Furtado
M, Campanati L, Chneiweiss H, Moura-Neto V and Borges HL:
Retinoblastoma protein regulates the crosstalk between autophagy
and apoptosis, and favors glioblastoma resistance to etoposide.
Cell Death Dis. 4:e7672013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen N and Karantza-Wadsworth V: Role and
regulation of autophagy in cancer. Biochim Biophys Acta.
1793:1516–1523. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhu X, Li X and Chen Z: Inhibition of
anticancer growth in Retinoblastoma cells by naturally occurring
sesquiterpene nootkatone is mediated via autophagy, endogenous ROS
production, cell cycle arrest and inhibition of NF-κB signalling
pathway. J BUON. 25:427–431. 2020.PubMed/NCBI
|
|
53
|
Zhang M, Zhou YF, Gong JY, Gao CB and Li
SL: Expression of autophagy-related protein LC3B, p62, and
cytoplasmic p53 in human retinoblastoma tissues. Eur Rev Med
Pharmacol Sci. 20:3152–3160. 2016.PubMed/NCBI
|
|
54
|
Komatsu M and Ichimura Y: Physiological
significance of selective degradation of p62 by autophagy. FEBS
Lett. 584:1374–1378. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye
WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in
cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yoshida GJ: Therapeutic strategies of drug
repositioning targeting autophagy to induce cancer cell death: From
pathophysiology to treatment. J Hematol Oncol. 10:672017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cai CL, Jin L, Lang XL and Li BL: Long
noncoding RNA XIST regulates cardiomyocyte apoptosis by targeting
miR-873-5p/MCL1 axis. Eur Rev Med Pharmacol Sci. 24:12878–12886.
2020.PubMed/NCBI
|
|
58
|
Liu K, Huang J, Xie M, Yu Y, Zhu S, Kang
R, Cao L, Tang D and Duan X: MIR34A regulates autophagy and
apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy.
10:442–452. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yao L, Yang L, Song H, Liu TG and Yan H:
Silencing of lncRNA XIST suppresses proliferation and autophagy and
enhances vincristine sensitivity in retinoblastoma cells by
sponging miR-204-5p. Eur Rev Med Pharmacol Sci. 24:3526–3537.
2020.PubMed/NCBI
|
|
60
|
Wang Y, Xin D and Zhou L: LncRNA LINC00152
increases the aggressiveness of human retinoblastoma and enhances
carboplatin and adriamycin resistance by regulating
miR-613/Yes-associated protein 1 (YAP1) axis. Med Sci Monit.
26:e920886–1-e920886-17. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huang J, Yang Y, Fang F and Liu K: MALAT1
modulates the autophagy of retinoblastoma cell through
miR-124-mediated stx17 regulation. J Cell Biochem. 119:3853–3863.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu Y, Su J and Wang LH: Role of autophagy
in cisplatin resistance of retinoblastoma Y79 cells and its
mechanism. Zhongliu Fangzhi Yanjiu. 45:517–522. 2018.PubMed/NCBI
|
|
63
|
Sun J, Feng D, Xi H, Luo J, Zhou Z, Liu Q,
Chen Y and Shao Q: CD24 blunts the sensitivity of retinoblastoma to
vincristine by modulating autophagy. Mol Oncol. 14:1740–1759. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liang Y, Chen X and Liang Z: MicroRNA-320
regulates autophagy in retinoblastoma by targeting hypoxia
inducible factor-1α. Exp Ther Med. 14:2367–2372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kong M, Han Y, Zhao Y and Zhang H:
miR-512-3p overcomes resistance to cisplatin in retinoblastoma by
promoting apoptosis induced by endoplasmic reticulum stress. Med
Sci Monit. 26:e923817–1-e923817-10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yi QY, Bai ZS, Cai B, Chen N, Chen LS,
Yuan T and Mao JH: HSV-TK/GCV can induce cytotoxicity of
retinoblastoma cells through autophagy inhibition by activating
MAPK/ERK. Oncol Rep. 40:682–692. 2018.PubMed/NCBI
|
|
67
|
Li M, Zhang D, Cheng J, Liang J and Yu F:
Ginsenoside Rh2 inhibits proliferation but promotes apoptosis and
autophagy by down-regulating microRNA-638 in human retinoblastoma
cells. Exp Mol Pathol. 108:17–23. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yin L, Sun Z, Ren Q, Su X and Zhang D:
Methyl eugenol induces potent anticancer effects in RB355 human
retinoblastoma cells by inducing autophagy, cell cycle arrest and
inhibition of PI3K/mTOR/Akt signalling pathway. J BUON.
23:1174–1178. 2018.PubMed/NCBI
|
|
69
|
Li X, Zhu X, Xu C and Wu J: 2-Methyl
2-butanol suppresses human retinoblastoma cells through cell cycle
arrest and autophagy. Braz J Med Biol Res. 51:e68892018. View Article : Google Scholar : PubMed/NCBI
|