|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer Statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bast RC Jr, Lu Z, Han CY, Lu KH, Anderson
KS, Drescher CW and Skates SJ: Biomarkers and strategies for early
detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev.
29:2504–2512. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang Q, Peng H, Qi X, Wu M and Zhao X:
Targeted therapies in gynecological cancers: A comprehensive review
of clinical evidence. Signal Transduct Target Ther. 5:1372020.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mills GB and Moolenaar WH: The emerging
role of lysophosphatidic acid in cancer. Nat Rev Cancer. 3:582–591.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cui R, Bai H, Cao G and Zhang Z: The role
of lysophosphatidic acid receptors in ovarian cancer: A minireview.
Crit Rev Eukaryot Gene Expr. 30:265–272. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Moolenaar WH: LPA: A novel lipid mediator
with diverse biological actions. Trends Cell Biol. 4:213–219. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Moolenaar WH, van Meeteren LA and Giepmans
BN: The ins and outs of lysophosphatidic acid signaling. Bioessays.
26:870–881. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Noguchi K, Herr D, Mutoh T and Chun J:
Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol.
9:15–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Radhika V and Dhanasekaran N: Transforming
G proteins. Oncogene. 20:1607–1614. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Goldsmith ZG and Dhanasekaran DN: G
protein regulation of MAPK networks. Oncogene. 26:3122–3142. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Radhakrishnan R, Ha JH and Dhanasekaran
DN: Mitogenic signaling by the gep oncogene involves the
upregulation of S-phase kinase-associated protein 2. Genes Cancer.
1:1033–1043. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ha JH, Radhakrishnan R, Jayaraman M, Yan
M, Ward JD, Fung KM, Moxley K, Sood AK, Isidoro C, Mukherjee P, et
al: LPA induces metabolic reprogramming in ovarian cancer via a
pseudohypoxic response. Cancer Res. 78:1923–1934. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Radhakrishnan R, Ha JH, Jayaraman M, Liu
J, Moxley KM, Isidoro C, Sood AK, Song YS and Dhanasekaran DN:
Ovarian cancer cell-derived lysophosphatidic acid induces
glycolytic shift and cancer-associated fibroblast-phenotype in
normal and peritumoral fibroblasts. Cancer Lett. 442:464–474. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Goldsmith ZG, Ha JH, Jayaraman M and
Dhanasekaran DN: Lysophosphatidic acid stimulates the proliferation
of ovarian cancer cells via the gep proto-oncogene Galpha(12).
Genes Cancer. 2:563–575. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ha JH, Gomathinayagam R, Yan M, Jayaraman
M, Ramesh R and Dhanasekaran DN: Determinant role for the gep
oncogenes, Galpha12/13, in ovarian cancer cell proliferation and
xenograft tumor growth. Genes Cancer. 6:356–364. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Juneja J and Casey PJ: Role of G12
proteins in oncogenesis and metastasis. Br J Pharmacol. 158:32–40.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kelly P, Stemmle LN, Madden JF, Fields TA,
Daaka Y and Casey PJ: A role for the G12 family of heterotrimeric G
proteins in prostate cancer invasion. J Biol Chem. 281:26483–24490.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kelly P, Moeller BJ, Juneja J, Booden MA,
Der CJ, Daaka Y, Dewhirst MW, Fields TA and Casey PJ: The G12
family of heterotrimeric G proteins promotes breast cancer invasion
and metastasis. Proc Natl Acad Sci USA. 103:8173–8178. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu SC, Jen YM, Jiang SS, Chang JL, Hsiung
CA, Wang CH and Juang JL: G(alpha)12-mediated pathway promotes
invasiveness of nasopharyngeal carcinoma by modulating actin
cytoskeleton reorganization. Cancer Res. 69:6122–6130. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wuchty S, Zhang A, Walling J, Ahn S, Li A,
Quezado M, Oberholtzer C, Zenklusen JC and Fine HA: Gene pathways
and subnetworks distinguish between major glioma subtypes and
elucidate potential underlying biology. J Biomed Inform.
43:945–952. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huang DW, Sherman BT, Tan Q, Kir J, Liu D,
Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA:
DAVID Bioinformatics Resources: Expanded annotation database and
novel algorithms to better extract biology from large gene lists.
Nucleic Acids Res. 35:W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and
Lin CY: cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol. 8 (Suppl 4):S112014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu Z, Meng J, Li X, Zhu F, Liu T, Wu G
and Zhang L: Identification of hub genes and key pathways
associated with two subtypes of diffuse large B-cell lymphoma based
on gene expression profiling via integrated bioinformatics. Biomed
Res Int. 2018:35745342018.PubMed/NCBI
|
|
27
|
Vogler O, Barcelo JM, Ribas C and Escriba
PV: Membrane interactions of G proteins and other related proteins.
Biochim Biophys Acta. 1778:1640–10652. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Solary E, Eymin B, Droin N and Haugg M:
Proteases, proteolysis, and apoptosis. Cell Biol Toxicol.
14:121–132. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yu H, Kim PM, Sprecher E, Trifonov V and
Gerstein M: The importance of bottlenecks in protein networks:
Correlation with gene essentiality and expression dynamics. PLoS
Comput Biol. 3:e592007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Charitou T, Bryan K and Lynn DJ: Using
biological networks to integrate, visualize and analyze genomics
data. Genet Sel Evol. 48:272016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Despierre E, Lambrechts D, Neven P, Amant
F, Lambrechts S and Vergote I: The molecular genetic basis of
ovarian cancer and its roadmap towards a better treatment. Gynecol
Oncol. 117:358–365. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Guan J, Darb-Esfahani S, Richter R, Taube
ET, Ruscito I, Mahner S, Woelber L, Prieske K, Concin N, Vergote I,
et al: Vascular endothelial growth factor receptor 2 (VEGFR2)
correlates with long-term survival in patients with advanced
high-grade serous ovarian cancer (HGSOC): A study from the Tumor
Bank Ovarian Cancer (TOC) Consortium. J Cancer Res Clin Oncol.
145:1063–1073. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sopo M, Anttila M, Hamalainen K, Kivela A,
Yla-Herttuala S, Kosma VM, Keski-Nisula L and Sallinen H:
Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in
distant metastases than in matched primary high grade epithelial
ovarian cancer. BMC Cancer. 19:5842019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li X, Hu Z, Shi H, Wang C, Lei J and Cheng
Y: Inhibition of VEGFA increases the sensitivity of ovarian cancer
cells to chemotherapy by suppressing VEGFA-Mediated Autophagy. Onco
Targets Ther. 13:8161–8171. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bai Y, Li LD, Li J, Chen RF, Yu HL, Sun
HF, Wang JY and Lu X: A FXYD5/TGFβ/SMAD positive feedback loop
drives epithelialtomesenchymal transition and promotes tumor growth
and metastasis in ovarian cancer. Int J Oncol. 56:301–314.
2020.PubMed/NCBI
|
|
38
|
Liang S, Yao Q, Wei D, Liu M, Geng F, Wang
Q and Wang YS: KDM6B promotes ovarian cancer cell migration and
invasion by induced transforming growth factor-β1 expression. J
Cell Biochem. 120:493–506. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Beale PJ, Rogers P, Boxall F, Sharp SY and
Kelland LR: BCL-2 family protein expression and platinum drug
resistance in ovarian carcinoma. Br J Cancer. 82:436–440. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yuan J, Lan H, Jiang X, Zeng D and Xiao S:
Bcl2 family: Novel insight into individualized therapy for ovarian
cancer (Review). Int J Mol Med. 46:1255–1265. 2020.PubMed/NCBI
|
|
41
|
Liang R, Chen X, Chen L, Wan F, Chen K,
Sun Y and Zhu X: STAT3 signaling in ovarian cancer: A potential
therapeutic target. J Cancer. 11:837–848. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Diener A and Rohrmann S: Associations of
serum carotenoid concentrations and fruit or vegetable consumption
with serum insulin-like growth factor (IGF)-1 and IGF binding
protein-3 concentrations in the Third National Health and Nutrition
Examination survey (NHANES III). J Nutr Sci. 5:e132016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yahya MA, Sharon SM, Hantisteanu S, Hallak
M and Bruchim I: The role of the insulin-like growth factor 1
pathway in immune tumor microenvironment and its clinical
ramifications in gynecologic malignancies. Front Endocrinol
(Lausanne). 9:2972018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Khorram O, Garthwaite M, Grosen E and
Golos T: Human uterine and ovarian expression of growth
hormone-releasing hormone messenger RNA in benign and malignant
gynecologic conditions. Fertil Steril. 75:174–179. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Klukovits A, Schally AV, Szalontay L,
Vidaurre I, Papadia A, Zarandi M, Varga JL, Block NL and Halmos G:
Novel antagonists of growth hormone-releasing hormone inhibit
growth and vascularization of human experimental ovarian cancers.
Cancer. 118:670–680. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wheaton K, Sarkari F, Stanly Johns B,
Davarinejad H, Egorova O, Kaustov L, Raught B, Saridakis V and
Sheng Y: UbE2E1/UBCH6 is a critical in vivo E2 for the
PRC1-catalyzed ubiquitination of H2A at lys-119. J Biol Chem.
292:2893–2902. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sohn D, Totzke G, Schulze-Osthoff K and
Janicke RU: Friend or foe? The proteasome in combined cancer
therapy. Cell Cycle. 5:841–845. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sohn D, Totzke G, Essmann F,
Schulze-Osthoff K, Levkau B and Janicke RU: The proteasome is
required for rapid initiation of death receptor-induced apoptosis.
Mol Cell Biol. 26:1967–1978. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Milone MR, Pucci B, Bifulco K, Iannelli F,
Lombardi R, Ciardiello C, Bruzzese F, Carriero MV and Budillon A:
Proteomic analysis of zoledronic-acid resistant prostate cancer
cells unveils novel pathways characterizing an invasive phenotype.
Oncotarget. 6:5324–5341. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yim JH, Yun HS, Lee SJ, Baek JH, Lee CW,
Song JY, Um HD, Park JK, Kim JS, Park IC and Hwang SG:
Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460
lung cancer cells. Biochem Biophys Res Commun. 469:94–100. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim J, Yu L, Chen W, Xu Y, Wu M, Todorova
D, Tang Q, Feng B, Jiang L, He J, et al: Wild-type p53 promotes
cancer metabolic switch by inducing PUMA-dependent suppression of
oxidative phosphorylation. Cancer Cell. 35:191–203 e8. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ajeawung NF, Nguyen TTM, Lu L, Kucharski
TJ, Rousseau J, Molidperee S, Atienza J, Gamache I, Jin W, Plon SE,
et al: Mutations in ANAPC1, encoding a scaffold subunit of the
anaphase-promoting complex, cause rothmund-thomson syndrome type 1.
Am J Hum Genet. 105:625–630. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ping Z, Lim R, Bashir T, Pagano M and
Guardavaccaro D: APC/C (Cdh1) controls the proteasome-mediated
degradation of E2F3 during cell cycle exit. Cell Cycle.
11:1999–2005. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kernan J, Bonacci T and Emanuele MJ: Who
guards the guardian? Mechanisms that restrain APC/C during the cell
cycle. Biochim Biophys Acta Mol Cell Res. 1865:1924–1933. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu Y, Xia L, Guo Q, Zhu J, Deng Y and Wu
X: Identification of chemoresistance-associated key genes and
pathways in high-grade serous ovarian cancer by bioinformatics
analyses. Cancer Manag Res. 12:5213–5223. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen L, Zhang J, Li H, Niu J, Xue H, Liu
B, Wang Q, Luo X, Zhang F, Zhao D and Cao S: Transcriptomic
analysis reveals candidate genes for female sterility in
pomegranate flowers. Front Plant Sci. 8:14302017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hou DL, Chen L, Liu B, Song LN and Fang T:
Identification of common gene networks responsive to radiotherapy
in human cancer cells. Cancer Gene Ther. 21:542–548. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lei Y, Henderson BR, Emmanuel C, Harnett
PR and deFazio A: Inhibition of ANKRD1 sensitizes human ovarian
cancer cells to endoplasmic reticulum stress-induced apoptosis.
Oncogene. 34:485–495. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takahashi A, Seike M, Chiba M, Takahashi
S, Nakamichi S, Matsumoto M, Takeuchi S, Minegishi Y, Noro R,
Kunugi S, et al: Ankyrin repeat domain 1 overexpression is
associated with common resistance to afatinib and osimertinib in
EGFR-mutant lung cancer. Sci Rep. 8:148962018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Morone S, Lo-Buono N, Parrotta R,
Giacomino A, Nacci G, Brusco A, Larionov A, Ostano P, Mello-Grand
M, Chiorino G, et al: Overexpression of CD157 contributes to
epithelial ovarian cancer progression by promoting mesenchymal
differentiation. PLoS One. 7:e436492012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shim E, Shim H, Bae J, Lee H and Jeoung D:
CAGE displays oncogenic potential and induces cytolytic T
lymphocyte activity. Biotechnol Lett. 28:515–522. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Janecki DM, Sajek M, Smialek MJ, Kotecki
M, Ginter-Matuszewska B, Kuczynska B, Spik A, Kolanowski T,
Kitazawa R, Kurpisz M and Jaruzelska J: SPIN1 is a proto-oncogene
and SPIN3 is a tumor suppressor in human seminoma. Oncotarget.
9:32466–32477. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Satyavarapu EM, Nath S and Mandal C:
Desialylation of Atg5 by sialidase (Neu2) enhances autophagosome
formation to induce anchorage-dependent cell death in ovarian
cancer cells. Cell Death Discov. 7:262021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ehrenreich H, Hasselblatt M, Knerlich F,
von Ahsen N, Jacob S, Sperling S, Woldt H, Vehmeyer K, Nave KA and
Sirén AL: A hematopoietic growth factor, thrombopoietin, has a
proapoptotic role in the brain. Proc Natl Acad Sci USA.
102:862–867. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Puls KL, Ni J, Liu D, Morahan G and Wright
MD: The molecular characterisation of a novel tetraspanin protein,
TM4-B(1). Biochim Biophys Acta. 1447:93–99. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lascorz J, Chen B, Hemminki K and Forsti
A: Consensus pathways implicated in prognosis of colorectal cancer
identified through systematic enrichment analysis of gene
expression profiling studies. PLoS One. 6:e188672011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chang IW, Liu KW, Ragunanan M, He HL,
Shiue YL and Yu SC: SERPINB5 expression: Association with CCRT
response and prognostic value in rectal cancer. Int J Med Sci.
15:376–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Y, Cao L, Nguyen D and Lu H: TP53
mutations in epithelial ovarian cancer. Transl Cancer Res.
5:650–663. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ren YA, Mullany LK, Liu Z, Herron AJ, Wong
KK and Richards JS: Mutant p53 promotes epithelial ovarian cancer
by regulating tumor differentiation, metastasis, and responsiveness
to steroid hormones. Cancer Res. 76:2206–2218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cheng JQ, Godwin AK, Bellacosa A, Taguchi
T, Franke TF, Hamilton TC, Tsichlis PN and Testa JR: AKT2, a
putative oncogene encoding a member of a subfamily of
protein-serine/threonine kinases, is amplified in human ovarian
carcinomas. Proc Natl Acad Sci USA. 89:9267–9271. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Altomare DA, Wang HQ, Skele KL, De Rienzo
A, Klein-Szanto AJ, Godwin AK and Testa JR: AKT and mTOR
phosphorylation is frequently detected in ovarian cancer and can be
targeted to disrupt ovarian tumor cell growth. Oncogene.
23:5853–5857. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ghoneum A and Said N: PI3K-AKT-mTOR and
NFkappaB pathways in ovarian cancer: Implications for targeted
therapeutics. Cancers (Basel). 11:9492019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Masoumi Moghaddam S, Amini A, Morris DL
and Pourgholami MH: Significance of vascular endothelial growth
factor in growth and peritoneal dissemination of ovarian cancer.
Cancer Metastasis Rev. 31:143–162. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yin X, Wang X, Shen B, Jing Y, Li Q, Cai
MC, Gu Z, Yang Q, Zhang Z, Liu J, et al: A VEGF-dependent gene
signature enriched in mesenchymal ovarian cancer predicts patient
prognosis. Sci Rep. 6:310792016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Glaysher S, Bolton LM, Johnson P, Atkey N,
Dyson M, Torrance C and Cree IA: Targeting EGFR and PI3K pathways
in ovarian cancer. Br J Cancer. 109:1786–1794. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wilken JA, Badri T, Cross S, Raji R,
Santin AD, Schwartz P, Branscum AJ, Baron AT, Sakhitab AI and
Maihle NJ: EGFR/HER-targeted therapeutics in ovarian cancer. Future
Med Chem. 4:447–469. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Han GH, Chay DB, Nam S, Cho H, Chung JY
and Kim JH: Prognostic implications of forkhead box protein O1
(FOXO1) and paired box 3 (PAX3) in epithelial ovarian cancer. BMC
Cancer. 19:12022019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cai J, Xu L, Tang H, Yang Q, Yi X, Fang Y,
Zhu Y and Wang Z: The role of the PTEN/PI3K/Akt pathway on
prognosis in epithelial ovarian cancer: A meta-analysis.
Oncologist. 19:528–335. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Duncan TJ, Al-Attar A, Rolland P, Scott
IV, Deen S, Liu DT, Spendlove I and Durrant LG: Vascular
endothelial growth factor expression in ovarian cancer: A model for
targeted use of novel therapies? Clin Cancer Res. 14:3030–3035.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hu Q, Hisamatsu T, Haemmerle M, Cho MS,
Pradeep S, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G,
Wong STC, Sood AK and Afshar-Kharghan V: Role of platelet-derived
Tgfβ1 in the progression of ovarian cancer. Clin Cancer Res.
23:5611–5621. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bruchim I and Werner H: Targeting IGF-1
signaling pathways in gynecologic malignancies. Expert Opin Ther
Targets. 17:307–320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kahan Z, Arencibia JM, Csernus VJ, Groot
K, Kineman RD, Robinson WR and Schally AV: Expression of growth
hormone-releasing hormone (GHRH) messenger ribonucleic acid and the
presence of biologically active GHRH in human breast, endometrial,
and ovarian cancers. J Clin Endocrinol Metab. 84:582–589. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yokoyama T, Kohn EC, Brill E and Lee JM:
Apoptosis is augmented in high-grade serous ovarian cancer by the
combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol.
50:1064–1074. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang H, Liu C, Cheng J, Liu J, Zhang L, He
C, Shen WH, Jin H, Xu L and Zhang Y: Arabidopsis flower and embryo
developmental genes are repressed in seedlings by different
combinations of polycomb group proteins in association with
distinct sets of cis-regulatory elements. PLoS Genet.
12:e10057712016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Diaz-Ruiz R, Rigoulet M and Devin A: The
Warburg and Crabtree effects: On the origin of cancer cell energy
metabolism and of yeast glucose repression. Biochim Biophys Acta.
1807:568–576. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Balsa E, Marco R, Perales-Clemente E,
Szklarczyk R, Calvo E, Landazuri MO and Enríquez JA: NDUFA4 is a
subunit of complex IV of the mammalian electron transport chain.
Cell Metab. 16:378–386. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Guerrero-Castillo S, Baertling F,
Kownatzki D, Wessels HJ, Arnold S, Brandt U and Nijtmans L: The
assembly pathway of mitochondrial respiratory chain complex i. Cell
Metab. 25:128–139. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tang JX, Thompson K, Taylor RW and Olahova
M: Mitochondrial OXPHOS Biogenesis: Co-regulation of protein
synthesis, import, and assembly pathways. Int J Mol Sci.
21:38202020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Deng M, Blondeau JJ, Schmidt D, Perner S,
Muller SC and Ellinger J: Identification of novel differentially
expressed lncRNA and mRNA transcripts in clear cell renal cell
carcinoma by expression profiling. Genom Data. 5:173–175. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Muller FE, Braun M, Syring I, Klumper N,
Schmidt D, Perner S, Hauser S, Müller SC and Ellinger J: NDUFA4
expression in clear cell renal cell carcinoma is predictive for
cancer-specific survival. Am J Cancer Res. 5:2816–2822.
2015.PubMed/NCBI
|
|
91
|
Lunetti P, Di Giacomo M, Vergara D, De
Domenico S, Maffia M, Zara V, Capobianco L and Ferramosca A:
Metabolic reprogramming in breast cancer results in distinct
mitochondrial bioenergetics between luminal and basal subtypes.
FEBS J. 286:688–709. 2019. View Article : Google Scholar : PubMed/NCBI
|