Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review)

  • Authors:
    • Janet Gallardo‑Zapata
    • Carmen Maldonado‑Bernal
  • View Affiliations / Copyright

    Affiliations: Immunology and Proteomics Research Unit, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
    Copyright: © Gallardo‑Zapata et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 748
    |
    Published online on: August 24, 2021
       https://doi.org/10.3892/ol.2021.13009
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Natural killer (NK) cells are specialized lymphocytes primarily involved in the response to infection and tumors. NK cells are characterized by the presence of specific surface molecules, as well as a wide repertoire of receptors that impart microenvironment‑dependent effector functions. Among these receptors, Toll‑like receptors (TLRs) can be activated to condition the NK response to either a cytotoxic or immunoregulatory phenotype. However, cellular function is frequently impaired during disorders such as cancer. In the last decade, it has become increasingly evident that the stimulation of NK cells is a requirement for their increased cytotoxic activity. TLR activation has been suggested as an alternative route for reestablishing the antitumor activity of NK cells. The present review summarizes the characteristics of NK cells, their receptors, the expression and function of NK cell TLRs, and their functional status in cancer, primarily acute lymphoblastic leukemia.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Timonen BYT, Ortaldo JR and Herberman RB: Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 153:569–582. 1981. View Article : Google Scholar : PubMed/NCBI

2 

Galy A, Travis M, Cen D and Chen B: Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 3:459–473. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Scoville SD, Freud AG and Caligiuri MA: Modeling human natural killer cell development in the era of innate lymphoid cells. Front Immunol. 8:3602017. View Article : Google Scholar : PubMed/NCBI

4 

Nitta T, Yagita H, Sato K and Okumura K: Involvement of CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural killer-target cell interaction. J Exp Med. 170:1757–1761. 1989. View Article : Google Scholar : PubMed/NCBI

5 

Lanier LL, Le AM, Civin CI, Loken MR and Phillips JH: The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 136:4480–4486. 1986.PubMed/NCBI

6 

Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, et al: Innate lymphoid cells: 10 years on. Cell. 174:1054–1066. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Chiorean EG and Miller JS: The biology of natural killer cells and implications for therapy of human disease. J Hematotherapy Stem Cell Res. 10:451–463. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Fauriat C, Long EO, Ljunggren HG and Bryceson YT: Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115:2167–2176. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Lotze MT and Thomson AW: Natural killer cells: Basic science and clinical application. Academic Press; 2009

10 

Reeves RK, Li H, Jost S, Blass E, Li H, Schafer JL, Varner V, Manickam C, Eslamizar L, Altfeld M, et al: Antigen-specific NK cell memory in rhesus macaques. Nat Immunol. 16:927–932. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, et al: Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol. 4:eaat81162019. View Article : Google Scholar : PubMed/NCBI

12 

Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK and Caligiuri MA: Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med. 203:1033–1043. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A and Di Santo JP: Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol. 31:1900–1909. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Huntington ND, Vosshenrich CAJ and Di Santo JP: Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol. 7:703–714. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Cooper MA, Fehniger TA and Caligiuri MA: The biology of human natural killer-cell subsets. Trends Immunol. 22:633–640. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Poli A, Michel T, Thérésine M, Andrès E, Hentges F and Zimmer J: CD56bright natural killer (NK) cells: An important NK cell subset. Immunology. 126:458–465. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Carson WE and Caligiuri MA: Human natural killer cells: A unique innate immunoregulatory role for the CD56bright subset. Blood. 96:3146–3151. 2000.

18 

Nagler A, Lanier LL, Cwirla S and Phillips JH: Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 143:3183–3191. 1989.PubMed/NCBI

19 

Caligiuri MA, Murray C, Robertson MJ, Wang E, Cochran K, Cameron C, Schow P, Ross ME, Klumpp TR, Soiffer RJ, et al: Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest. 91:123–132. 1993. View Article : Google Scholar : PubMed/NCBI

20 

Mrózek E, Anderson P and Caligiuri MA: Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood. 87:2632–2640. 1996. View Article : Google Scholar : PubMed/NCBI

21 

Frey M, Packianathan NB, Fehniger TA, Ross ME, Wang WC, Stewart CC, Caligiuri MA and Evans SS: Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J Immunol. 161:400–408. 1998.PubMed/NCBI

22 

Berahovich RD, Lai NL, Wei Z, Lanier LL and Schall TJ: Evidence for NK cell subsets based on chemokine receptor expression. J Immunol. 177:7833–7840. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD, McMichael A, Enver T and Bowness P: CD56bright human NK cells differentiate into CD56dim cells: Role of contact with peripheral fibroblasts. J Immunol. 179:89–94. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Béziat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J, Combadière B, Debré P and Vieillard V: CD56brightCD16+ NK cells: A functional intermediate stage of NK cell differentiation. J Immunol. 186:6753–6761. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Vivier E, Tomasello E, Baratin M, Walzer T and Ugolini S: Functions of natural killer cells. Nat Immunol. 9:503–510. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti MA and Hayakawa Y: Activation of NK cell cytotoxicity. Mol Immunol. 42:501–510. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Krzewski K and Strominger JL: The killer's kiss: The many functions of NK cell immunological synapses. Curr Opin Cell Biol. 20:597–605. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Guicciardi ME and Gores GJ: Life and death by death receptors. FASEB J. 23:1625–1637. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Abel AM, Yang C, Thakar MS and Malarkannan S: Natural killer cells: Development, maturation, and clinical utilization. Front Immunol. 9:1–23. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR and Bleackley RC: Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol. 20:3781–3794. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Pinkoski MJ, Waterhouse NJ, Heibein JA, Wolf BB, Kuwana T, Goldstein JC, Newmeyer DD, Bleackley RC and Green DR: Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J Biol Chem. 276:12060–12067. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Amand M, Iserentant G, Poli A, Sleiman M, Fievez V, Sanchez IP, Sauvageot N, Michel T, Aouali N, Janji B, et al: Human CD56dimCD16dim cells as an individualized natural killer cell subset. Front Immunol. 8:6992017. View Article : Google Scholar : PubMed/NCBI

33 

Iannello A and Ahmad A: Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 24:487–499. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R, Cannas G, Carlomagno S, Cabrelle A, Lamy T, et al: Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood. 102:1797–1805. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Bryceson YT, March ME, Ljunggren HG and Long EO: Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 214:73–91. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Li NL, Davidson CL, Humar A and Burshtyn DN: Modulation of the inhibitory receptor leukocyte Ig-like receptor 1 on human natural killer cells. Front Immunol. 2:462011.PubMed/NCBI

37 

Ljunggren HG and Kärre K: In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 11:237–244. 1990. View Article : Google Scholar : PubMed/NCBI

38 

Tomasello E, Blery M, Vely E and Vivier E: Signaling pathways engaged by NK cell receptors: Double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol. 12:139–147. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Lanier LL: Up on the tightrope: Natural killer cell activation and inhibition. Nat Immunol. 9:495–502. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Blanca IR, Bere EW, Young HA and Ortaldo JR: Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: Role of memory B cells and CD5+ B cells. J Immunol. 167:6132–6139. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A and Lanier LL: Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol. 173:3716–3724. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Orange JS and Ballas ZK: Natural killer cells in human health and disease. Clin Immunol. 118:1–10. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Chalifour A, Jeannin P, Gauchat JF, Blaecke A, Malissard M, N'Guyen T, Thieblemont N and Delneste Y: Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production. Blood. 104:1778–1783. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Perrot I, Deauvieau F, Massacrier C, Hughes N, Garrone P, Durand I, Demaria O, Viaud N, Gauthier L, Blery M, et al: TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. J Immunol. 185:2080–2088. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Qiu F, Maniar A, Quevedo Diaz M, Chapoval AI and Medvedev AE: Activation of cytokine-producing and antitumor activities of natural killer cells and macrophages by engagement of Toll-like and NOD-like receptors. Innate Immun. 17:375–387. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Sivori S, Carlomagno S, Moretta L and Moretta A: Comparison of different CpG oligodeoxynucleotide classes for their capability to stimulate human NK cells. Eur J Immunol. 36:961–967. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Girart MV, Fuertes MB, Domaica CI, Rossi LE and Zwirner NW: Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12. J Immunol. 179:3472–3479. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Sivori S, Carlomagno S, Pesce S, Moretta A, Vitale M and Marcenaro E: TLR/NCR/KIR: Which one to use and when? Front Immunol. 5:1052014. View Article : Google Scholar : PubMed/NCBI

49 

Saikh KU, Lee JS, Kissner TL, Dyas B and Ulrich RG: Toll-like receptor and cytokine expression patterns of CD56+ T cells are similar to natural killer cells in response to infection with Venezuelan equine encephalitis virus replicons. J Infect Dis. 188:1562–1570. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Lauzon NM, Mian F, MacKenzie R and Ashkar AA: The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol. 241:102–112. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, Kobeh LG, Ruiz A, Cervantes R, Torres AP, Cabrera N, et al: Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol Biochem Parasitol. 130:65–74. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA, Wang F and Godowski PJ: APC-independent activation of NK cells by the toll-like receptor 3 agonist double-stranded RNA. J Immunol. 172:138–143. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Sivori S, Falco M, Della Chiesa M, Carlomagno S, Vitale M, Moretta L and Moretta A: CpG and double-stranded RNA trigger human NK cells by toll-like receptors: Induction of cytokine release and cytotoxicity against tumors dendritic cells. Proc Natl Acad Sci USA. 101:10116–10121. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Gorski KS, Waller EL, Bjornton-Severson J, Hanten JA, Riter CL, Kieper WC, Gorden KB, Miller JS, Vasilakos JP, Tomai MA and Alkan SS: Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol. 18:1115–1126. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Alter G, Suscovich TJ, Teigen N, Meier A, Streeck H, Brander C and Altfeld M: Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. J Immunol. 178:7658–7666. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Mian MF, Lauzon NM, Andrews DW, Lichty BD and Ashkar AA: FimH can directly activate human and murine natural killer cells via TLR4. Mol Ther. 18:1379–1388. 2010. View Article : Google Scholar : PubMed/NCBI

57 

He S, Chu J, Wu LC, Mao H, Peng Y, Alvarez-Breckenridge CA, Hughes T, Wei M, Zhang J, Yuan S, et al: MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood. 121:4663–4671. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Guo Q and Zhang C: Critical role of Toll-like receptor signaling in NK cell activation. Chinese Sci Bull. 57:3192–3202. 2012. View Article : Google Scholar

59 

Adib-Conquy M, Scott-Algara D, Cavaillon JM and Souza-Fonseca-Guimaraes F: TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol. 92:256–262. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Ljunggren HG and Malmberg KJ: Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 7:329–339. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Algarra I, García-Lora A, Cabrera T, Ruiz-Cabello F and Garrido F: The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: Implications for tumor immune escape. Cancer Immunol Immunother. 53:904–910. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Samarakoon A, Chu H and Malarkannan S: Murine NKG2D ligands:‘Double, double toil and trouble.’. Mol Immunol. 46:1011–1019. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Imai K, Matsuyama S, Miyake S, Suga K and Nakachi K: Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet. 356:1795–1799. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA and Moreno M: The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 79:2320–2328. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S and Aikou T: Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. 88:577–583. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón MJ, Jareño J, Zuil M and Callol L: Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer. 35:23–28. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Habif G, Crinier A, André P, Vivier E and Narni-Mancinelli E: Targeting natural killer cells in solid tumors. Cell Mol Immunol. 16:415–422. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Guillerey C, Huntington ND and Smyth MJ: Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 17:1025–1036. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Vitale M, Cantoni C, Pietra G, Mingari MC and Moretta L: Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 44:1582–1592. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Mushtaq MU, Papadas A, Pagenkopf A, Flietner E, Morrow Z, Chaudhary SG and Asimakopoulos F: Tumor matrix remodeling and novel immunotherapies: The promise of matrix-derived immune biomarkers. J Immunother Cancer. 6:652018. View Article : Google Scholar : PubMed/NCBI

71 

Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Chang MC, Cheng HI, Hsu K, Hsu YN, Kao CW, Chang YF, Lim KH and Chen CG: NKG2A down-regulation by dasatinib enhances natural killer cytotoxicity and accelerates effective treatment responses in patients with chronic myeloid leukemia. Front Immunol. 9:31522018. View Article : Google Scholar : PubMed/NCBI

73 

Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R and Tarazona R: Human NK cells in acute myeloid leukaemia patients: Analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother. 60:1195–1205. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al: The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 30:800–811. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Valenzuela-Vazquez L, Núñez-Enríquez JC, Sánchez-Herrera J, Jiménez-Hernández E, Martín-Trejo JA, Espinoza-Hernández LE, Medina-Sanson A, Flores-Villegas LV, Peñaloza-González JG, Refugio Torres-Nava J, et al: Functional characterization of NK cells in Mexican pediatric patients with acute lymphoblastic leukemia: Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. PLoS One. 15:e02273142020. View Article : Google Scholar : PubMed/NCBI

76 

Jarosz M, Hak Ł, Więckiewicz J, Balcerska A and Myśliwska J: Clinical immunology NK cells in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma after cessation of intensive chemotherapy. Cent Eur J Immunol. 34:94–99. 2009.

77 

Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, O'Reilly RJ, Horowitz MM and Dupont B: Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 105:4878–4884. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Fei F, Lim M, George AA, Kirzner J, Lee D, Seeger R, Groffen J, Abdel-Azim H and Heisterkamp N: Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells. Leukemia. 29:788–797. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 378:439–448. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, et al: Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 378:449–459. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Li L, Liu LN, Feller S, Allen C, Shivakumar R, Fratantoni J, Wolfraim LA, Fujisaki H, Campana D, Chopas N, et al: Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther. 17:147–154. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Shimasaki N, Fujisaki H, Cho D, Masselli M, Lockey T, Eldridge P, Leung W and Campana D: A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy. 14:830–840. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Xie G, Dong H, Liang Y, Ham JD, Rizwan R and Chen J: CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 59:1029752020. View Article : Google Scholar : PubMed/NCBI

84 

Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, et al: Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 382:545–553. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Sánchez-Cuaxospa M, Contreras-Ramos A, Pérez-Figueroa E, Medina-Sansón A, Jiménez-Hernández E, Torres-Nava JR, Rojas-Castillo E and Maldonado-Bernal C: Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia. Int J Oncol. 49:675–681. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Samudio I, Rezvani K, Shaim H, Hofs E, Ngom M, Bu L, Liu G, Lee JT, Imren S, Lam V, et al: UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells. Blood. 127:2575–2586. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Flavell DJ, Holmes SE, Warnes SL and Flavell SU: The TLR3 agonist poly inosinic: Cytidylic acid significantly augments the therapeutic activity of an anti-CD7 immunotoxin for human T-cell leukaemia. Biomedicines. 7:132019. View Article : Google Scholar : PubMed/NCBI

88 

Cheadle EJ, Lipowska-Bhalla G, Dovedi SJ, Fagnano E, Klein C, Honeychurch J and Illidge TM: A TLR7 agonist enhances the antitumor efficacy of obinutuzumab in murine lymphoma models via NK cells and CD4 T cells. Leukemia. 31:1611–1621. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Kim H, Khanna V, Kucaba TA, Zhang W, Sehgal D, Ferguson DM, Griffith TS and Panyam J: TLR7/8 agonist loaded nanoparticles augment NK Cell-mediated Antibody-based cancer immunotherapy. Mol Pharm. 17:2109–2124. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Ronsley R, Kariminia A, Ng B, Mostafavi S, Reid G, Subrt P, Hijiya N and Schultz KR: The TLR9 agonist (GNKG168) induces a unique immune activation pattern in vivo in children with minimal residual disease positive acute leukemia: Results of the TACL T2009-008 phase I study. Pediatr Hematol Oncol. 36:468–481. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gallardo‑Zapata J and Maldonado‑Bernal C: Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review). Oncol Lett 22: 748, 2021.
APA
Gallardo‑Zapata, J., & Maldonado‑Bernal, C. (2021). Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review). Oncology Letters, 22, 748. https://doi.org/10.3892/ol.2021.13009
MLA
Gallardo‑Zapata, J., Maldonado‑Bernal, C."Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review)". Oncology Letters 22.5 (2021): 748.
Chicago
Gallardo‑Zapata, J., Maldonado‑Bernal, C."Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review)". Oncology Letters 22, no. 5 (2021): 748. https://doi.org/10.3892/ol.2021.13009
Copy and paste a formatted citation
x
Spandidos Publications style
Gallardo‑Zapata J and Maldonado‑Bernal C: Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review). Oncol Lett 22: 748, 2021.
APA
Gallardo‑Zapata, J., & Maldonado‑Bernal, C. (2021). Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review). Oncology Letters, 22, 748. https://doi.org/10.3892/ol.2021.13009
MLA
Gallardo‑Zapata, J., Maldonado‑Bernal, C."Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review)". Oncology Letters 22.5 (2021): 748.
Chicago
Gallardo‑Zapata, J., Maldonado‑Bernal, C."Role of Toll‑like receptors in natural killer cell function in acute lymphoblastic leukemia (Review)". Oncology Letters 22, no. 5 (2021): 748. https://doi.org/10.3892/ol.2021.13009
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team