Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review)

  • Authors:
    • Shern Kwok Lim
    • Boon Yin Khoo
  • View Affiliations / Copyright

    Affiliations: Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
    Copyright: © Lim et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 785
    |
    Published online on: September 14, 2021
       https://doi.org/10.3892/ol.2021.13046
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self‑renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC‑based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
View Figures

Figure 1

Figure 2

View References

1 

Watt FM and Driskell RR: The therapeutic potential of stem cells. Philos Trans R Soc B Biol Sci. 365:155–163. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles MER, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, Vila TV, Rodrigues JS, Lear PV and Bravo SB: Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol. 49:R89–R111. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Zakrzewski W, Dobrzyński M, Szymonowicz M and Rybak Z: Stem cells: Past, present, and future. Stem Cell Res Ther. 10:682019. View Article : Google Scholar : PubMed/NCBI

4 

Singh VK, Saini A, Kalsan M, Kumar N and Chandra R: Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front Cell Dev Biol. 4:1342016. View Article : Google Scholar : PubMed/NCBI

5 

Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 4:222019. View Article : Google Scholar : PubMed/NCBI

6 

Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 78:7634–7638. 1981. View Article : Google Scholar : PubMed/NCBI

7 

Friedenstein AJ, Chailakhjan RK and Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3:393–403. 1970.PubMed/NCBI

8 

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Haynesworth SE, Goshima J, Goldberg VM and Caplan AI: Characterization of cells with osteogenic potential from human marrow. Bone. 13:81–88. 1992. View Article : Google Scholar : PubMed/NCBI

10 

McLeod C and Baylis F: Feminists on the inalienability of human embryos. Hypatia. 21:1–14. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Caulfield T and Ogbogu U: Stem cell research, scientific freedom and the commodification concern. EMBO Rep. 13:12–16. 2012. View Article : Google Scholar

12 

Marway H, Johnson SL and Widdows H: Commodification of human tissue. Handbook of Global Bioethics. ten Have H.A.M.J and Gordijn B: Springer Netherlands; Dordrecht, Netherlands: pp. 581–598. 2014, View Article : Google Scholar

13 

Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH and Bang OY; STARTING collaborators, : A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 28:1099–1106. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Bhasin A, Srivastava MVP, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A and Airan B: Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra. 1:93–104. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG and Kocsis JD: Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 134((Pt 6)): 1790–1807. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, et al: Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurol. 11:150–156. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M and Tashkin DP: A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 143:1590–1598. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Götherström C, Westgren M, Shaw SWS, Aström E, Biswas A, Byers PH, Mattar CNZ, Graham GE, Taslimi J, Ewald U, et al: Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: A two-center experience. Stem Cells Transl Med. 3:255–264. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, et al: Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA. 311:62–73. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, Fishman J, Pattany P, McNiece I, Conte J, et al: Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ Res. 114:1302–1310. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Rushkevich YN, Kosmacheva SM, Zabrodets GV, Ignatenko SI, Goncharova NV, Severin IN, Likhachev SA and Potapnev MP: The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in Belarus. Bull Exp Biol Med. 159:576–581. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Thakkar UG, Trivedi HL, Vanikar AV and Dave SD: Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy. 17:940–947. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Vega A, Martín-Ferrero MA, Del Canto F, Alberca M, García V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, et al: Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: A randomized controlled trial. Transplantation. 99:1681–1690. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, León A, Arnaiz C, Navarro G, Páramo MD, et al: Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 13:e01958912018. View Article : Google Scholar : PubMed/NCBI

25 

Musiał-Wysocka A, Kot M and Majka M: The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 28:801–812. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B and Capilla-Gonzalez V: Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 8:432020. View Article : Google Scholar : PubMed/NCBI

27 

da Silva Meirelles L, Chagastelles PC and Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 119((Pt 11)): 2204–2213. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S and Surendran R: Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: A comparative study. Cytotechnology. 67:793–807. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG and Sensebe L: Mesenchymal stem versus stromal cells: International society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 21:1019–1024. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Păunescu V, Deak E, Herman D, Siska IR, Tănasie G, Bunu C, Anghel S, Tatu CA, Oprea TI, Henschler R, et al: In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med. 11:502–508. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, Pattany PM, Zambrano JP, Hu Q, McNiece I, et al: Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA. 106:14022–14027. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brône B, Lambrichts I and Martens W: Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 24:296–311. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW and Banerjee D: Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68:4331–4339. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst). 33:61–79. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Miyazaki Y, Oda T, Inagaki Y, Kushige H, Saito Y, Mori N, Takayama Y, Kumagai Y, Mitsuyama T and Kida YS: Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci Rep. 11:46902021. View Article : Google Scholar : PubMed/NCBI

37 

Lee MW, Ryu S, Kim DS, Lee JW, Sung KW, Koo HH and Yoo KH: Mesenchymal stem cells in suppression or progression of hematologic malignancy: Current status and challenges. Leukemia. 33:597–611. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Liang W and Chen X, Zhang S, Fang J, Chen M, Xu Y and Chen X: Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cell Mol Biol Lett. 26:32021. View Article : Google Scholar : PubMed/NCBI

39 

Bellagamba BC, de Abreu BRR, Grivicich I, Markarian CF, Chem E, Camassola M, Nardi NB and Dihl RR: Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet Mol Biol. 39:129–134. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM and Silberstein LE: Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 24:1030–1041. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J and Prockop DJ: The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood. 113:816–826. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RAD and Dixit VM: USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 146:918–930. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Zhuo L, Gong J, Yang R, Sheng Y, Zhou L, Kong X and Cao K: Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells. Biochem Biophys Res Commun. 390:451–457. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Puchert M and Engele J: The peculiarities of the SDF-1/CXCL12 system: In some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res. 355:239–253. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Janssens R, Struyf S and Proost P: The unique structural and functional features of CXCL12. Cell Mol Immunol. 15:299–311. 2018. View Article : Google Scholar : PubMed/NCBI

46 

De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, Zhang HH, Fales H and Tosato G: Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood. 103:2452–2459. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Gomes AC, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, Tani-ichi S, Schlenner S, Richie E, Rodewald HR, et al: Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity. 45:1219–1231. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Reid JC, Tanasijevic B, Golubeva D, Boyd AL, Porras DP, Collins TJ and Bhatia M: CXCL12/CXCR4 signaling enhances human PSC-derived hematopoietic progenitor function and overcomes early in vivo transplantation failure. Stem Cell Reports. 10:1625–1641. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Binder ZA, Siu IM, Eberhart CG, Rhys CA, Bai RY, Staedtke V, Zhang H, Smoll NR, Piantadosi S, Piccirillo SG, et al: Podocalyxin-like protein is expressed in glioblastoma multiforme stem-like cells and is associated with poor outcome. PLoS One. 8:e759452013. View Article : Google Scholar : PubMed/NCBI

50 

Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C, Hezaimi KA, Zou W, Chen X, et al: NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci. 110:9469–9474. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Kolosova IA, Angelini D, Fan C, Skinner J, Cheadle C and Johns RA: Resistin-like molecule α stimulates proliferation of mesenchymal stem cells while maintaining their multipotency. Stem Cells Dev. 22:239–247. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Chosa N and Ishisaki A: Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell-cell adhesion through N-cadherin. Jpn Dent Sci Rev. 54:37–44. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Sugiyama T, Kohara H, Noda M and Nagasawa T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25:977–988. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Gharibi B, Ghuman MS and Hughes FJ: Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. J Cell Mol Med. 16:2789–2801. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G and Papadaki HA: Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 8:1022017. View Article : Google Scholar : PubMed/NCBI

57 

Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I and Bellavia D: Wnt, Notch, and TGF-β pathways impinge on Hedgehog signaling complexity: An open window on cancer. Front Genet. 10:7112019. View Article : Google Scholar : PubMed/NCBI

58 

Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V and Ho AD: Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One. 3:e22132008. View Article : Google Scholar : PubMed/NCBI

59 

Halfon S, Abramov N, Grinblat B and Ginis I: Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 20:53–66. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Pérez-Campo FM and Riancho JA: Epigenetic mechanisms regulating mesenchymal stem cell differentiation. Curr Genomics. 16:368–383. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, et al: Epigenetic regulation of mesenchymal stem cells: A focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011:2013712011. View Article : Google Scholar : PubMed/NCBI

62 

Srinageshwar B, Maiti P, Dunbar GL and Rossignol J: Role of epigenetics in stem cell proliferation and differentiation: Implications for treating neurodegenerative diseases. Int J Mol Sci. 17:1992016. View Article : Google Scholar : PubMed/NCBI

63 

Escacena N, Quesada-Hernández E, Capilla-Gonzalez V, Soria B and Hmadcha A: Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. Stem Cells Int. 2015:8957142015. View Article : Google Scholar : PubMed/NCBI

64 

Zhang D and Kilian KA: The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials. 34:3962–3969. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Rathbone SR, Glossop JR, Gough JE and Cartmell SH: Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater. 11:82–91. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Cao C, Li L, Li H, He X, Wu G and Yu X: Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a. Int J Biochem Cell Biol. 99:125–132. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Zhang L, Wang Y, Zhou N, Feng Y and Yang X: Cyclic tensile stress promotes osteogenic differentiation of adipose stem cells via ERK and p38 pathways. Stem Cell Res. 37:1014332019. View Article : Google Scholar : PubMed/NCBI

68 

Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS and Caplan AI: Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplant. 16:557–564. 1995.PubMed/NCBI

69 

Galipeau J and Sensébé L: Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell. 22:824–833. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S and Drela K: Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019:96285362019. View Article : Google Scholar : PubMed/NCBI

71 

Gálvez P, Clares B, Bermejo M, Hmadcha A and Soria B: Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells Dev. 23:1074–1083. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Galvez-Martin P, Sabata R, Verges J, Zugaza JL, Ruiz A and Clares B: Mesenchymal stem cells as therapeutics agents: Quality and environmental regulatory aspects. Stem Cells Int. 2016:97834082016. View Article : Google Scholar : PubMed/NCBI

73 

Yang YHK: Aging of mesenchymal stem cells: Implication in regenerative medicine. Regen Ther. 9:120–122. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Fafián-Labora JA, Morente-López M and Arufe MC: Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells. 11:337–346. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Huang XP, Sun Z, Miyagi Y, McDonald KH, Zhang L, Weisel RD and Li RK: Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 122:2419–2429. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH and Huang CA: Immunogenicity of umbilical cord tissue-derived cells. Blood. 111:430–438. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Faiella W and Atoui R: Immunotolerant properties of mesenchymal stem cells: Updated review. Stem Cells Int. 2016:18595672016. View Article : Google Scholar : PubMed/NCBI

78 

Dhingra S, Li P, Huang XP, Guo J, Wu J, Mihic A, Li SH, Zang WF, Shen D, Weisel RD, et al: Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function. Circulation. 128((11 Suppl 1)): S69–S78. 2013.PubMed/NCBI

79 

Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G and Cheng C: Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY). 8:1102–1114. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Ankrum JA, Ong JF and Karp JM: Mesenchymal stem cells: Immune evasive, not immune privileged. Nat Biotechnol. 32:252–260. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Zazzeroni L, Lanzoni G, Pasquinelli G and Ricordi C: Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CellR4 Repair Replace Regen Reprogram. 5:e24352017.PubMed/NCBI

82 

Gao L, Bird AK, Meednu N, Dauenhauer K, Liesveld J, Anolik J and Looney RJ: Bone marrow-derived mesenchymal stem cells from patients with systemic lupus erythematosus have a senescence-associated secretory phenotype mediated by a mitochondrial antiviral signaling protein-interferon-β feedback loop. Arthritis Rheumatol. 69:1623–1635. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Ji J, Wu Y, Meng Y, Zhang L, Feng G, Xia Y, Xue W, Zhao S, Gu Z and Shao X: JAK-STAT signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients. Acta Biochim Biophys Sin (Shanghai). 49:208–215. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Zhu Y and Feng X: Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Res Ther. 9:1492018. View Article : Google Scholar : PubMed/NCBI

85 

Chen DC, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, Liu YJ, Tsai CH, Chen JC, Cho DY, et al: Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: A randomized phase II study. Cell Transplant. 23:1599–1612. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, Ihara M, Daimon T, Yamahara K, Doi K, et al: Intravenous autologous bone marrow mononuclear cell transplantation for stroke: Phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 24:2207–2218. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, Yavagal DR, Uchino K, Liebeskind DS, Auchus AP, et al: Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 16:360–368. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Bhatia V, Gupta V, Khurana D, Sharma RR and Khandelwal N: Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous wtem cells in wubacute ischemic stroke. AJNR Am J Neuroradiol. 39:899–904. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Gautam J, Alaref A, Hassan A, Kandel RS, Mishra R and Jahan N: Safety and efficacy of stem cell therapy in patients with ischemic stroke. Cureus. 12:e99172020.PubMed/NCBI

90 

Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J, Nguyen K, Rouy D, Altman P, Schwarz R, Mendizabal A, et al: Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J. 161:487–493. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Mushtaq M, DiFede DL, Golpanian S, Khan A, Gomes SA, Mendizabal A, Heldman AW and Hare JM: Rationale and design of the percutaneous stem cell injection delivery effects on neomyogenesis in dilated cardiomyopathy (The POSEIDON-DCM Study). J Cardiovasc Transl Res. 7:769–780. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, et al: Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol. 69:526–537. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula L, Weil M, Andreeff M and Marini FC: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescence imaging. Stem Cells. 27:2614–2623. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Spaeth E, Klopp A, Dembinski J, Andreeff M and Marini F: Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15:730–738. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Dimarino AM, Caplan AI and Bonfield TL: Mesenchymal stem cells in tissue repair. Front Immunol. 4:2012013. View Article : Google Scholar : PubMed/NCBI

98 

Ayala-Cuellar AP, Kang JH, Jeung EB and Choi KC: Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther (Seoul). 27:25–33. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Julier Z, Park AJ, Briquez PS and Martino MM: Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53:13–28. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Prockop DJ and Oh JY: Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther. 20:14–20. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Song J, Kang HJ, Ju HM, Park A, Park H, Hong JS, Kim CJ, Shim JY, Yu J and Choi J: Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Sci Rep. 9:66232019. View Article : Google Scholar : PubMed/NCBI

102 

Ren G, Zhao X, Zhang L, Zhang J, L'Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C and Shi Y: Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 184:2321–2328. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, et al: Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol. 16:908–920. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A and Boltze J: Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. 35:1446–1460. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, et al: Mesenchymal stromal cell therapeutic delivery: Translational challenges to clinical application. Front Immunol. 10:16452019. View Article : Google Scholar : PubMed/NCBI

106 

Ullah M, Liu DD and Thakor AS: Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience. 15:421–438. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Fiore EJ, Domínguez LM, Bayo J, García MG and Mazzolini GD: Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies. World J Gastroenterol. 24:2427–2440. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Li H, Rong P, Ma X, Nie W, Chen C, Yang C, Zhang J, Dong Q and Wang W: Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci. 215:113–118. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Zheng G, Huang R, Qiu G, Ge M, Wang J, Shu Q and Xu J: Mesenchymal stromal cell-derived extracellular vesicles: Regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 374:1–15. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Weiss ARR and Dahlke MH: Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 10:11912019. View Article : Google Scholar : PubMed/NCBI

111 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

112 

Wobus M, List C, Dittrich T, Dhawan A, Duryagina R, Arabanian LS, Kast K, Wimberger P, Stiehler M, Hofbauer LC, et al: Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer. 136:44–54. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, Baek SH, Jeon YH, Jeong SY, Lee SW, et al: In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int. 2017:80856372017. View Article : Google Scholar : PubMed/NCBI

114 

Ratajczak MZ, Bujko K, Mack A, Kucia M and Ratajczak J: Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia. 32:2519–2526. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S and Saijo Y: Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 17:579–587. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y and Wang X: Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother. 112:1086252019. View Article : Google Scholar : PubMed/NCBI

117 

Bajetto A, Pattarozzi A, Corsaro A, Barbieri F, Daga A, Bosio A, Gatti M, Pisaturo V, Sirito R and Florio T: Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Front Cell Neurosci. 11:3122017. View Article : Google Scholar : PubMed/NCBI

118 

Zheng H, Zou W, Shen J, Xu L, Wang S, Fu YX and Fan W: Opposite effects of coinjection and distant injection of mesenchymal stem cells on breast tumor cell growth. Stem Cells Transl Med. 5:1216–1228. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Akimoto K, Kimura K, Nagano M, Takano S, To'a Salazar G, Yamashita T and Ohneda O: Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 22:1370–1386. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Barcellos-de-Souza P, Comito G, Pons-Segura C, Taddei ML, Gori V, Becherucci V, Bambi F, Margheri F, Laurenzana A, Del Rosso M and Chiarugi P: Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1. Stem Cells. 34:2536–2547. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Hill BS, Pelagalli A, Passaro N and Zannetti A: Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget. 8:73296–73311. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Tan HX, Xiao ZG, Huang T, Fang ZX, Liu Y and Huang ZC: CXCR4/TGF-β1 mediated self-differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and promoted colorectal carcinoma development. Cancer Biol Ther. 21:248–257. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Walter M, Liang S, Ghosh S, Hornsby PJ and Li R: Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene. 28:2745–2755. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY, Chen LL, Wang HW, Miller SA, Chiou SH, et al: Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology. 141:1046–1056. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH and Li G: Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 4:702013. View Article : Google Scholar : PubMed/NCBI

126 

El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM, Csizmadia E, Mariani O, Zhu C, Campagne A, et al: Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci USA. 109:17460–17465. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M and Rameshwar P: Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. J Immunol. 184:5885–5894. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Gazdic M, Markovic BS, Jovicic N, Misirkic-Marjanovic M, Djonov V, Jakovljevic V, Arsenijevic N, Lukic ML and Volarevic V: Mesenchymal stem cells promote metastasis of lung cancer cells by downregulating systemic antitumor immune response. Stem Cells Int. 2017:62947172017. View Article : Google Scholar : PubMed/NCBI

129 

Ramasamy R, Lam EWF, Soeiro I, Tisato V, Bonnet D and Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth. Leukemia. 21:304–310. 2007. View Article : Google Scholar : PubMed/NCBI

130 

He N, Kong Y, Lei X, Liu Y, Wang J, Xu C, Wang Y, Du L, Ji K, Wang Q, et al: MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis. 9:10262018. View Article : Google Scholar : PubMed/NCBI

131 

Yulyana Y, Ho IAW, Sia KC, Newman JP, Toh XY, Endaya BB, Chan JKY, Gnecchi M, Huynh H, Chung AY, et al: Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol Ther. 23:746–756. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Chen HL, Li JJ, Jiang F, Shi WJ and Chang GY: MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer. Biosci Biotechnol Biochem. 84:338–346. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Ho IAW, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM and Lam PYP: Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 31:146–155. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Khalil C, Moussa M, Azar A, Tawk J, Habbouche J, Salameh R, Ibrahim A and Alaaeddine N: Anti-proliferative effects of mesenchymal stem cells (MSCs) derived from multiple sources on ovarian cancer cell lines: An in-vitro experimental study. J Ovarian Res. 12:702019. View Article : Google Scholar : PubMed/NCBI

135 

DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Li M, Kouzmina E, McCusker M, Rodin D, Boutros PC, Paige CJ and Rodin G: Pro- and anti-inflammatory cytokine associations with major depression in cancer patients. Psychooncology. 26:2149–2156. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Ahechu P, Zozaya G, Martí P, Hernández-Lizoáin JL, Baixauli J, Unamuno X, Frühbeck G and Catalán V: NLRP3 inflammasome: A possible link between obesity-associated low-grade chronic inflammation and colorectal cancer development. Front Immunol. 9:29182018. View Article : Google Scholar : PubMed/NCBI

138 

Mocellin S, Panelli MC, Wang E, Nagorsen D and Marincola FM: The dual role of IL-10. Trends Immunol. 24:36–43. 2003. View Article : Google Scholar : PubMed/NCBI

139 

Tanikawa T, Wilke CM, Kryczek I, Chen GY, Kao J, Núñez G and Zou W: Interleukin-10 ablation promotes tumor development, growth, and metastasis. Cancer Res. 72:420–429. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT, Morrone G, Culig Z, Maitland NJ and Erb HHH: The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis. 6:e3422017. View Article : Google Scholar : PubMed/NCBI

141 

Setrerrahmane S and Xu H: Tumor-related iCnterleukins: Old validated targets for new anti-cancer drug development. Mol Cancer. 16:1532017. View Article : Google Scholar : PubMed/NCBI

142 

Saeedi P, Halabian R and Fooladi AA: A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig. 6:342019. View Article : Google Scholar : PubMed/NCBI

143 

Bortolotti F, Ukovich L, Razban V, Martinelli V, Ruozi G, Pelos B, Dore F, Giacca M and Zacchigna S: In vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure. Stem Cell Rep. 4:332–339. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Fathi E, Sanaat Z and Farahzadi R: Mesenchymal stem cells in acute myeloid leukemia: A focus on mechanisms involved and therapeutic concepts. Blood Res. 54:165–174. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Chen Y, He Y, Wang X, Lu F and Gao J: Adipose-derived mesenchymal stem cells exhibit tumor tropism and promote tumorsphere formation of breast cancer cells. Oncol Rep. 41:2126–2136. 2019.PubMed/NCBI

146 

Dührsen L, Hartfuß S, Hirsch D, Geiger S, Maire CL, Sedlacik J, Guenther C, Westphal M, Lamszus K, Hermann FG and Schmidt NO: Preclinical analysis of human mesenchymal stem cells: Tumor tropism and therapeutic efficiency of local HSV-TK suicide gene therapy in glioblastoma. Oncotarget. 10:6049–6061. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Dissanayake S, Denny WA, Gamage S and Sarojini V: Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release. 250:62–76. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Lagoa R, Silva J, Rodrigues JR and Bishayee A: Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv. 38:1073822020. View Article : Google Scholar : PubMed/NCBI

149 

Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ and Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62:3603–3608. 2002.PubMed/NCBI

150 

Ahn JO, Lee HW, Seo KW, Kang SK, Ra JC and Youn HY: Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma. PLoS One. 8:e748972013. View Article : Google Scholar : PubMed/NCBI

151 

Shen CJ, Chan TF, Chen CC, Hsu YC, Long CY and Lai CS: Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget. 7:34172–34179. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Yuan ZQ, Kolluri KK, Sage EK, Gowers KHC and Janes SM: Mesenchymal stromal cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy. Cytotherapy. 17:885–896. 2015. View Article : Google Scholar : PubMed/NCBI

153 

Marini I, Siegemund M, Hutt M, Kontermann RE and Pfizenmaier K: Antitumor activity of a mesenchymal stem cell line stably secreting a tumor-targeted TNF-related apoptosis-inducing ligand fusion protein. Front Immunol. 8:5362017. View Article : Google Scholar : PubMed/NCBI

154 

Guiho R, Biteau K, Grisendi G, Chatelais M, Brion R, Taurelle J, Renault S, Heymann D, Dominici M and Redini F: In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor-related apoptosis inducing ligand in osteosarcoma pre-clinical models. Cytotherapy. 20:1037–1045. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Shamili FH, Bayegi HR, Salmasi Z, Sadri K, Mahmoudi M, Kalantari M, Ramezani M and Abnous K: Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. Int J Pharm. 549:218–229. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Yang X, Du J, Xu X, Xu C and Song W: IFN-γ-secreting-mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res. 2014:e3180982014. View Article : Google Scholar

157 

You Q, Yao Y, Zhang Y, Fu S, Du M and Zhang G: Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo. Mol Med Rep. 12:4859–4866. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Zhao W, Cheng J, Shi P and Huang J: Human umbilical cord mesenchymal stem cells with adenovirus-mediated interleukin 12 gene transduction inhibits the growth of ovarian carcinoma cells both in vitro and in vivo. Nan Fang Yi Ke Da Xue Xue Bao. 31:903–907. 2011.(In Chinese). PubMed/NCBI

159 

Zhang X, Zhang L, Xu W, Qian H, Ye S, Zhu W, Cao H, Yan Y, Li W, Wang M, et al: Experimental therapy for lung cancer: Umbilical cord-derived mesenchymal stem cell-mediated interleukin-24 delivery. Curr Cancer Drug Targets. 13:92–102. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Nowakowski A, Walczak P, Lukomska B and Janowski M: Genetic engineering of mesenchymal stem cells to induce their migration and survival. Stem Cells Int. 2016:e49560632016. View Article : Google Scholar : PubMed/NCBI

161 

Wei W, Huang Y, Li D, Gou HF and Wang W: Improved therapeutic potential of MSCs by genetic modification. Gene Ther. 25:538–547. 2018. View Article : Google Scholar : PubMed/NCBI

162 

Ocansey DKW, Pei B, Yan Y, Qian H, Zhang X, Xu W and Mao F: Improved therapeutics of modified mesenchymal stem cells: An update. J Transl Med. 18:422020. View Article : Google Scholar : PubMed/NCBI

163 

Phillips MI and Tang YL: Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev. 60:160–172. 2008. View Article : Google Scholar : PubMed/NCBI

164 

Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z and Majka M: Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol. 39:686–696. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Pelagalli A, Nardelli A, Lucarelli E, Zannetti A and Brunetti A: Autocrine signals increase ovine mesenchymal stem cells migration through Aquaporin-1 and CXCR4 overexpression. J Cell Physiol. 233:6241–6249. 2018. View Article : Google Scholar : PubMed/NCBI

166 

Song SW, Chang W, Song BW, Song H, Lim S, Kim HJ, Cha MJ, Choi E, Im SH, Chang BC, et al: Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells. 27:1358–1365. 2009. View Article : Google Scholar : PubMed/NCBI

167 

Fan YX, Gu CH, Zhang YL, Zhong BS, Wang LZ, Zhou ZR, Wang ZY, Jia RX and Wang F: Oct4 and Sox2 overexpression improves the proliferation and differentiation of bone mesenchymal stem cells in Xiaomeishan porcine. Genet Mol Res. 12:6067–6079. 2013. View Article : Google Scholar : PubMed/NCBI

168 

Han SM, Han SH, Coh YR, Jang G, Ra JC, Kang SK, Lee HW and Youn HY: Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med. 46:e1012014. View Article : Google Scholar : PubMed/NCBI

169 

Becker AD and Riet IV: Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 8:73–87. 2016. View Article : Google Scholar : PubMed/NCBI

170 

DelaRosa O, Dalemans W and Lombardo E: Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol. 3:1822012. View Article : Google Scholar : PubMed/NCBI

171 

Najar M, Krayem M, Meuleman N, Bron D and Lagneaux L: Mesenchymal stromal cells and toll-like receptor priming: A critical review. Immune Netw. 17:89–102. 2017. View Article : Google Scholar : PubMed/NCBI

172 

Mekhemar MK, Dörfer CE and El-Sayed KMF: Toll-like receptors: The key of immunotherapy in MSCs. Immunoregulatory aspects of immunotherapy. IntechOpen; pp. 1732018

173 

Waterman RS, Tomchuck SL, Henkle SL and Betancourt AM: A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 5:e100882010. View Article : Google Scholar : PubMed/NCBI

174 

Kim J and Hematti P: Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp Hematol. 37:1445–1453. 2009. View Article : Google Scholar : PubMed/NCBI

175 

Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F, Pelletier M, Pizzolo G and Krampera M: Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells. 29:1001–1011. 2011. View Article : Google Scholar : PubMed/NCBI

176 

Hall SRR, Tsoyi K, Ith B, Padera RF Jr, Lederer JA, Wang Z, Liu X and Perrella MA: Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: The importance of neutrophils. Stem Cells. 31:397–407. 2013. View Article : Google Scholar : PubMed/NCBI

177 

Jiang W and Xu J: Immune modulation by mesenchymal stem cells. Cell Prolif. 53:e127122019.PubMed/NCBI

178 

Kudlik G, Hegyi B, Czibula Á, Monostori É, Buday L and Uher F: Mesenchymal stem cells promote macrophage polarization toward M2b-like cells. Exp Cell Res. 348:36–45. 2016. View Article : Google Scholar : PubMed/NCBI

179 

Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC and Moretta L: Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 111:1327–1333. 2008. View Article : Google Scholar : PubMed/NCBI

180 

Gonzalez H, Hagerling C and Werb Z: Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI

181 

Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, et al: Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015. View Article : Google Scholar : PubMed/NCBI

182 

Du W, Seah I, Bougazzoul O, Choi G, Meeth K, Bosenberg MW, Wakimoto H, Fisher D and Shah K: Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc Natl Acad Sci USA. 114:E6157–E6165. 2017. View Article : Google Scholar : PubMed/NCBI

183 

Guo Y, Zhang Z, Xu X, Xu Z, Wang S, Huang D, Li Y, Mou X, Liu F and Xiang C: Menstrual blood-derived stem cells as delivery vehicles for oncolytic adenovirus virotherapy for colorectal cancer. Stem Cells Dev. 28:882–896. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Mahasa KJ, Pillis Ld, Ouifki R, Eladdadi A, Maini P, Yoon AR and Yun CO: Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci Rep. 10:4252020. View Article : Google Scholar : PubMed/NCBI

185 

Pessina A, Coccè V, Pascucci L, Bonomi A, Cavicchini L, Sisto F, Ferrari M, Ciusani E, Crovace A, Falchetti ML, et al: Mesenchymal stromal cells primed with paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br J Haematol. 160:766–778. 2013. View Article : Google Scholar : PubMed/NCBI

186 

Gilazieva Z, Tazetdinova L, Arkhipova S, Solovyeva V and Rizvanov A: Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells. BioNanoScience. 6:534–539. 2016. View Article : Google Scholar

187 

Nicolay NH, Perez RL, Rühle A, Trinh T, Sisombath S, Weber KJ, Ho AD, Debus J, Saffrich R and Huber PE: Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Sci Rep. 6:200352016. View Article : Google Scholar : PubMed/NCBI

188 

Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, et al: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 192:262–270. 2014. View Article : Google Scholar : PubMed/NCBI

189 

Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, Sisto F, Ferrari M, Viganò L, Locatelli A, et al: Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One. 6:e283212011. View Article : Google Scholar : PubMed/NCBI

190 

Bonomi A, Coccè V, Cavicchini L, Sisto F, Dossena M, Balzarini P, Portolani N, Ciusani E, Parati E, Alessandri G and Pessina A: Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity. Int J Immunopathol Pharmacol. 26 (Suppl 1):S33–S41. 2013. View Article : Google Scholar : PubMed/NCBI

191 

Coccè V, Franzè S, Brini AT, Giannì AB, Pascucci L, Ciusani E, Alessandri G, Farronato G, Cavicchini L, Sordi V, et al: In vitro anticancer activity of extracellular vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics. 11:612019. View Article : Google Scholar : PubMed/NCBI

192 

Coccè V, Farronato D, Brini AT, Masia C, Giannì AB, Piovani G, Sisto F, Alessandri G, Angiero F and Pessina A: Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep. 7:93762017. View Article : Google Scholar : PubMed/NCBI

193 

Layek B, Sadhukha T, Panyam J and Prabha S: Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther. 17:1196–1206. 2018. View Article : Google Scholar : PubMed/NCBI

194 

Moku G, Layek B, Trautman L, Putnam S, Panyam J and Prabha S: Improving payload capacity and anti-tumor efficacy of mesenchymal stem cells using TAT peptide functionalized polymeric nanoparticles. Cancers (Basel). 11:4912019. View Article : Google Scholar : PubMed/NCBI

195 

Altun İ and Sonkaya A: The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iran J Public Health. 47:1218–1219. 2018.PubMed/NCBI

196 

Kim W, Lee SK, Kwon YW, Chung SG and Kim S: Pioglitazone-primed mesenchymal stem cells stimulate cell proliferation, collagen synthesis and matrix gene expression in tenocytes. Int J Mol Sci. 20:4722019. View Article : Google Scholar : PubMed/NCBI

197 

Hong Y, Kim YS, Hong SH and Oh YM: Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model. Exp Mol Med. 48:e2662016. View Article : Google Scholar : PubMed/NCBI

198 

Park JS, Kim HK, Kang EY, Cho R and Oh YM: Potential therapeutic strategy in chronic obstructive pulmonary disease using pioglitazone-augmented Wharton's jelly-derived mesenchymal stem cells. Tuberc Respir Dis (Seoul). 82:158–165. 2019. View Article : Google Scholar : PubMed/NCBI

199 

Khoo BY, Nadarajan K, Shim SY, Miswan N, Zang CB, Possinger K and Elstner E: Pretreatment of BMSCs with TZD solution decreases the proliferation rate of MCF-7 cells by reducing FGF4 protein expression. Mol Med Rep. 13:3406–3414. 2016. View Article : Google Scholar : PubMed/NCBI

200 

Tsubaki M, Takeda T, Tomonari Y, Kawashima K, Itoh T, Imano M, Satou T and Nishida S: Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARγ-independent pathway. J Cell Physiol. 233:3638–3647. 2018. View Article : Google Scholar : PubMed/NCBI

201 

Moghareabed R, Hemati S, Akhavan A, Emami H, Farghadani M, Roayaei M, Tavajoh S and Feizi A: Randomized phase II clinical trial of pioglitazone plus chemotherapy versus chemotherapy alone in patients with metastatic breast cancer. J Glob Oncol. 5:832019. View Article : Google Scholar

202 

Esmaeili S, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Salari S, Gharehbaghian A, Hamidpour M and Bashash D: Activation of PPARγ intensified the effects of arsenic trioxide in acute promyelocytic leukemia through the suppression of PI3K/Akt pathway: Proposing a novel anticancer effect for pioglitazone. Int J Biochem Cell Biol. 122:1057392020. View Article : Google Scholar : PubMed/NCBI

203 

Shinmura D, Togashi I, Miyoshi S, Nishiyama N, Hida N, Tsuji H, Tsuruta H, Segawa K, Tsukada Y, Ogawa S and Umezawa A: Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells. 29:357–366. 2011. View Article : Google Scholar : PubMed/NCBI

204 

Wang M, Cai J, Huang F, Zhu M, Zhang Q, Yang T, Zhang X, Qian H and Xu W: Pre-treatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells. Int J Mol Med. 35:367–375. 2015. View Article : Google Scholar : PubMed/NCBI

205 

von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Blanc KL and Ringdén O: Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 18:557–564. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lim SK and Khoo BY: An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review). Oncol Lett 22: 785, 2021.
APA
Lim, S.K., & Khoo, B.Y. (2021). An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review). Oncology Letters, 22, 785. https://doi.org/10.3892/ol.2021.13046
MLA
Lim, S. K., Khoo, B. Y."An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review)". Oncology Letters 22.5 (2021): 785.
Chicago
Lim, S. K., Khoo, B. Y."An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review)". Oncology Letters 22, no. 5 (2021): 785. https://doi.org/10.3892/ol.2021.13046
Copy and paste a formatted citation
x
Spandidos Publications style
Lim SK and Khoo BY: An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review). Oncol Lett 22: 785, 2021.
APA
Lim, S.K., & Khoo, B.Y. (2021). An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review). Oncology Letters, 22, 785. https://doi.org/10.3892/ol.2021.13046
MLA
Lim, S. K., Khoo, B. Y."An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review)". Oncology Letters 22.5 (2021): 785.
Chicago
Lim, S. K., Khoo, B. Y."An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review)". Oncology Letters 22, no. 5 (2021): 785. https://doi.org/10.3892/ol.2021.13046
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team