You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Watt FM and Driskell RR: The therapeutic potential of stem cells. Philos Trans R Soc B Biol Sci. 365:155–163. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles MER, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, Vila TV, Rodrigues JS, Lear PV and Bravo SB: Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol. 49:R89–R111. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zakrzewski W, Dobrzyński M, Szymonowicz M and Rybak Z: Stem cells: Past, present, and future. Stem Cell Res Ther. 10:682019. View Article : Google Scholar : PubMed/NCBI | |
|
Singh VK, Saini A, Kalsan M, Kumar N and Chandra R: Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front Cell Dev Biol. 4:1342016. View Article : Google Scholar : PubMed/NCBI | |
|
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 4:222019. View Article : Google Scholar : PubMed/NCBI | |
|
Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 78:7634–7638. 1981. View Article : Google Scholar : PubMed/NCBI | |
|
Friedenstein AJ, Chailakhjan RK and Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3:393–403. 1970.PubMed/NCBI | |
|
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Haynesworth SE, Goshima J, Goldberg VM and Caplan AI: Characterization of cells with osteogenic potential from human marrow. Bone. 13:81–88. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
McLeod C and Baylis F: Feminists on the inalienability of human embryos. Hypatia. 21:1–14. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Caulfield T and Ogbogu U: Stem cell research, scientific freedom and the commodification concern. EMBO Rep. 13:12–16. 2012. View Article : Google Scholar | |
|
Marway H, Johnson SL and Widdows H: Commodification of human tissue. Handbook of Global Bioethics. ten Have H.A.M.J and Gordijn B: Springer Netherlands; Dordrecht, Netherlands: pp. 581–598. 2014, View Article : Google Scholar | |
|
Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH and Bang OY; STARTING collaborators, : A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 28:1099–1106. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bhasin A, Srivastava MVP, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A and Airan B: Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra. 1:93–104. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG and Kocsis JD: Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 134((Pt 6)): 1790–1807. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, et al: Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurol. 11:150–156. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M and Tashkin DP: A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 143:1590–1598. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Götherström C, Westgren M, Shaw SWS, Aström E, Biswas A, Byers PH, Mattar CNZ, Graham GE, Taslimi J, Ewald U, et al: Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: A two-center experience. Stem Cells Transl Med. 3:255–264. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, et al: Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA. 311:62–73. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, Fishman J, Pattany P, McNiece I, Conte J, et al: Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ Res. 114:1302–1310. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rushkevich YN, Kosmacheva SM, Zabrodets GV, Ignatenko SI, Goncharova NV, Severin IN, Likhachev SA and Potapnev MP: The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in Belarus. Bull Exp Biol Med. 159:576–581. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Thakkar UG, Trivedi HL, Vanikar AV and Dave SD: Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy. 17:940–947. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vega A, Martín-Ferrero MA, Del Canto F, Alberca M, García V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, et al: Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: A randomized controlled trial. Transplantation. 99:1681–1690. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, León A, Arnaiz C, Navarro G, Páramo MD, et al: Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 13:e01958912018. View Article : Google Scholar : PubMed/NCBI | |
|
Musiał-Wysocka A, Kot M and Majka M: The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 28:801–812. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B and Capilla-Gonzalez V: Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 8:432020. View Article : Google Scholar : PubMed/NCBI | |
|
da Silva Meirelles L, Chagastelles PC and Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 119((Pt 11)): 2204–2213. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S and Surendran R: Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: A comparative study. Cytotechnology. 67:793–807. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG and Sensebe L: Mesenchymal stem versus stromal cells: International society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 21:1019–1024. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Păunescu V, Deak E, Herman D, Siska IR, Tănasie G, Bunu C, Anghel S, Tatu CA, Oprea TI, Henschler R, et al: In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med. 11:502–508. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, Pattany PM, Zambrano JP, Hu Q, McNiece I, et al: Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA. 106:14022–14027. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brône B, Lambrichts I and Martens W: Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 24:296–311. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW and Banerjee D: Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68:4331–4339. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst). 33:61–79. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Miyazaki Y, Oda T, Inagaki Y, Kushige H, Saito Y, Mori N, Takayama Y, Kumagai Y, Mitsuyama T and Kida YS: Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci Rep. 11:46902021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee MW, Ryu S, Kim DS, Lee JW, Sung KW, Koo HH and Yoo KH: Mesenchymal stem cells in suppression or progression of hematologic malignancy: Current status and challenges. Leukemia. 33:597–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liang W and Chen X, Zhang S, Fang J, Chen M, Xu Y and Chen X: Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cell Mol Biol Lett. 26:32021. View Article : Google Scholar : PubMed/NCBI | |
|
Bellagamba BC, de Abreu BRR, Grivicich I, Markarian CF, Chem E, Camassola M, Nardi NB and Dihl RR: Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet Mol Biol. 39:129–134. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM and Silberstein LE: Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 24:1030–1041. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J and Prockop DJ: The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood. 113:816–826. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RAD and Dixit VM: USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 146:918–930. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuo L, Gong J, Yang R, Sheng Y, Zhou L, Kong X and Cao K: Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells. Biochem Biophys Res Commun. 390:451–457. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Puchert M and Engele J: The peculiarities of the SDF-1/CXCL12 system: In some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res. 355:239–253. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Janssens R, Struyf S and Proost P: The unique structural and functional features of CXCL12. Cell Mol Immunol. 15:299–311. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, Zhang HH, Fales H and Tosato G: Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood. 103:2452–2459. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gomes AC, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, Tani-ichi S, Schlenner S, Richie E, Rodewald HR, et al: Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity. 45:1219–1231. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Reid JC, Tanasijevic B, Golubeva D, Boyd AL, Porras DP, Collins TJ and Bhatia M: CXCL12/CXCR4 signaling enhances human PSC-derived hematopoietic progenitor function and overcomes early in vivo transplantation failure. Stem Cell Reports. 10:1625–1641. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Binder ZA, Siu IM, Eberhart CG, Rhys CA, Bai RY, Staedtke V, Zhang H, Smoll NR, Piantadosi S, Piccirillo SG, et al: Podocalyxin-like protein is expressed in glioblastoma multiforme stem-like cells and is associated with poor outcome. PLoS One. 8:e759452013. View Article : Google Scholar : PubMed/NCBI | |
|
Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C, Hezaimi KA, Zou W, Chen X, et al: NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci. 110:9469–9474. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kolosova IA, Angelini D, Fan C, Skinner J, Cheadle C and Johns RA: Resistin-like molecule α stimulates proliferation of mesenchymal stem cells while maintaining their multipotency. Stem Cells Dev. 22:239–247. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chosa N and Ishisaki A: Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell-cell adhesion through N-cadherin. Jpn Dent Sci Rev. 54:37–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sugiyama T, Kohara H, Noda M and Nagasawa T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25:977–988. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Gharibi B, Ghuman MS and Hughes FJ: Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. J Cell Mol Med. 16:2789–2801. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G and Papadaki HA: Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 8:1022017. View Article : Google Scholar : PubMed/NCBI | |
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I and Bellavia D: Wnt, Notch, and TGF-β pathways impinge on Hedgehog signaling complexity: An open window on cancer. Front Genet. 10:7112019. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V and Ho AD: Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One. 3:e22132008. View Article : Google Scholar : PubMed/NCBI | |
|
Halfon S, Abramov N, Grinblat B and Ginis I: Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 20:53–66. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Campo FM and Riancho JA: Epigenetic mechanisms regulating mesenchymal stem cell differentiation. Curr Genomics. 16:368–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, et al: Epigenetic regulation of mesenchymal stem cells: A focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011:2013712011. View Article : Google Scholar : PubMed/NCBI | |
|
Srinageshwar B, Maiti P, Dunbar GL and Rossignol J: Role of epigenetics in stem cell proliferation and differentiation: Implications for treating neurodegenerative diseases. Int J Mol Sci. 17:1992016. View Article : Google Scholar : PubMed/NCBI | |
|
Escacena N, Quesada-Hernández E, Capilla-Gonzalez V, Soria B and Hmadcha A: Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. Stem Cells Int. 2015:8957142015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D and Kilian KA: The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials. 34:3962–3969. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rathbone SR, Glossop JR, Gough JE and Cartmell SH: Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater. 11:82–91. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cao C, Li L, Li H, He X, Wu G and Yu X: Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a. Int J Biochem Cell Biol. 99:125–132. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Wang Y, Zhou N, Feng Y and Yang X: Cyclic tensile stress promotes osteogenic differentiation of adipose stem cells via ERK and p38 pathways. Stem Cell Res. 37:1014332019. View Article : Google Scholar : PubMed/NCBI | |
|
Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS and Caplan AI: Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplant. 16:557–564. 1995.PubMed/NCBI | |
|
Galipeau J and Sensébé L: Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell. 22:824–833. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S and Drela K: Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019:96285362019. View Article : Google Scholar : PubMed/NCBI | |
|
Gálvez P, Clares B, Bermejo M, Hmadcha A and Soria B: Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells Dev. 23:1074–1083. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Galvez-Martin P, Sabata R, Verges J, Zugaza JL, Ruiz A and Clares B: Mesenchymal stem cells as therapeutics agents: Quality and environmental regulatory aspects. Stem Cells Int. 2016:97834082016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang YHK: Aging of mesenchymal stem cells: Implication in regenerative medicine. Regen Ther. 9:120–122. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fafián-Labora JA, Morente-López M and Arufe MC: Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells. 11:337–346. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang XP, Sun Z, Miyagi Y, McDonald KH, Zhang L, Weisel RD and Li RK: Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 122:2419–2429. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH and Huang CA: Immunogenicity of umbilical cord tissue-derived cells. Blood. 111:430–438. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Faiella W and Atoui R: Immunotolerant properties of mesenchymal stem cells: Updated review. Stem Cells Int. 2016:18595672016. View Article : Google Scholar : PubMed/NCBI | |
|
Dhingra S, Li P, Huang XP, Guo J, Wu J, Mihic A, Li SH, Zang WF, Shen D, Weisel RD, et al: Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function. Circulation. 128((11 Suppl 1)): S69–S78. 2013.PubMed/NCBI | |
|
Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G and Cheng C: Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY). 8:1102–1114. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ankrum JA, Ong JF and Karp JM: Mesenchymal stem cells: Immune evasive, not immune privileged. Nat Biotechnol. 32:252–260. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zazzeroni L, Lanzoni G, Pasquinelli G and Ricordi C: Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CellR4 Repair Replace Regen Reprogram. 5:e24352017.PubMed/NCBI | |
|
Gao L, Bird AK, Meednu N, Dauenhauer K, Liesveld J, Anolik J and Looney RJ: Bone marrow-derived mesenchymal stem cells from patients with systemic lupus erythematosus have a senescence-associated secretory phenotype mediated by a mitochondrial antiviral signaling protein-interferon-β feedback loop. Arthritis Rheumatol. 69:1623–1635. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ji J, Wu Y, Meng Y, Zhang L, Feng G, Xia Y, Xue W, Zhao S, Gu Z and Shao X: JAK-STAT signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients. Acta Biochim Biophys Sin (Shanghai). 49:208–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y and Feng X: Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Res Ther. 9:1492018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen DC, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, Liu YJ, Tsai CH, Chen JC, Cho DY, et al: Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: A randomized phase II study. Cell Transplant. 23:1599–1612. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, Ihara M, Daimon T, Yamahara K, Doi K, et al: Intravenous autologous bone marrow mononuclear cell transplantation for stroke: Phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 24:2207–2218. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, Yavagal DR, Uchino K, Liebeskind DS, Auchus AP, et al: Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 16:360–368. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatia V, Gupta V, Khurana D, Sharma RR and Khandelwal N: Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous wtem cells in wubacute ischemic stroke. AJNR Am J Neuroradiol. 39:899–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gautam J, Alaref A, Hassan A, Kandel RS, Mishra R and Jahan N: Safety and efficacy of stem cell therapy in patients with ischemic stroke. Cureus. 12:e99172020.PubMed/NCBI | |
|
Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J, Nguyen K, Rouy D, Altman P, Schwarz R, Mendizabal A, et al: Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J. 161:487–493. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mushtaq M, DiFede DL, Golpanian S, Khan A, Gomes SA, Mendizabal A, Heldman AW and Hare JM: Rationale and design of the percutaneous stem cell injection delivery effects on neomyogenesis in dilated cardiomyopathy (The POSEIDON-DCM Study). J Cardiovasc Transl Res. 7:769–780. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, et al: Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol. 69:526–537. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula L, Weil M, Andreeff M and Marini FC: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescence imaging. Stem Cells. 27:2614–2623. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Spaeth E, Klopp A, Dembinski J, Andreeff M and Marini F: Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15:730–738. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dimarino AM, Caplan AI and Bonfield TL: Mesenchymal stem cells in tissue repair. Front Immunol. 4:2012013. View Article : Google Scholar : PubMed/NCBI | |
|
Ayala-Cuellar AP, Kang JH, Jeung EB and Choi KC: Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther (Seoul). 27:25–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Julier Z, Park AJ, Briquez PS and Martino MM: Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53:13–28. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Prockop DJ and Oh JY: Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther. 20:14–20. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Song J, Kang HJ, Ju HM, Park A, Park H, Hong JS, Kim CJ, Shim JY, Yu J and Choi J: Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Sci Rep. 9:66232019. View Article : Google Scholar : PubMed/NCBI | |
|
Ren G, Zhao X, Zhang L, Zhang J, L'Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C and Shi Y: Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 184:2321–2328. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, et al: Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol. 16:908–920. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A and Boltze J: Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. 35:1446–1460. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, et al: Mesenchymal stromal cell therapeutic delivery: Translational challenges to clinical application. Front Immunol. 10:16452019. View Article : Google Scholar : PubMed/NCBI | |
|
Ullah M, Liu DD and Thakor AS: Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience. 15:421–438. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fiore EJ, Domínguez LM, Bayo J, García MG and Mazzolini GD: Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies. World J Gastroenterol. 24:2427–2440. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Rong P, Ma X, Nie W, Chen C, Yang C, Zhang J, Dong Q and Wang W: Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci. 215:113–118. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng G, Huang R, Qiu G, Ge M, Wang J, Shu Q and Xu J: Mesenchymal stromal cell-derived extracellular vesicles: Regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 374:1–15. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Weiss ARR and Dahlke MH: Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 10:11912019. View Article : Google Scholar : PubMed/NCBI | |
|
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Wobus M, List C, Dittrich T, Dhawan A, Duryagina R, Arabanian LS, Kast K, Wimberger P, Stiehler M, Hofbauer LC, et al: Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer. 136:44–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, Baek SH, Jeon YH, Jeong SY, Lee SW, et al: In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int. 2017:80856372017. View Article : Google Scholar : PubMed/NCBI | |
|
Ratajczak MZ, Bujko K, Mack A, Kucia M and Ratajczak J: Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia. 32:2519–2526. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S and Saijo Y: Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 17:579–587. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y and Wang X: Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother. 112:1086252019. View Article : Google Scholar : PubMed/NCBI | |
|
Bajetto A, Pattarozzi A, Corsaro A, Barbieri F, Daga A, Bosio A, Gatti M, Pisaturo V, Sirito R and Florio T: Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Front Cell Neurosci. 11:3122017. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Zou W, Shen J, Xu L, Wang S, Fu YX and Fan W: Opposite effects of coinjection and distant injection of mesenchymal stem cells on breast tumor cell growth. Stem Cells Transl Med. 5:1216–1228. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Akimoto K, Kimura K, Nagano M, Takano S, To'a Salazar G, Yamashita T and Ohneda O: Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 22:1370–1386. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Barcellos-de-Souza P, Comito G, Pons-Segura C, Taddei ML, Gori V, Becherucci V, Bambi F, Margheri F, Laurenzana A, Del Rosso M and Chiarugi P: Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1. Stem Cells. 34:2536–2547. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hill BS, Pelagalli A, Passaro N and Zannetti A: Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget. 8:73296–73311. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tan HX, Xiao ZG, Huang T, Fang ZX, Liu Y and Huang ZC: CXCR4/TGF-β1 mediated self-differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and promoted colorectal carcinoma development. Cancer Biol Ther. 21:248–257. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Walter M, Liang S, Ghosh S, Hornsby PJ and Li R: Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene. 28:2745–2755. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY, Chen LL, Wang HW, Miller SA, Chiou SH, et al: Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology. 141:1046–1056. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH and Li G: Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 4:702013. View Article : Google Scholar : PubMed/NCBI | |
|
El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM, Csizmadia E, Mariani O, Zhu C, Campagne A, et al: Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci USA. 109:17460–17465. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M and Rameshwar P: Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. J Immunol. 184:5885–5894. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gazdic M, Markovic BS, Jovicic N, Misirkic-Marjanovic M, Djonov V, Jakovljevic V, Arsenijevic N, Lukic ML and Volarevic V: Mesenchymal stem cells promote metastasis of lung cancer cells by downregulating systemic antitumor immune response. Stem Cells Int. 2017:62947172017. View Article : Google Scholar : PubMed/NCBI | |
|
Ramasamy R, Lam EWF, Soeiro I, Tisato V, Bonnet D and Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth. Leukemia. 21:304–310. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
He N, Kong Y, Lei X, Liu Y, Wang J, Xu C, Wang Y, Du L, Ji K, Wang Q, et al: MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis. 9:10262018. View Article : Google Scholar : PubMed/NCBI | |
|
Yulyana Y, Ho IAW, Sia KC, Newman JP, Toh XY, Endaya BB, Chan JKY, Gnecchi M, Huynh H, Chung AY, et al: Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol Ther. 23:746–756. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HL, Li JJ, Jiang F, Shi WJ and Chang GY: MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer. Biosci Biotechnol Biochem. 84:338–346. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ho IAW, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM and Lam PYP: Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 31:146–155. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Khalil C, Moussa M, Azar A, Tawk J, Habbouche J, Salameh R, Ibrahim A and Alaaeddine N: Anti-proliferative effects of mesenchymal stem cells (MSCs) derived from multiple sources on ovarian cancer cell lines: An in-vitro experimental study. J Ovarian Res. 12:702019. View Article : Google Scholar : PubMed/NCBI | |
|
DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Kouzmina E, McCusker M, Rodin D, Boutros PC, Paige CJ and Rodin G: Pro- and anti-inflammatory cytokine associations with major depression in cancer patients. Psychooncology. 26:2149–2156. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ahechu P, Zozaya G, Martí P, Hernández-Lizoáin JL, Baixauli J, Unamuno X, Frühbeck G and Catalán V: NLRP3 inflammasome: A possible link between obesity-associated low-grade chronic inflammation and colorectal cancer development. Front Immunol. 9:29182018. View Article : Google Scholar : PubMed/NCBI | |
|
Mocellin S, Panelli MC, Wang E, Nagorsen D and Marincola FM: The dual role of IL-10. Trends Immunol. 24:36–43. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Tanikawa T, Wilke CM, Kryczek I, Chen GY, Kao J, Núñez G and Zou W: Interleukin-10 ablation promotes tumor development, growth, and metastasis. Cancer Res. 72:420–429. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT, Morrone G, Culig Z, Maitland NJ and Erb HHH: The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis. 6:e3422017. View Article : Google Scholar : PubMed/NCBI | |
|
Setrerrahmane S and Xu H: Tumor-related iCnterleukins: Old validated targets for new anti-cancer drug development. Mol Cancer. 16:1532017. View Article : Google Scholar : PubMed/NCBI | |
|
Saeedi P, Halabian R and Fooladi AA: A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig. 6:342019. View Article : Google Scholar : PubMed/NCBI | |
|
Bortolotti F, Ukovich L, Razban V, Martinelli V, Ruozi G, Pelos B, Dore F, Giacca M and Zacchigna S: In vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure. Stem Cell Rep. 4:332–339. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fathi E, Sanaat Z and Farahzadi R: Mesenchymal stem cells in acute myeloid leukemia: A focus on mechanisms involved and therapeutic concepts. Blood Res. 54:165–174. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, He Y, Wang X, Lu F and Gao J: Adipose-derived mesenchymal stem cells exhibit tumor tropism and promote tumorsphere formation of breast cancer cells. Oncol Rep. 41:2126–2136. 2019.PubMed/NCBI | |
|
Dührsen L, Hartfuß S, Hirsch D, Geiger S, Maire CL, Sedlacik J, Guenther C, Westphal M, Lamszus K, Hermann FG and Schmidt NO: Preclinical analysis of human mesenchymal stem cells: Tumor tropism and therapeutic efficiency of local HSV-TK suicide gene therapy in glioblastoma. Oncotarget. 10:6049–6061. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dissanayake S, Denny WA, Gamage S and Sarojini V: Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release. 250:62–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lagoa R, Silva J, Rodrigues JR and Bishayee A: Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv. 38:1073822020. View Article : Google Scholar : PubMed/NCBI | |
|
Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ and Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62:3603–3608. 2002.PubMed/NCBI | |
|
Ahn JO, Lee HW, Seo KW, Kang SK, Ra JC and Youn HY: Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma. PLoS One. 8:e748972013. View Article : Google Scholar : PubMed/NCBI | |
|
Shen CJ, Chan TF, Chen CC, Hsu YC, Long CY and Lai CS: Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget. 7:34172–34179. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan ZQ, Kolluri KK, Sage EK, Gowers KHC and Janes SM: Mesenchymal stromal cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy. Cytotherapy. 17:885–896. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Marini I, Siegemund M, Hutt M, Kontermann RE and Pfizenmaier K: Antitumor activity of a mesenchymal stem cell line stably secreting a tumor-targeted TNF-related apoptosis-inducing ligand fusion protein. Front Immunol. 8:5362017. View Article : Google Scholar : PubMed/NCBI | |
|
Guiho R, Biteau K, Grisendi G, Chatelais M, Brion R, Taurelle J, Renault S, Heymann D, Dominici M and Redini F: In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor-related apoptosis inducing ligand in osteosarcoma pre-clinical models. Cytotherapy. 20:1037–1045. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shamili FH, Bayegi HR, Salmasi Z, Sadri K, Mahmoudi M, Kalantari M, Ramezani M and Abnous K: Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. Int J Pharm. 549:218–229. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Du J, Xu X, Xu C and Song W: IFN-γ-secreting-mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res. 2014:e3180982014. View Article : Google Scholar | |
|
You Q, Yao Y, Zhang Y, Fu S, Du M and Zhang G: Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo. Mol Med Rep. 12:4859–4866. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao W, Cheng J, Shi P and Huang J: Human umbilical cord mesenchymal stem cells with adenovirus-mediated interleukin 12 gene transduction inhibits the growth of ovarian carcinoma cells both in vitro and in vivo. Nan Fang Yi Ke Da Xue Xue Bao. 31:903–907. 2011.(In Chinese). PubMed/NCBI | |
|
Zhang X, Zhang L, Xu W, Qian H, Ye S, Zhu W, Cao H, Yan Y, Li W, Wang M, et al: Experimental therapy for lung cancer: Umbilical cord-derived mesenchymal stem cell-mediated interleukin-24 delivery. Curr Cancer Drug Targets. 13:92–102. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nowakowski A, Walczak P, Lukomska B and Janowski M: Genetic engineering of mesenchymal stem cells to induce their migration and survival. Stem Cells Int. 2016:e49560632016. View Article : Google Scholar : PubMed/NCBI | |
|
Wei W, Huang Y, Li D, Gou HF and Wang W: Improved therapeutic potential of MSCs by genetic modification. Gene Ther. 25:538–547. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ocansey DKW, Pei B, Yan Y, Qian H, Zhang X, Xu W and Mao F: Improved therapeutics of modified mesenchymal stem cells: An update. J Transl Med. 18:422020. View Article : Google Scholar : PubMed/NCBI | |
|
Phillips MI and Tang YL: Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev. 60:160–172. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z and Majka M: Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol. 39:686–696. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pelagalli A, Nardelli A, Lucarelli E, Zannetti A and Brunetti A: Autocrine signals increase ovine mesenchymal stem cells migration through Aquaporin-1 and CXCR4 overexpression. J Cell Physiol. 233:6241–6249. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Song SW, Chang W, Song BW, Song H, Lim S, Kim HJ, Cha MJ, Choi E, Im SH, Chang BC, et al: Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells. 27:1358–1365. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fan YX, Gu CH, Zhang YL, Zhong BS, Wang LZ, Zhou ZR, Wang ZY, Jia RX and Wang F: Oct4 and Sox2 overexpression improves the proliferation and differentiation of bone mesenchymal stem cells in Xiaomeishan porcine. Genet Mol Res. 12:6067–6079. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Han SM, Han SH, Coh YR, Jang G, Ra JC, Kang SK, Lee HW and Youn HY: Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med. 46:e1012014. View Article : Google Scholar : PubMed/NCBI | |
|
Becker AD and Riet IV: Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 8:73–87. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
DelaRosa O, Dalemans W and Lombardo E: Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol. 3:1822012. View Article : Google Scholar : PubMed/NCBI | |
|
Najar M, Krayem M, Meuleman N, Bron D and Lagneaux L: Mesenchymal stromal cells and toll-like receptor priming: A critical review. Immune Netw. 17:89–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mekhemar MK, Dörfer CE and El-Sayed KMF: Toll-like receptors: The key of immunotherapy in MSCs. Immunoregulatory aspects of immunotherapy. IntechOpen; pp. 1732018 | |
|
Waterman RS, Tomchuck SL, Henkle SL and Betancourt AM: A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 5:e100882010. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J and Hematti P: Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp Hematol. 37:1445–1453. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F, Pelletier M, Pizzolo G and Krampera M: Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells. 29:1001–1011. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hall SRR, Tsoyi K, Ith B, Padera RF Jr, Lederer JA, Wang Z, Liu X and Perrella MA: Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: The importance of neutrophils. Stem Cells. 31:397–407. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang W and Xu J: Immune modulation by mesenchymal stem cells. Cell Prolif. 53:e127122019.PubMed/NCBI | |
|
Kudlik G, Hegyi B, Czibula Á, Monostori É, Buday L and Uher F: Mesenchymal stem cells promote macrophage polarization toward M2b-like cells. Exp Cell Res. 348:36–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC and Moretta L: Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 111:1327–1333. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez H, Hagerling C and Werb Z: Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, et al: Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Du W, Seah I, Bougazzoul O, Choi G, Meeth K, Bosenberg MW, Wakimoto H, Fisher D and Shah K: Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc Natl Acad Sci USA. 114:E6157–E6165. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Zhang Z, Xu X, Xu Z, Wang S, Huang D, Li Y, Mou X, Liu F and Xiang C: Menstrual blood-derived stem cells as delivery vehicles for oncolytic adenovirus virotherapy for colorectal cancer. Stem Cells Dev. 28:882–896. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mahasa KJ, Pillis Ld, Ouifki R, Eladdadi A, Maini P, Yoon AR and Yun CO: Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci Rep. 10:4252020. View Article : Google Scholar : PubMed/NCBI | |
|
Pessina A, Coccè V, Pascucci L, Bonomi A, Cavicchini L, Sisto F, Ferrari M, Ciusani E, Crovace A, Falchetti ML, et al: Mesenchymal stromal cells primed with paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br J Haematol. 160:766–778. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gilazieva Z, Tazetdinova L, Arkhipova S, Solovyeva V and Rizvanov A: Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells. BioNanoScience. 6:534–539. 2016. View Article : Google Scholar | |
|
Nicolay NH, Perez RL, Rühle A, Trinh T, Sisombath S, Weber KJ, Ho AD, Debus J, Saffrich R and Huber PE: Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Sci Rep. 6:200352016. View Article : Google Scholar : PubMed/NCBI | |
|
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, et al: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 192:262–270. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, Sisto F, Ferrari M, Viganò L, Locatelli A, et al: Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One. 6:e283212011. View Article : Google Scholar : PubMed/NCBI | |
|
Bonomi A, Coccè V, Cavicchini L, Sisto F, Dossena M, Balzarini P, Portolani N, Ciusani E, Parati E, Alessandri G and Pessina A: Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity. Int J Immunopathol Pharmacol. 26 (Suppl 1):S33–S41. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Coccè V, Franzè S, Brini AT, Giannì AB, Pascucci L, Ciusani E, Alessandri G, Farronato G, Cavicchini L, Sordi V, et al: In vitro anticancer activity of extracellular vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics. 11:612019. View Article : Google Scholar : PubMed/NCBI | |
|
Coccè V, Farronato D, Brini AT, Masia C, Giannì AB, Piovani G, Sisto F, Alessandri G, Angiero F and Pessina A: Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep. 7:93762017. View Article : Google Scholar : PubMed/NCBI | |
|
Layek B, Sadhukha T, Panyam J and Prabha S: Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther. 17:1196–1206. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Moku G, Layek B, Trautman L, Putnam S, Panyam J and Prabha S: Improving payload capacity and anti-tumor efficacy of mesenchymal stem cells using TAT peptide functionalized polymeric nanoparticles. Cancers (Basel). 11:4912019. View Article : Google Scholar : PubMed/NCBI | |
|
Altun İ and Sonkaya A: The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iran J Public Health. 47:1218–1219. 2018.PubMed/NCBI | |
|
Kim W, Lee SK, Kwon YW, Chung SG and Kim S: Pioglitazone-primed mesenchymal stem cells stimulate cell proliferation, collagen synthesis and matrix gene expression in tenocytes. Int J Mol Sci. 20:4722019. View Article : Google Scholar : PubMed/NCBI | |
|
Hong Y, Kim YS, Hong SH and Oh YM: Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model. Exp Mol Med. 48:e2662016. View Article : Google Scholar : PubMed/NCBI | |
|
Park JS, Kim HK, Kang EY, Cho R and Oh YM: Potential therapeutic strategy in chronic obstructive pulmonary disease using pioglitazone-augmented Wharton's jelly-derived mesenchymal stem cells. Tuberc Respir Dis (Seoul). 82:158–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Khoo BY, Nadarajan K, Shim SY, Miswan N, Zang CB, Possinger K and Elstner E: Pretreatment of BMSCs with TZD solution decreases the proliferation rate of MCF-7 cells by reducing FGF4 protein expression. Mol Med Rep. 13:3406–3414. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tsubaki M, Takeda T, Tomonari Y, Kawashima K, Itoh T, Imano M, Satou T and Nishida S: Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARγ-independent pathway. J Cell Physiol. 233:3638–3647. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Moghareabed R, Hemati S, Akhavan A, Emami H, Farghadani M, Roayaei M, Tavajoh S and Feizi A: Randomized phase II clinical trial of pioglitazone plus chemotherapy versus chemotherapy alone in patients with metastatic breast cancer. J Glob Oncol. 5:832019. View Article : Google Scholar | |
|
Esmaeili S, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Salari S, Gharehbaghian A, Hamidpour M and Bashash D: Activation of PPARγ intensified the effects of arsenic trioxide in acute promyelocytic leukemia through the suppression of PI3K/Akt pathway: Proposing a novel anticancer effect for pioglitazone. Int J Biochem Cell Biol. 122:1057392020. View Article : Google Scholar : PubMed/NCBI | |
|
Shinmura D, Togashi I, Miyoshi S, Nishiyama N, Hida N, Tsuji H, Tsuruta H, Segawa K, Tsukada Y, Ogawa S and Umezawa A: Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells. 29:357–366. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Cai J, Huang F, Zhu M, Zhang Q, Yang T, Zhang X, Qian H and Xu W: Pre-treatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells. Int J Mol Med. 35:367–375. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Blanc KL and Ringdén O: Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 18:557–564. 2012. View Article : Google Scholar : PubMed/NCBI |