Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells

  • Authors:
    • Laifang Li
    • Jun Liu
    • Xiaobo Wang
    • Xiaowei Xiong
    • Shaoxin Huang
    • Xin Wang
  • View Affiliations / Copyright

    Affiliations: Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 789
    |
    Published online on: September 17, 2021
       https://doi.org/10.3892/ol.2021.13050
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Daidzein has been found to significantly inhibit the proliferation of lung cancer cells, while its potential molecular mechanisms remain unclear. To determine the molecular mechanism of daidzein on lung cancer cells, the Capital Bio Technology Human long non‑coding (lnc) RNA Array v4, 4x180K chip was used to detect the gene expression profiles of 40,000 lncRNAs and 34,000 mRNAs in a human cancer cell line. Reverse transcription‑quantitative (RT‑q) PCR analysis was performed to detect the expression levels of target lncRNA and mRNAs in the H1299 cells treated with and without daidzein, using the lncRNA and mRNA gene chip. Bioinformatics analysis was performed to determine the differentially expressed genes from the results of the chip assays. There were 119 and 40 differentially expressed lncRNAs and mRNAs, respectively, that had a 2‑fold change in expression level. A total of eight lncRNAs were upregulated in the H1299 lung cancer cells, while 111 lncRNAs were downregulated. Furthermore, five mRNAs were upregulated, and 35 mRNAs were downregulated. A total of six differentially expressed lncRNAs (ENST00000608897.1, ENST00000444196.1, ENST00000608741.1, XR_242163.1, ENST00000505196.1 and ENST00000498032.1) were randomly selected to validate the microarray data, which were consistent with the RT‑qPCR analysis results. Differentially expressed mRNAs were enriched in important Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Taken together, the results of the present study demonstrated that daidzein affected the expression level of lncRNAs in lung cancer cells, suggesting that daidzein may have potential effects on lung cancer cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Mattiuzzi C and Lippi G: Current cancer epidemiology. J Epidemiol Glob Health. 9:217–222. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Chen W, Sun K, Zheng R, Zeng H, Zhang S, Xia C, Yang Z, Li H, Zou X and He J: Cancer incidence and mortality in China, 2014. Chin J Cancer Res. 30:1–12. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Davidson MR, Gazdar AF and Clarke BE: The pivotal role of pathology in the management of lung cancer. J Thorac Dis. 5 (Suppl 5):S463–S478. 2013.PubMed/NCBI

4 

Chen Z, Fillmore CM, Hammerman PS, Kim CF and Wong KK: Non-small-cell lung cancers: A heterogeneous set of diseases. Nat Rev Cancer. 14:535–546. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Gridelli C, Rossi A and Maione P: Treatment of non-small-cell lung cancer: State of the art and development of new biologic agents. Oncogene. 22:6629–6638. 2003. View Article : Google Scholar : PubMed/NCBI

6 

Yang G, Shu XO, Chow WH, Zhang X, Li HL, Ji BT, Cai H, Wu S, Gao YT and Zheng W: Soy food intake and risk of lung cancer: Evidence from the shanghai women's health study and a meta-analysis. Am J Epidemiol. 176:846–855. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Benassayag C, Perrot-Applanat M and Ferre F: Phytoestrogens as modulators of steroid action in target cells. J Chromatogr B Analyt Technol Biomed Life Sci. 777:233–248. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Andres S, Abraham K, Appel KE and Lampen A: Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol. 41:463–506. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Peng F, Wang R, Zhang Y, Zhao Z, Zhou W, Chang Z, Liang H, Zhao W, Qi L, Guo Z and Gu Y: Differential expression analysis at the individual level reveals a lncRNA prognostic signature for lung adenocarcinoma. Mol Cancer. 16:982017. View Article : Google Scholar : PubMed/NCBI

10 

Mu M, Niu W, Zhang X, Hu S and Niu C: LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway. Oncogene. 39:6879–6892. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Zhu X, Wang D, Lin Q, Wu G, Yuan S, Ye F and Fan Q: Screening key lncRNAs for human rectal adenocarcinoma based on lncRNA-mRNA functional synergistic network. Cancer Med. 8:3875–3891. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S; Cancer Genome Atlas Research Network, ; Xie W and Yang D: lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell. 33:706–720. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Hauptman N and Glavač D: Long non-coding RNA in cancer. Int J Mol Sci. 14:4655–4669. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q and Dong D: LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 47:D1034–D1037. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G and Cui Q: LncRNADisease: A database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41:D983–D986. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Tokgun O, Tokgun PE, Inci K and Akca H: lncRNAs as potential targets in small cell lung cancer: MYC-dependent regulation. Anticancer Agents Med Chem. 20:2074–2081. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Lu T, Wang Y, Chen D, Liu J and Jiao W: Potential clinical application of lncRNAs in non-small cell lung cancer. Onco Targets Ther. 11:8045–8052. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Lai XN, Li J, Tang LB, Chen WT, Zhang L and Xiong LX: miRNAs and LncRNAs: Dual roles in TGF-β signaling-regulated metastasis in lung cancer. Int J Mol Sci. 21:11932020. View Article : Google Scholar : PubMed/NCBI

19 

Wang M, Ma X, Zhu C, Guo L, Li Q, Liu M and Zhang J: The prognostic value of long non coding RNAs in non small cell lung cancer: A meta-analysis. Oncotarget. 7:81292–81304. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, et al: Performance comparison of one-color and two-color platforms within the microarray quality control (MAQC) project. Nat Biotechnol. 24:1140–1150. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Li QW, Ma L, Qiu B, Yang H, Zhu YJ, Qiang MY, Liu SR, Chen NB, Guo JY, Cai LZ, et al: Differential expression profiles of long noncoding RNAs in synchronous multiple and solitary primary esophageal squamous cell carcinomas: A microarray analysis. J Cell Biochem. Oct 15–2018.(Epub ahead of print).

23 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Gong WJ, Peng JB, Yin JY, Li XP, Zheng W, Xiao L, Tan LM, Xiao D, Chen YX, Li X, et al: Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in Chinese patients with lung cancer. Acta Pharmacol Sin. 38:581–590. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Zhao T, Jin F, Li J, Xu Y, Dong H, Liu Q, Xing P, Zhu G, Xu H and Miao Z: Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies. Clin Nutr. 38:136–145. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Tse G and Eslick GD: Soy and isoflavone consumption and risk of gastrointestinal cancer: A systematic review and meta-analysis. Eur J Nutr. 55:63–73. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Wada K, Tsuji M, Tamura T, Konishi K, Kawachi T, Hori A, Tanabashi S, Matsushita S, Tokimitsu N and Nagata C: Soy isoflavone intake and stomach cancer risk in Japan: From the Takayama study. Int J Cancer. 137:885–892. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Zaheer K and Humayoun AM: An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit Rev Food Sci Nutr. 57:1280–1293. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Applegate C, Rowles J, Ranard K, Jeon S and Erdman J: Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients. 10:402018. View Article : Google Scholar : PubMed/NCBI

30 

Woo HD and Kim J: Dietary flavonoid intake and risk of stomach and colorectal cancer. World J Gastroentero. 19:1011–1019. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Nachvak SM, Moradi S, Anjom-Shoae J, Rahmani J, Nasiri M, Maleki V and Sadeghi O: Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 119:1483–1500. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Khan N and Mukhtar H: Dietary agents for prevention and treatment of lung cancer. Cancer Lett. 359:155–164. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Pan W: A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics. 18:546–554. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, et al: The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 7:962006. View Article : Google Scholar : PubMed/NCBI

35 

Fu X, Ravindranath L, Tran N, Petrovics G and Srivastava S: Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol. 25:135–141. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Xue X, Yang YA, Zhang A, Fong K, Kim J, Song B, Li S, Zhao JC and Yu J: LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene. 35:2746–2755. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Kazemzadeh M, Safaralizadeh R and Orang AV: LncRNAs: Emerging players in gene regulation and disease pathogenesis. J Genet. 94:771–784. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Zhang X, Liang W, Liu J, Zang X, Gu J, Pan L, Shi H, Fu M, Huang Z, Zhang Y, et al: Long non-coding RNA UFC1 promotes gastric cancer progression by regulating miR-498/Lin28b. J Exp Clin Cancer Res. 37:1342018. View Article : Google Scholar : PubMed/NCBI

41 

Chi Y, Wang D, Wang J, Yu W and Yang J: Long non-coding RNA in the pathogenesis of cancers. Cells. 8:10152019. View Article : Google Scholar : PubMed/NCBI

42 

Chen R, Li WX, Sun Y, Duan Y, Li Q, Zhang AX, Hu JL, Wang YM and Gao YD: Comprehensive analysis of lncRNA and mRNA expression profiles in lung cancer. Clin Lab. 63:313–320. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Wei MM and Zhou GB: Long non-coding RNAs and their roles in non-small-cell lung cancer. Genomics Proteomics Bioinformatics. 14:280–288. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Han Q, Lin X, Zhang X, Jiang G, Zhang Y, Miao Y, Rong X, Zheng X, Han Y, Han X, et al: WWC3 regulates the Wnt and Hippo pathways via dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. J Pathol. 242:435–447. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Shao L, Li H, Chen J, Song H, Zhang Y, Wu F, Wang W, Zhang W, Wang F, Li H and Tang D: Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 485:598–605. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Bai X, Meng L, Sun H, Li Z, Zhang X and Hua S: MicroRNA-196b inhibits cell growth and metastasis of lung cancer cells by targeting Runx2. Cell Physiol Biochem. 43:757–767. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR and Cho WC: Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci. 18:3672017. View Article : Google Scholar : PubMed/NCBI

48 

Gan PP, Zhou YY, Zhong MZ, Peng Y, Li L and Li JH: Endoplasmic reticulum stress promotes autophagy and apoptosis and reduces chemotherapy resistance in mutant p53 lung cancer cells. Cell Physiol Biochem. 44:133–151. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Xu J, Su C, Zhao F, Tao J, Hu D, Shi A, Pan J and Zhang Y: Paclitaxel promotes lung cancer cell apoptosis via MEG3-P53 pathway activation. Biochem Biophys Res Commun. 504:123–128. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Liu YH, Liu GH, Mei JJ and Wang J: The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomed Pharmacother. 83:381–391. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Goldar S, Khaniani MS, Derakhshan SM and Baradaran B: Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 16:2129–2144. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Zhang Y, Li Q, Wei S, Sun J, Zhang X, He L, Zhang L, Xu Z and Chen D: ZNF143 suppresses cell apoptosis and promotes proliferation in gastric cancer via ROS/p53 axis. Dis Markers. 2020:58631782020. View Article : Google Scholar : PubMed/NCBI

53 

Gupta A, Behl T, Heer HR, Deshmukh R and Sharma PL: Mdm2-P53 interaction inhibitor with cisplatin enhances apoptosis in colon and prostate cancer cells in-vitro. Asian Pac J Cancer Prev. 20:3341–3351. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Ellis HM and Horvitz HR: Genetic control of programmed cell death in the nematode C. elegans. Cell. 44:817–829. 1986. View Article : Google Scholar : PubMed/NCBI

55 

Sarfstein R, Nagaraj K, LeRoith D and Werner H: Differential effects of insulin and IGF1 receptors on ERK and AKT subcellular distribution in breast cancer cells. Cells. 8:14992019. View Article : Google Scholar : PubMed/NCBI

56 

Ma JB, Bai JY, Zhang HB, Jia J, Shi Q, Yang C, Wang X, He D and Guo P: KLF5 inhibits STAT3 activity and tumor metastasis in prostate cancer by suppressing IGF1 transcription cooperatively with HDAC1. Cell Death Dis. 11:4662020. View Article : Google Scholar : PubMed/NCBI

57 

Hu J, Liu X, Chi J, Che K, Feng Y, Zhao S, Wang Z and Wang Y: Expressions of IGF-1, ERK, GLUT4, IRS-1 in metabolic syndrome complicated with colorectal cancer and their associations with the clinical characteristics of CRC. Cancer Biomark. 21:883–891. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Wang YA, Sun Y, Palmer J, Solomides C, Huang LC, Shyr Y, Dicker AP and Lu B: IGFBP3 modulates lung tumorigenesis and cell growth through IGF1 signaling. Mol Cancer Res. 15:896–904. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Furstenberger G and Senn HJ: Insulin-like growth factors and cancer. Lancet Oncol. 3:298–302. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Zhang H, Zhang C and Wu D: Activation of insulin-like growth factor 1 receptor regulates the radiation-induced lung cancer cell apoptosis. Immunobiology. 220:1136–1140. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Brambilla E, Gazzeri S, Gouyer V and Brambilla C: Mechanisms of lung oncogenesis. Rev Prat. 43:807–814. 1993.(In French). PubMed/NCBI

62 

Wang LJ, Li QJ, Le Y, Ouyang HY, He MK, Yu ZS, Zhang YF and Shi M: Prognostic significance of sodium-potassium ATPase regulator, FXYD3, in human hepatocellular carcinoma. Oncol Lett. 15:3024–3030. 2018.PubMed/NCBI

63 

Velloso FJ, Bianco AF, Farias JO, Torres NE, Ferruzo PY, Anschau V, Jesus-Ferreira HC, Chang TH, Sogayar MC, Zerbini LF and Correa RG: The crossroads of breast cancer progression: Insights into the modulation of major signaling pathways. Onco Targets Ther. 10:5491–5524. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Chuang CH, Cheng TC, Leu YL, Chuang KH, Tzou SC and Chen CS: Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int J Mol Sci. 16:3202–3212. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Datta SR, Brunet A and Greenberg ME: Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927. 1999. View Article : Google Scholar : PubMed/NCBI

66 

Yu X, Yuan Y, Zhi X, Teng B, Chen X, Huang Q, Chen Y, Guan Z and Zhang Y: Correlation between the protein expression of A-kinase anchor protein 95, cyclin D3 and AKT and pathological indicators in lung cancer tissues. Exp Ther Med. 10:1175–1181. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Kim BM, Kim DH, Park JH, Surh YJ and Na HK: Ginsenoside Rg3 inhibits constitutive activation of NF-kB signaling in human breast cancer (MDA-MB-231) cells: ERK and akt as potential upstream targets. J Cancer Prev. 19:23–30. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Bellacosa A, Testa JR, Moore R and Larue L: A portrait of AKT kinases: Human cancer and animal models depict a family with strong individualities. Cancer Biol Ther. 3:268–275. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Cheng JQ, Lindsley CW, Cheng GZ, Yang H and Nicosia SV: The Akt/PKB pathway: Molecular target for cancer drug discovery. Oncogene. 24:7482–7492. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Hirsch T, Marzo I and Kroemer G: Role of the mitochondrial permeability transition pore in apoptosis. Biosci Rep. 17:67–76. 1997. View Article : Google Scholar : PubMed/NCBI

71 

Koo J, Cabarcas-Petroski S, Petrie JL, Diette N, White RJ and Schramm L: Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer. 15:9052015. View Article : Google Scholar : PubMed/NCBI

72 

Guo S, Wang Y, Li Y, Li Y, Feng C and Li Z: Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-kB signaling pathway. Immunol Lett. 222:67–72. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li L, Liu J, Wang X, Xiong X, Huang S and Wang X: Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells. Oncol Lett 22: 789, 2021.
APA
Li, L., Liu, J., Wang, X., Xiong, X., Huang, S., & Wang, X. (2021). Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells. Oncology Letters, 22, 789. https://doi.org/10.3892/ol.2021.13050
MLA
Li, L., Liu, J., Wang, X., Xiong, X., Huang, S., Wang, X."Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells". Oncology Letters 22.5 (2021): 789.
Chicago
Li, L., Liu, J., Wang, X., Xiong, X., Huang, S., Wang, X."Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells". Oncology Letters 22, no. 5 (2021): 789. https://doi.org/10.3892/ol.2021.13050
Copy and paste a formatted citation
x
Spandidos Publications style
Li L, Liu J, Wang X, Xiong X, Huang S and Wang X: Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells. Oncol Lett 22: 789, 2021.
APA
Li, L., Liu, J., Wang, X., Xiong, X., Huang, S., & Wang, X. (2021). Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells. Oncology Letters, 22, 789. https://doi.org/10.3892/ol.2021.13050
MLA
Li, L., Liu, J., Wang, X., Xiong, X., Huang, S., Wang, X."Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells". Oncology Letters 22.5 (2021): 789.
Chicago
Li, L., Liu, J., Wang, X., Xiong, X., Huang, S., Wang, X."Microarray analysis of differentially expressed long non‑coding RNAs in daidzein‑treated lung cancer cells". Oncology Letters 22, no. 5 (2021): 789. https://doi.org/10.3892/ol.2021.13050
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team