Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2022 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the tumor immune microenvironment in tumor immunotherapy (Review)

  • Authors:
    • Changsheng Zhou
    • Qianqian Liu
    • Yi Xiang
    • Xin Gou
    • Wengang Li
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China, Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 53
    |
    Published online on: December 20, 2021
       https://doi.org/10.3892/ol.2021.13171
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor immunotherapy is considered to be a novel and promising therapy for tumors and it has recently become a hot research topic. The clinical success of tumor immunotherapy has been notable, but it has been less than totally satisfactory because tumor immunotherapy has performed poorly in numerous patients although it has shown appreciable efficacy in some patients. A minority of patients demonstrate durable responses but the majority of patients do not respond to tumor immunotherapy as the tumor immune microenvironment is different in different patients for different tumor types. The success of tumor immunotherapy may be affected by the heterogeneity of the tumor immune microenvironment and its components, as these vary widely during neoplastic progression. The deepening of research and the development of technology have improved our understanding of the complexity and heterogeneity of the tumor immune microenvironment and its components, and their effects on response to tumor immunotherapy. Therefore, investigating the tumor immune microenvironment and its components and elucidating their association with tumor immunotherapy should improve the ability to study, predict and guide immunotherapeutic responsiveness, and uncover new therapeutic targets.
View Figures

Figure 1

View References

1 

Hao M, Hou S, Li W, Li K, Xue L, Hu Q, Zhu L, Chen Y, Sun H, Ju C and Zhang C: Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci Transl Med. 12:eaaz66672020. View Article : Google Scholar : PubMed/NCBI

2 

Perets R, Bar J, Rasco DW, Ahn MJ, Yoh K, Kim DW, Nagrial A, Satouchi M, Lee DH, Spigel DR, et al: Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer. Ann Oncol. 32:395–403. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Keung EZ, Lazar AJ, Torres KE, Wang WL, Cormier JN, Ashleigh Guadagnolo B, Bishop AJ, Lin H, Hunt KK, Bird J, et al: Phase II study of neoadjuvant checkpoint blockade in patients with surgically resectable undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. BMC Cancer. 18:9132018. View Article : Google Scholar : PubMed/NCBI

4 

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, et al: The immune landscape of cancer. Immunity. 48:812–830.e14. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Eckstein M and Gupta S: New insights in predictive determinants of the tumor immune microenvironment for immune checkpoint inhibition: A never ending story? Ann Transl Med. 7 (Suppl 3):S1352019. View Article : Google Scholar : PubMed/NCBI

6 

Beckermann KE, Dudzinski SO and Rathmell JC: Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev. 35:7–14. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Ando M, Ito M, Srirat T, Kondo T and Yoshimura A: Memory T cell, exhaustion, and tumor immunity. Immunol Med. 43:1–9. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al: Author correction: Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 20:15562019. View Article : Google Scholar : PubMed/NCBI

11 

Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al: Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 20:326–336. 2019. View Article : Google Scholar : PubMed/NCBI

12 

He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, et al: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 537:412–428. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K, Butler MO, Minden MD and Hirano N: A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 24:352–359. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Cho MK, Park JG, Iwata H and Kim EY: 2,3,7,8-Tetrachlorodibenzo-p-dioxin prompted differentiation to CD4+CD8−CD25+ and CD4+CD8+CD25+ Tregs and altered expression of immune-related genes in the thymus of chicken embryos. Ecotoxicol Environ Saf. 211:1119472021. View Article : Google Scholar : PubMed/NCBI

16 

Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M and Hafler DA: Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Invest. 131:e1385192021. View Article : Google Scholar : PubMed/NCBI

17 

Shevyrev D and Tereshchenko V: Treg heterogeneity, function, and homeostasis. Front Immunol. 10:31002020. View Article : Google Scholar : PubMed/NCBI

18 

Wherry EJ and Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–499. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Zarour HM: Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 22:1856–1864. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Yuen GJ, Demissie E and Pillai S: B lymphocytes and cancer: A love-hate relationship. Trends Cancer. 2:747–757. 2016. View Article : Google Scholar : PubMed/NCBI

22 

van de Veen W, Globinska A, Jansen K, Straumann A, Kubo T, Verschoor D, Wirz OF, Castro-Giner F, Tan G, Rückert B, et al: A novel proangiogenic B cell subset is increased in cancer and chronic inflammation. Sci Adv. 6:eaaz35592020. View Article : Google Scholar : PubMed/NCBI

23 

Ni Z, Xing D, Zhang T, Ding N, Xiang D, Zhao Z, Qu J, Hu C, Shen X, Xue X and Zhou J: Tumor-infiltrating B cell is associated with the control of progression of gastric cancer. Immunol Res. 69:43–52. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Satoh M, Takano S, Sogawa K, Noda K, Yoshitomi H, Ishibashi M, Mogushi K, Takizawa H, Otsuka M, Shimizu H, et al: Immune-complex level of cofilin-1 in sera is associated with cancer progression and poor prognosis in pancreatic cancer. Cancer Sci. 108:795–803. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Nakamura K and Smyth MJ: Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 17:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Rubio AJ, Porter T and Zhong X: Duality of B Cell-CXCL13 axis in tumor immunology. Front Immunol. 11:5211102020. View Article : Google Scholar : PubMed/NCBI

27 

Ou Z, Wang Y, Liu L, Li L, Yeh S, Qi L and Chang C: Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget. 6:26065–26078. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Bodogai M, Moritoh K, Lee-Chang C, Hollander CM, Sherman-Baust CA, Wersto RP, Araki Y, Miyoshi I, Yang L, Trinchieri G and Biragyn A: Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res. 75:3456–3465. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Tabuchi Y, Shimoda M, Kagara N, Naoi Y, Tanei T, Shimomura A, Shimazu K, Kim SJ and Noguchi S: Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res Treat. 157:55–63. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Rossetti RAM, Lorenzi NPC, Yokochi K, Rosa MBSF, Benevides L, Margarido PFR, Baracat EC, Carvalho JP, Villa LL and Lepique AP: B lymphocytes can be activated to act as antigen presenting cells to promote anti-tumor responses. PLoS One. 13:e01990342018. View Article : Google Scholar : PubMed/NCBI

31 

Bald T, Krummel MF, Smyth MJ and Barry KC: The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 21:835–847. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, Sanchez-Correa B, Pastor N, Duran E, Alonso C and Solana R: Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother. 69:879–899. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Del Zotto G, Marcenaro E, Vacca P, Sivori S, Pende D, Della Chiesa M, Moretta F, Ingegnere T, Mingari MC, Moretta A and Moretta L: Markers and function of human NK cells in normal and pathological conditions. Cytometry B Clin Cytom. 92:100–114. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Handgretinger R, Lang P and André MC: Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 127:3341–3349. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Myers JA and Miller JS: Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 18:85–100. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Kim N and Kim HS: Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells. Front Immunol. 9:20412018. View Article : Google Scholar : PubMed/NCBI

37 

Minetto P, Guolo F, Pesce S, Greppi M, Obino V, Ferretti E, Sivori S, Genova C, Lemoli RM and Marcenaro E: Harnessing NK cells for cancer treatment. Front Immunol. 10:28362019. View Article : Google Scholar : PubMed/NCBI

38 

Tinker AV, Hirte HW, Provencher D, Butler M, Ritter H, Tu D, Azim HA Jr, Paralejas P, Grenier N, Hahn SA, et al: Dose-ranging and cohort-expansion study of monalizumab (IPH2201) in patients with advanced gynecologic malignancies: A Trial of the Canadian cancer trials group (CCTG): IND221. Clin Cancer Res. 25:6052–6060. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Metes D, Galatiuc C, Moldovan I, Morel PA, Chambers WH, DeLeo AB, Rabinowich H, Schall R, Whiteside TL, Sulica A, et al: Expression and function of Fc gamma RII on human natural killer cells. Nat Immun. 13:289–300. 1994.PubMed/NCBI

40 

Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, et al: HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 391:795–799. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Grossenbacher SK, Canter RJ and Murphy WJ: Natural killer cell immunotherapy to target stem-like tumor cells. J Immunother Cancer. 4:192016. View Article : Google Scholar : PubMed/NCBI

42 

Imai K, Matsuyama S, Miyake S, Suga K and Nakachi K: Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet. 356:1795–1799. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Lupo KB and Matosevic S: Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel). 11:7692019. View Article : Google Scholar : PubMed/NCBI

44 

Al-Attar A, Presnell SR, Clasey JL, Long DE, Walton RG, Sexton M, Starr ME, Kern PA, Peterson CA and Lutz CT: human body composition and immunity: Visceral adipose tissue produces IL-15 and muscle strength inversely correlates with NK Cell function in elderly humans. Front Immunol. 9:4402018. View Article : Google Scholar : PubMed/NCBI

45 

Wang LX, Tong X, Li C, Giddens JP and Li T: Glycoengineering of antibodies for modulating functions. Annu Rev Biochem. 88:433–459. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N and Baba H: Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 111:3132–3141. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao S, Wang P, Su X, Qin Y, Wang Y, et al: Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 6:262021. View Article : Google Scholar : PubMed/NCBI

48 

Teng CF, Wang T, Shih FY, Shyu WC and Jeng LB: Therapeutic efficacy of dendritic cell vaccine combined with programmed death 1 inhibitor for hepatocellular carcinoma. J Gastroenterol Hepatol. 36:1988–1996. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Jia Y, Liu L and Shan B: Future of immune checkpoint inhibitors: Focus on tumor immune microenvironment. Ann Transl Med. 8:10952020. View Article : Google Scholar : PubMed/NCBI

50 

Chen Y, Song Y, Du W, Gong L, Chang H and Zou Z: Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 26:782019. View Article : Google Scholar : PubMed/NCBI

51 

Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY and Hewitt SM: Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med. 18:4432020. View Article : Google Scholar : PubMed/NCBI

52 

Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H and Wang L: Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 11:2892–2916. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Shan H, Dou W, Zhang Y and Qi M: Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale. 12:22268–22280. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479.e10. 2018. View Article : Google Scholar : PubMed/NCBI

55 

De Jaeghere EA, Denys HG and De Wever O: Fibroblasts fuel immune escape in the tumor microenvironment. Trends Cancer. 5:704–723. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Maia A, Gu Z, Koch A, Berdiel-Acer M, Will R, Schlesner M and Wiemann S: IFNβ1 secreted by breast cancer cells undergoing chemotherapy reprograms stromal fibroblasts to support tumour growth after treatment. Mol Oncol. 15:1308–1329. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Shi Y, Sun L, Zhang R, Hu Y, Wu Y, Dong X, Dong D, Chen C, Geng Z, Li E and Fan Y: Thrombospondin 4/integrin α2/HSF1 axis promotes proliferation and cancer stem-like traits of gallbladder cancer by enhancing reciprocal crosstalk between cancer-associated fibroblasts and tumor cells. J Exp Clin Cancer Res. 40:142021. View Article : Google Scholar : PubMed/NCBI

58 

Zhou L, Li J, Tang Y and Yang M: Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J Transl Med. 19:82021. View Article : Google Scholar : PubMed/NCBI

59 

Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, Wang J, Lin S and Yun JP: H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 11:1473–1492. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Liu S, Qin T, Liu Z, Wang J, Jia Y, Feng Y, Gao Y and Li K: Anlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells. Cell Death Dis. 11:3092020. View Article : Google Scholar : PubMed/NCBI

61 

Liu Y, Zhou N, Zhou L, Wang J, Zhou Y, Zhang T, Fang Y, Deng J, Gao Y, Liang X, et al: IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. Nat Immunol. 22:358–369. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Sahin D, Arenas-Ramirez N, Rath M, Karakus U, Hümbelin M, van Gogh M, Borsig L and Boyman O: An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat Commun. 11:64402020. View Article : Google Scholar : PubMed/NCBI

63 

Renavikar PS, Sinha S, Brate AA, Borcherding N, Crawford MP, Steward-Tharp SM and Karandikar NJ: IL-12-induced immune suppressive deficit during CD8+ T-cell differentiation. Front Immunol. 11:5686302020. View Article : Google Scholar : PubMed/NCBI

64 

Tucker CG, Mitchell JS, Martinov T, Burbach BJ, Beura LK, Wilson JC, Dwyer AJ, Singh LM, Mescher MF and Fife BT: Adoptive T Cell Therapy with IL-12-preconditioned low-avidity T cells prevents exhaustion and results in enhanced T cell activation, enhanced tumor clearance, and decreased risk for autoimmunity. J Immunol. 205:1449–1460. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L, Roberts TA, et al: Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 12:4442021. View Article : Google Scholar : PubMed/NCBI

66 

Jiang X, Ren L, Tebon P, Wang C, Zhou X, Qu M, Zhu J, Ling H, Zhang S, Xue Y, et al: Cancer-on-a-chip for modeling immune checkpoint inhibitor and tumor interactions. Small. 17:e20042822021. View Article : Google Scholar : PubMed/NCBI

67 

Duchemann B, Pluvy J, Crestani B, Zalcman G and Nunes H: Immune checkpoint blockade for patients with lung cancer and idiopathic pulmonary fibrosis. Eur J Cancer. 145:179–182. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Ceresoli GL and Pasello G: Immune checkpoint inhibitors in mesothelioma: A turning point. Lancet. 397:348–349. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Wakita A, Motoyama S, Nanjo H, Sato Y, Yoshino K, Sasaki T, Kawakita Y, Liu J, Imai K, Saito H and Minamiya Y: PD-L1 expression is a prognostic factor in patients with thoracic esophageal cancer treated without adjuvant chemotherapy. Anticancer Res. 37:1433–1441. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Yoshida H, Nomizo T, Ozasa H, Tsuji T, Funazo T, Yasuda Y, Ajimizu H, Yamazoe M, Kuninaga K, Ogimoto T, et al: PD-L1 polymorphisms predict survival outcomes in advanced non-small-cell lung cancer patients treated with PD-1 blockade. Eur J Cancer. 144:317–325. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Tan CL, Kuchroo JR, Sage PT, Liang D, Francisco LM, Buck J, Thaker YR, Zhang Q, McArdel SL, Juneja VR, et al: PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J Exp Med. 218:e201822322021. View Article : Google Scholar : PubMed/NCBI

72 

Liotti F, Kumar N, Prevete N, Marotta M, Sorriento D, Ieranò C, Ronchi A, Marino FZ, Moretti S, Colella R, et al: PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. J Exp Clin Cancer Res. 40:222021. View Article : Google Scholar : PubMed/NCBI

73 

Marcq E, Van Audenaerde JRM, De Waele J, Merlin C, Pauwels P, van Meerbeeck JP, Fisher SA and Smits ELJ: The search for an interesting partner to combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3. Cancers (Basel). 13:2822021. View Article : Google Scholar : PubMed/NCBI

74 

Yang M, Lu J, Zhang G, Wang Y, He M, Xu Q, Xu C and Liu H: CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J Immunother Cancer. 9:e0011362021. View Article : Google Scholar : PubMed/NCBI

75 

Dovedi SJ, Elder MJ, Yang C, Sitnikova SI, Irving L, Hansen A, Hair J, Jones DC, Hasani S, Wang B, et al: Design and efficacy of a monovalent bispecific PD-1/CTLA-4 antibody that enhances CTLA-4 blockade on PD-1+ activated T cells. Cancer Discov. 11:1100–1117. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Kojima T, Shah MA, Muro K, Francois E, Adenis A, Hsu CH, Doi T, Moriwaki T, Kim SB, Lee SH, et al: Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol. 38:4138–4148. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Lecocq Q, Keyaerts M, Devoogdt N and Breckpot K: The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: Third time's a charm. Int J Mol Sci. 22:752020. View Article : Google Scholar : PubMed/NCBI

78 

Atkinson V, Khattak A, Haydon A, Eastgate M, Roy A, Prithviraj P, Mueller C, Brignone C and Triebel F: Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma. J Immunother Cancer. 8:e0016812020. View Article : Google Scholar : PubMed/NCBI

79 

Harjunpää H and Guillerey C: TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Judge SJ, Darrow MA, Thorpe SW, Gingrich AA, O'Donnell EF, Bellini AR, Sturgill IR, Vick LV, Dunai C, Stoffel KM, et al: Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas. J Immunother Cancer. 8:e0013552020. View Article : Google Scholar : PubMed/NCBI

81 

Han HS, Jeong S, Kim H, Kim HD, Kim AR, Kwon M, Park SH, Woo CG, Kim HK, Lee KH, et al: TOX-expressing terminally exhausted tumor-infiltrating CD8+ T cells are reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer. Cancer Lett. 499:137–147. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Li W, Deng C, Yang H, Lu X, Li S, Liu X, Chen F, Chen L, Shu X, Zhang L, et al: Expansion of circulating peripheral TIGIT+CD226+ CD4 T cells with enhanced effector functions in dermatomyositis. Arthritis Res Ther. 23:152021. View Article : Google Scholar : PubMed/NCBI

83 

Han JH, Cai M, Grein J, Perera S, Wang H, Bigler M, Ueda R, Rosahl TW, Pinheiro E, LaFace D, et al: Effective Anti-tumor response by TIGIT blockade associated with FcγR Engagement and myeloid cell activation. Front Immunol. 11:5734052020. View Article : Google Scholar : PubMed/NCBI

84 

Simon S, Voillet V, Vignard V, Wu Z, Dabrowski C, Jouand N, Beauvais T, Khammari A, Braudeau C, Josien R, et al: PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy. J Immunother Cancer. 8:e0016312020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou C, Liu Q, Xiang Y, Gou X and Li W: Role of the tumor immune microenvironment in tumor immunotherapy (Review). Oncol Lett 23: 53, 2022.
APA
Zhou, C., Liu, Q., Xiang, Y., Gou, X., & Li, W. (2022). Role of the tumor immune microenvironment in tumor immunotherapy (Review). Oncology Letters, 23, 53. https://doi.org/10.3892/ol.2021.13171
MLA
Zhou, C., Liu, Q., Xiang, Y., Gou, X., Li, W."Role of the tumor immune microenvironment in tumor immunotherapy (Review)". Oncology Letters 23.2 (2022): 53.
Chicago
Zhou, C., Liu, Q., Xiang, Y., Gou, X., Li, W."Role of the tumor immune microenvironment in tumor immunotherapy (Review)". Oncology Letters 23, no. 2 (2022): 53. https://doi.org/10.3892/ol.2021.13171
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou C, Liu Q, Xiang Y, Gou X and Li W: Role of the tumor immune microenvironment in tumor immunotherapy (Review). Oncol Lett 23: 53, 2022.
APA
Zhou, C., Liu, Q., Xiang, Y., Gou, X., & Li, W. (2022). Role of the tumor immune microenvironment in tumor immunotherapy (Review). Oncology Letters, 23, 53. https://doi.org/10.3892/ol.2021.13171
MLA
Zhou, C., Liu, Q., Xiang, Y., Gou, X., Li, W."Role of the tumor immune microenvironment in tumor immunotherapy (Review)". Oncology Letters 23.2 (2022): 53.
Chicago
Zhou, C., Liu, Q., Xiang, Y., Gou, X., Li, W."Role of the tumor immune microenvironment in tumor immunotherapy (Review)". Oncology Letters 23, no. 2 (2022): 53. https://doi.org/10.3892/ol.2021.13171
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team