|
1
|
Hao M, Hou S, Li W, Li K, Xue L, Hu Q, Zhu
L, Chen Y, Sun H, Ju C and Zhang C: Combination of metabolic
intervention and T cell therapy enhances solid tumor immunotherapy.
Sci Transl Med. 12:eaaz66672020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Perets R, Bar J, Rasco DW, Ahn MJ, Yoh K,
Kim DW, Nagrial A, Satouchi M, Lee DH, Spigel DR, et al: Safety and
efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in
combination with pembrolizumab in first-line advanced
non-small-cell lung cancer. Ann Oncol. 32:395–403. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Keung EZ, Lazar AJ, Torres KE, Wang WL,
Cormier JN, Ashleigh Guadagnolo B, Bishop AJ, Lin H, Hunt KK, Bird
J, et al: Phase II study of neoadjuvant checkpoint blockade in
patients with surgically resectable undifferentiated pleomorphic
sarcoma and dedifferentiated liposarcoma. BMC Cancer. 18:9132018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Thorsson V, Gibbs DL, Brown SD, Wolf D,
Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy
JA, et al: The immune landscape of cancer. Immunity.
48:812–830.e14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Eckstein M and Gupta S: New insights in
predictive determinants of the tumor immune microenvironment for
immune checkpoint inhibition: A never ending story? Ann Transl Med.
7 (Suppl 3):S1352019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Beckermann KE, Dudzinski SO and Rathmell
JC: Dysfunctional T cell metabolism in the tumor microenvironment.
Cytokine Growth Factor Rev. 35:7–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fukumura D, Kloepper J, Amoozgar Z, Duda
DG and Jain RK: Enhancing cancer immunotherapy using
antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol.
15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Binnewies M, Roberts EW, Kersten K, Chan
V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI,
Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor
immune microenvironment (TIME) for effective therapy. Nat Med.
24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ando M, Ito M, Srirat T, Kondo T and
Yoshimura A: Memory T cell, exhaustion, and tumor immunity. Immunol
Med. 43:1–9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Miller BC, Sen DR, Al Abosy R, Bi K,
Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al:
Author correction: Subsets of exhausted CD8+ T cells
differentially mediate tumor control and respond to checkpoint
blockade. Nat Immunol. 20:15562019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Miller BC, Sen DR, Al Abosy R, Bi K,
Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al:
Subsets of exhausted CD8+ T cells differentially mediate
tumor control and respond to checkpoint blockade. Nat Immunol.
20:326–336. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
He R, Hou S, Liu C, Zhang A, Bai Q, Han M,
Yang Y, Wei G, Shen T, Yang X, et al: Follicular CXCR5- expressing
CD8(+) T cells curtail chronic viral infection. Nature.
537:412–428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Im SJ, Hashimoto M, Gerner MY, Lee J,
Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al:
Defining CD8+ T cells that provide the proliferative
burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kagoya Y, Tanaka S, Guo T, Anczurowski M,
Wang CH, Saso K, Butler MO, Minden MD and Hirano N: A novel
chimeric antigen receptor containing a JAK-STAT signaling domain
mediates superior antitumor effects. Nat Med. 24:352–359. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cho MK, Park JG, Iwata H and Kim EY:
2,3,7,8-Tetrachlorodibenzo-p-dioxin prompted differentiation to
CD4+CD8−CD25+ and
CD4+CD8+CD25+ Tregs and altered
expression of immune-related genes in the thymus of chicken
embryos. Ecotoxicol Environ Saf. 211:1119472021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pompura SL, Wagner A, Kitz A, LaPerche J,
Yosef N, Dominguez-Villar M and Hafler DA: Oleic acid restores
suppressive defects in tissue-resident FOXP3 Tregs from patients
with multiple sclerosis. J Clin Invest. 131:e1385192021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shevyrev D and Tereshchenko V: Treg
heterogeneity, function, and homeostasis. Front Immunol.
10:31002020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wherry EJ and Kurachi M: Molecular and
cellular insights into T cell exhaustion. Nat Rev Immunol.
15:486–499. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kurtulus S, Sakuishi K, Ngiow SF, Joller
N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT
predominantly regulates the immune response via regulatory T cells.
J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zarour HM: Reversing T-cell dysfunction
and exhaustion in cancer. Clin Cancer Res. 22:1856–1864. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yuen GJ, Demissie E and Pillai S: B
lymphocytes and cancer: A love-hate relationship. Trends Cancer.
2:747–757. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
van de Veen W, Globinska A, Jansen K,
Straumann A, Kubo T, Verschoor D, Wirz OF, Castro-Giner F, Tan G,
Rückert B, et al: A novel proangiogenic B cell subset is increased
in cancer and chronic inflammation. Sci Adv. 6:eaaz35592020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ni Z, Xing D, Zhang T, Ding N, Xiang D,
Zhao Z, Qu J, Hu C, Shen X, Xue X and Zhou J: Tumor-infiltrating B
cell is associated with the control of progression of gastric
cancer. Immunol Res. 69:43–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Satoh M, Takano S, Sogawa K, Noda K,
Yoshitomi H, Ishibashi M, Mogushi K, Takizawa H, Otsuka M, Shimizu
H, et al: Immune-complex level of cofilin-1 in sera is associated
with cancer progression and poor prognosis in pancreatic cancer.
Cancer Sci. 108:795–803. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nakamura K and Smyth MJ: Myeloid
immunosuppression and immune checkpoints in the tumor
microenvironment. Cell Mol Immunol. 17:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rubio AJ, Porter T and Zhong X: Duality of
B Cell-CXCL13 axis in tumor immunology. Front Immunol.
11:5211102020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ou Z, Wang Y, Liu L, Li L, Yeh S, Qi L and
Chang C: Tumor microenvironment B cells increase bladder cancer
metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs
signals. Oncotarget. 6:26065–26078. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bodogai M, Moritoh K, Lee-Chang C,
Hollander CM, Sherman-Baust CA, Wersto RP, Araki Y, Miyoshi I, Yang
L, Trinchieri G and Biragyn A: Immunosuppressive and prometastatic
functions of myeloid-derived suppressive cells rely upon education
from tumor-associated B cells. Cancer Res. 75:3456–3465. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tabuchi Y, Shimoda M, Kagara N, Naoi Y,
Tanei T, Shimomura A, Shimazu K, Kim SJ and Noguchi S: Protective
effect of naturally occurring anti-HER2 autoantibodies on breast
cancer. Breast Cancer Res Treat. 157:55–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rossetti RAM, Lorenzi NPC, Yokochi K, Rosa
MBSF, Benevides L, Margarido PFR, Baracat EC, Carvalho JP, Villa LL
and Lepique AP: B lymphocytes can be activated to act as antigen
presenting cells to promote anti-tumor responses. PLoS One.
13:e01990342018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bald T, Krummel MF, Smyth MJ and Barry KC:
The NK cell-cancer cycle: Advances and new challenges in NK
cell-based immunotherapies. Nat Immunol. 21:835–847. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tarazona R, Lopez-Sejas N, Guerrero B,
Hassouneh F, Valhondo I, Pera A, Sanchez-Correa B, Pastor N, Duran
E, Alonso C and Solana R: Current progress in NK cell biology and
NK cell-based cancer immunotherapy. Cancer Immunol Immunother.
69:879–899. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Del Zotto G, Marcenaro E, Vacca P, Sivori
S, Pende D, Della Chiesa M, Moretta F, Ingegnere T, Mingari MC,
Moretta A and Moretta L: Markers and function of human NK cells in
normal and pathological conditions. Cytometry B Clin Cytom.
92:100–114. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Handgretinger R, Lang P and André MC:
Exploitation of natural killer cells for the treatment of acute
leukemia. Blood. 127:3341–3349. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Myers JA and Miller JS: Exploring the NK
cell platform for cancer immunotherapy. Nat Rev Clin Oncol.
18:85–100. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim N and Kim HS: Targeting checkpoint
receptors and molecules for therapeutic modulation of natural
killer cells. Front Immunol. 9:20412018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Minetto P, Guolo F, Pesce S, Greppi M,
Obino V, Ferretti E, Sivori S, Genova C, Lemoli RM and Marcenaro E:
Harnessing NK cells for cancer treatment. Front Immunol.
10:28362019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tinker AV, Hirte HW, Provencher D, Butler
M, Ritter H, Tu D, Azim HA Jr, Paralejas P, Grenier N, Hahn SA, et
al: Dose-ranging and cohort-expansion study of monalizumab
(IPH2201) in patients with advanced gynecologic malignancies: A
Trial of the Canadian cancer trials group (CCTG): IND221. Clin
Cancer Res. 25:6052–6060. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Metes D, Galatiuc C, Moldovan I, Morel PA,
Chambers WH, DeLeo AB, Rabinowich H, Schall R, Whiteside TL, Sulica
A, et al: Expression and function of Fc gamma RII on human natural
killer cells. Nat Immun. 13:289–300. 1994.PubMed/NCBI
|
|
40
|
Braud VM, Allan DS, O'Callaghan CA,
Söderström K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI,
Phillips JH, et al: HLA-E binds to natural killer cell receptors
CD94/NKG2A, B and C. Nature. 391:795–799. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Grossenbacher SK, Canter RJ and Murphy WJ:
Natural killer cell immunotherapy to target stem-like tumor cells.
J Immunother Cancer. 4:192016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Imai K, Matsuyama S, Miyake S, Suga K and
Nakachi K: Natural cytotoxic activity of peripheral-blood
lymphocytes and cancer incidence: An 11-year follow-up study of a
general population. Lancet. 356:1795–1799. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lupo KB and Matosevic S: Natural killer
cells as allogeneic effectors in adoptive cancer immunotherapy.
Cancers (Basel). 11:7692019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Al-Attar A, Presnell SR, Clasey JL, Long
DE, Walton RG, Sexton M, Starr ME, Kern PA, Peterson CA and Lutz
CT: human body composition and immunity: Visceral adipose tissue
produces IL-15 and muscle strength inversely correlates with NK
Cell function in elderly humans. Front Immunol. 9:4402018.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang LX, Tong X, Li C, Giddens JP and Li
T: Glycoengineering of antibodies for modulating functions. Annu
Rev Biochem. 88:433–459. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Baba Y, Nomoto D, Okadome K, Ishimoto T,
Iwatsuki M, Miyamoto Y, Yoshida N and Baba H: Tumor immune
microenvironment and immune checkpoint inhibitors in esophageal
squamous cell carcinoma. Cancer Sci. 111:3132–3141. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao
S, Wang P, Su X, Qin Y, Wang Y, et al: Personalized neoantigen
pulsed dendritic cell vaccine for advanced lung cancer. Signal
Transduct Target Ther. 6:262021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Teng CF, Wang T, Shih FY, Shyu WC and Jeng
LB: Therapeutic efficacy of dendritic cell vaccine combined with
programmed death 1 inhibitor for hepatocellular carcinoma. J
Gastroenterol Hepatol. 36:1988–1996. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jia Y, Liu L and Shan B: Future of immune
checkpoint inhibitors: Focus on tumor immune microenvironment. Ann
Transl Med. 8:10952020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chen Y, Song Y, Du W, Gong L, Chang H and
Zou Z: Tumor-associated macrophages: An accomplice in solid tumor
progression. J Biomed Sci. 26:782019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano
H, Perry C, Hanaoka J, Fukuoka J, Chung JY and Hewitt SM:
Tumor-associated macrophage, angiogenesis and lymphangiogenesis
markers predict prognosis of non-small cell lung cancer patients. J
Transl Med. 18:4432020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Han S, Wang W, Wang S, Yang T, Zhang G,
Wang D, Ju R, Lu Y, Wang H and Wang L: Tumor microenvironment
remodeling and tumor therapy based on M2-like tumor associated
macrophage-targeting nano-complexes. Theranostics. 11:2892–2916.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shan H, Dou W, Zhang Y and Qi M: Targeted
ferritin nanoparticle encapsulating CpG oligodeoxynucleotides
induces tumor-associated macrophage M2 phenotype polarization into
M1 phenotype and inhibits tumor growth. Nanoscale. 12:22268–22280.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Costa A, Kieffer Y, Scholer-Dahirel A,
Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L,
Bernard C, et al: Fibroblast heterogeneity and immunosuppressive
environment in human breast cancer. Cancer Cell. 33:463–479.e10.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
De Jaeghere EA, Denys HG and De Wever O:
Fibroblasts fuel immune escape in the tumor microenvironment.
Trends Cancer. 5:704–723. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Maia A, Gu Z, Koch A, Berdiel-Acer M, Will
R, Schlesner M and Wiemann S: IFNβ1 secreted by breast cancer cells
undergoing chemotherapy reprograms stromal fibroblasts to support
tumour growth after treatment. Mol Oncol. 15:1308–1329. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shi Y, Sun L, Zhang R, Hu Y, Wu Y, Dong X,
Dong D, Chen C, Geng Z, Li E and Fan Y: Thrombospondin 4/integrin
α2/HSF1 axis promotes proliferation and cancer stem-like traits of
gallbladder cancer by enhancing reciprocal crosstalk between
cancer-associated fibroblasts and tumor cells. J Exp Clin Cancer
Res. 40:142021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou L, Li J, Tang Y and Yang M: Exosomal
LncRNA LINC00659 transferred from cancer-associated fibroblasts
promotes colorectal cancer cell progression via miR-342-3p/ANXA2
axis. J Transl Med. 19:82021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin
Y, Wang J, Lin S and Yun JP: H3K27 acetylation activated-COL6A1
promotes osteosarcoma lung metastasis by repressing STAT1 and
activating pulmonary cancer-associated fibroblasts. Theranostics.
11:1473–1492. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu S, Qin T, Liu Z, Wang J, Jia Y, Feng
Y, Gao Y and Li K: Anlotinib alters tumor immune microenvironment
by downregulating PD-L1 expression on vascular endothelial cells.
Cell Death Dis. 11:3092020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu Y, Zhou N, Zhou L, Wang J, Zhou Y,
Zhang T, Fang Y, Deng J, Gao Y, Liang X, et al: IL-2 regulates
tumor-reactive CD8+ T cell exhaustion by activating the
aryl hydrocarbon receptor. Nat Immunol. 22:358–369. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sahin D, Arenas-Ramirez N, Rath M, Karakus
U, Hümbelin M, van Gogh M, Borsig L and Boyman O: An IL-2-grafted
antibody immunotherapy with potent efficacy against metastatic
cancer. Nat Commun. 11:64402020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Renavikar PS, Sinha S, Brate AA,
Borcherding N, Crawford MP, Steward-Tharp SM and Karandikar NJ:
IL-12-induced immune suppressive deficit during CD8+
T-cell differentiation. Front Immunol. 11:5686302020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tucker CG, Mitchell JS, Martinov T,
Burbach BJ, Beura LK, Wilson JC, Dwyer AJ, Singh LM, Mescher MF and
Fife BT: Adoptive T Cell Therapy with IL-12-preconditioned
low-avidity T cells prevents exhaustion and results in enhanced T
cell activation, enhanced tumor clearance, and decreased risk for
autoimmunity. J Immunol. 205:1449–1460. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Agliardi G, Liuzzi AR, Hotblack A, De Feo
D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L,
Roberts TA, et al: Intratumoral IL-12 delivery empowers CAR-T cell
immunotherapy in a pre-clinical model of glioblastoma. Nat Commun.
12:4442021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jiang X, Ren L, Tebon P, Wang C, Zhou X,
Qu M, Zhu J, Ling H, Zhang S, Xue Y, et al: Cancer-on-a-chip for
modeling immune checkpoint inhibitor and tumor interactions. Small.
17:e20042822021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Duchemann B, Pluvy J, Crestani B, Zalcman
G and Nunes H: Immune checkpoint blockade for patients with lung
cancer and idiopathic pulmonary fibrosis. Eur J Cancer.
145:179–182. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ceresoli GL and Pasello G: Immune
checkpoint inhibitors in mesothelioma: A turning point. Lancet.
397:348–349. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wakita A, Motoyama S, Nanjo H, Sato Y,
Yoshino K, Sasaki T, Kawakita Y, Liu J, Imai K, Saito H and
Minamiya Y: PD-L1 expression is a prognostic factor in patients
with thoracic esophageal cancer treated without adjuvant
chemotherapy. Anticancer Res. 37:1433–1441. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yoshida H, Nomizo T, Ozasa H, Tsuji T,
Funazo T, Yasuda Y, Ajimizu H, Yamazoe M, Kuninaga K, Ogimoto T, et
al: PD-L1 polymorphisms predict survival outcomes in advanced
non-small-cell lung cancer patients treated with PD-1 blockade. Eur
J Cancer. 144:317–325. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tan CL, Kuchroo JR, Sage PT, Liang D,
Francisco LM, Buck J, Thaker YR, Zhang Q, McArdel SL, Juneja VR, et
al: PD-1 restraint of regulatory T cell suppressive activity is
critical for immune tolerance. J Exp Med. 218:e201822322021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liotti F, Kumar N, Prevete N, Marotta M,
Sorriento D, Ieranò C, Ronchi A, Marino FZ, Moretti S, Colella R,
et al: PD-1 blockade delays tumor growth by inhibiting an intrinsic
SHP2/Ras/MAPK signalling in thyroid cancer cells. J Exp Clin Cancer
Res. 40:222021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Marcq E, Van Audenaerde JRM, De Waele J,
Merlin C, Pauwels P, van Meerbeeck JP, Fisher SA and Smits ELJ: The
search for an interesting partner to combine with PD-L1 Blockade in
Mesothelioma: Focus on TIM-3 and LAG-3. Cancers (Basel).
13:2822021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang M, Lu J, Zhang G, Wang Y, He M, Xu Q,
Xu C and Liu H: CXCL13 shapes immunoactive tumor microenvironment
and enhances the efficacy of PD-1 checkpoint blockade in high-grade
serous ovarian cancer. J Immunother Cancer. 9:e0011362021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dovedi SJ, Elder MJ, Yang C, Sitnikova SI,
Irving L, Hansen A, Hair J, Jones DC, Hasani S, Wang B, et al:
Design and efficacy of a monovalent bispecific PD-1/CTLA-4 antibody
that enhances CTLA-4 blockade on PD-1+ activated T
cells. Cancer Discov. 11:1100–1117. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kojima T, Shah MA, Muro K, Francois E,
Adenis A, Hsu CH, Doi T, Moriwaki T, Kim SB, Lee SH, et al:
Randomized phase III KEYNOTE-181 study of pembrolizumab versus
chemotherapy in advanced esophageal cancer. J Clin Oncol.
38:4138–4148. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lecocq Q, Keyaerts M, Devoogdt N and
Breckpot K: The next-generation immune checkpoint LAG-3 and its
therapeutic potential in oncology: Third time's a charm. Int J Mol
Sci. 22:752020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Atkinson V, Khattak A, Haydon A, Eastgate
M, Roy A, Prithviraj P, Mueller C, Brignone C and Triebel F:
Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3)
protein plus pembrolizumab in patients with metastatic melanoma. J
Immunother Cancer. 8:e0016812020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Harjunpää H and Guillerey C: TIGIT as an
emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Judge SJ, Darrow MA, Thorpe SW, Gingrich
AA, O'Donnell EF, Bellini AR, Sturgill IR, Vick LV, Dunai C,
Stoffel KM, et al: Analysis of tumor-infiltrating NK and T cells
highlights IL-15 stimulation and TIGIT blockade as a combination
immunotherapy strategy for soft tissue sarcomas. J Immunother
Cancer. 8:e0013552020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Han HS, Jeong S, Kim H, Kim HD, Kim AR,
Kwon M, Park SH, Woo CG, Kim HK, Lee KH, et al: TOX-expressing
terminally exhausted tumor-infiltrating CD8+ T cells are
reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer.
Cancer Lett. 499:137–147. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li W, Deng C, Yang H, Lu X, Li S, Liu X,
Chen F, Chen L, Shu X, Zhang L, et al: Expansion of circulating
peripheral TIGIT+CD226+ CD4 T cells with
enhanced effector functions in dermatomyositis. Arthritis Res Ther.
23:152021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Han JH, Cai M, Grein J, Perera S, Wang H,
Bigler M, Ueda R, Rosahl TW, Pinheiro E, LaFace D, et al: Effective
Anti-tumor response by TIGIT blockade associated with FcγR
Engagement and myeloid cell activation. Front Immunol.
11:5734052020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Simon S, Voillet V, Vignard V, Wu Z,
Dabrowski C, Jouand N, Beauvais T, Khammari A, Braudeau C, Josien
R, et al: PD-1 and TIGIT coexpression identifies a circulating CD8
T cell subset predictive of response to anti-PD-1 therapy. J
Immunother Cancer. 8:e0016312020. View Article : Google Scholar : PubMed/NCBI
|