|
1
|
Tomasetti C and Vogelstein B: Cancer
etiology. Variation in cancer risk among tissues can be explained
by the number of stem cell divisions. Science. 347:78–81. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wu S, Powers S, Zhu W and Hannun YA:
Substantial contribution of extrinsic risk factors to cancer
development. Nature. 529:43–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Compagni A and Christofori G: Recent
advances in research on multistage tumorigenesis. Br J Cancer.
83:1–5. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Paul S and Régulier E: Molecular basis of
oncogenesis. Ann Biol Clin (Paris). 59:393–402. 2001.(In French).
PubMed/NCBI
|
|
5
|
Spandidos DA: Oncogenes and tumor
suppressor genes as paradigms in oncogenesis. J BUON. 12 (Suppl
1):S9–S12. 2007.PubMed/NCBI
|
|
6
|
Shen L, Shi Q and Wang W: Double agents:
Genes with both oncogenic and tumor-suppressor functions.
Oncogenesis. 7:252018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
De Plaen E, Lurquin C, Van Pel A, Mariamé
B, Szikora JP, Wölfel T, Sibille C, Chomez P and Boon T:
Immunogenic (tum-) variants of mouse tumor P815: Cloning of the
gene of tum-antigen P91A and identification of the tum-mutation.
Proc Natl Acad USA. 85:2274–2278. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wirth TC and Kühnel F: Neoantigen
targeting-dawn of a new era in cancer immunotherapy? Front Immunol.
8:18482017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Finn OJ: Human tumor antigens yesterday,
today, and tomorrow. Cancer Immunol Res. 5:347–354. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen DS and Mellman I: Oncology meets
immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jongsma MLM, Guarda G and Spaapen RM: The
regulatory network behind MHC class I expression. Mol Immunol.
113:16–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shastri N, Nagarajan N, Lind KC and
Kanaseki T: Monitoring peptide processing for MHC class I molecules
in the endoplasmic reticulum. Curr Opin Immunol. 26:123–127. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ren Y, Cherukuri Y, Wickland DP, Sarangi
V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson
KL, et al: HLA class-I and II restricted neoantigen loads predict
overall survival in breast cancer. Oncoimmunology. 9:17449472020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Axelrod ML, Cook RS, Johnson DB and Balko
JM: Biological consequences of MHC-II expression by tumor cells in
cancer. Clin Cancer Res. 25:2392–2402. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dantoing E, Piton N, Salaün M, Thiberville
L and Guisier F: Anti-PD1/PD-L1 immunotherapy for non-small cell
lung cancer with actionable oncogenic driver mutations. Int J Mol
Sci. 22:62882021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kok VC: Current understanding of the
mechanisms underlying immune evasion from PD-1/PD-L1 immune
checkpoint blockade in head and neck cancer. Front Oncol.
10:2682020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Raphael I, Kumar R, McCarl LH, Shoger K,
Wang L, Sandlesh P, Sneiderman CT, Allen J, Zhai S, Campagna ML, et
al: TIGIT and PD-1 immune checkpoint pathways are associated with
patient outcome and anti-tumor immunity in glioblastoma. Front
Immunol. 12:6371462021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Twomey JD and Zhang B: Cancer
immunotherapy update: FDA-approved checkpoint inhibitors and
companion diagnostics. AAPS J. 23:392021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Miller A, Asmann Y, Cattaneo L, Braggio E,
Keats J, Auclair D, Lonial S; MMRF CoMMpass Network, ; Russell SJ
and Stewart AK: High somatic mutation and neoantigen burden are
correlated with decreased progression-free survival in multiple
myeloma. Blood Cancer J. 7:e6122017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yi M, Qin S, Zhao W, Yu S, Chu Q and Wu K:
The role of neoantigen in immune checkpoint blockade therapy. Exp
Hematol Oncol. 7:282018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
van den Bulk J, Verdegaal EME, Ruano D,
Ijsselsteijn ME, Visser M, van der Breggen R, Duhen T, van der
Ploeg M, de Vries NL, Oosting J, et al: Neoantigen-specific
immunity in low mutation burden colorectal cancers of the consensus
molecular subtype 4. Genome Med. 11:872019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yarchoan M, Johnson BA III, Lutz ER,
Laheru DA and Jaffee EM: Targeting neoantigens to augment
antitumour immunity. Nat Rev Cancer. 17:5692017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Blass E and Ott PA: Advances in the
development of personalized neoantigen-based therapeutic cancer
vaccines. Nat Rev Clin Oncol. 18:215–229. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pardi N, Hogan MJ, Porter FW and Weissman
D: mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov.
17:261–279. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Parkhurst MR, Robbins PF, Tran E, Prickett
TD, Gartner JJ, Jia L, Ivey G, Li YF, El-Gamil M, Lalani A, et al:
Unique neoantigens arise from somatic mutations in patients with
gastrointestinal cancers. Cancer Discov. 9:1022–1035. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Klebanoff CA and Wolchok JD: Shared cancer
neoantigens: Making private matters public. J Exp Med. 215:5–7.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Garcia-Garijo A, Fajardo CA and Gros A:
Determinants for neoantigen identification. Front Immunol.
10:13922019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hutchison S and Pritchard AL: Identifying
neoantigens for use in immunotherapy. Mamm Genome. 29:714–730.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen F, Zou Z, Du J, Su S, Shao J, Meng F,
Yang J, Xu Q, Ding N, Yang Y, et al: Neoantigen identification
strategies enable personalized immunotherapy in refractory solid
tumors. J Clin Invest. 129:2056–2070. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hao Q, Wei P, Shu Y, Zhang YG, Xu H and
Zhao JN: Improvement of neoantigen identification through
convolution neural network. Front Immunol. 12:6821032021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bulik-Sullivan B, Busby J, Palmer CD,
Davis MJ, Murphy T, Clark A, Busby M, Duke F, Yang A, Young L, et
al: Deep learning using tumor HLA peptide mass spectrometry
datasets improves neoantigen identification. Nat Biotechnol. Dec
17–2018.(Epub ahead of print). PubMed/NCBI
|
|
32
|
Guo C, Manjili MH, Subjeck JR, Sarkar D,
Fisher PB and Wang XY: Therapeutic cancer vaccines: Past, present,
and future. Adv Cancer Res. 119:421–475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Schindler T, Bornmann W, Pellicena P,
Miller WT, Clarkson B and Kuriyan J: Structural mechanism for
STI-571 inhibition of abelson tyrosine kinase. Science.
289:1938–1942. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fuster LM and Sandler AB: Select clinical
trials of erlotinib (OSI-774) in non-small-cell lung cancer with
emphasis on phase III outcomes. Clin Lung Cancer. 6 (Suppl
1):S24–S29. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rosenberg SA, Yang JC and Restifo NP:
Cancer immunotherapy: Moving beyond current vaccines. Nat Med.
10:909–915. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
36
|
de Gruijl TD, van den Eertwegh AJ, Pinedo
HM and Scheper RJ: Whole-cell cancer vaccination: From autologous
to allogeneic tumor- and dendritic cell-based vaccines. Cancer
Immunol Immunother. 57:1569–1577. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chiang CL, Hagemann AR, Leskowitz R, Mick
R, Garrabrant T, Czerniecki BJ, Kandalaft LE, Powell DJ Jr and
Coukos G: Day-4 myeloid dendritic cells pulsed with whole tumor
lysate are highly immunogenic and elicit potent anti-tumor
responses. PLoS One. 6:e287322011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bencherif SA, Warren Sands R, Ali OA, Li
WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff
G and Mooney DJ: Injectable cryogel-based whole-cell cancer
vaccines. Nat Commun. 6:75562015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lim YT: Vaccine adjuvant materials for
cancer immunotherapy and control of infectious disease. Clin Exp
Vaccine Res. 4:54–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhu G, Zhang F, Ni Q, Niu G and Chen X:
Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano.
11:2387–2392. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Obeid J, Hu Y and Slingluff CL Jr:
Vaccines, adjuvants, and dendritic cell activators-current status
and future challenges. Semin Oncol. 42:549–561. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Luo M, Samandi LZ, Wang Z, Chen ZJ and Gao
J: Synthetic nanovaccines for immunotherapy. J Control Release.
263:200–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Izumoto S: Peptide vaccine. Adv Exp Med
Biol. 746:166–177. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lynn GM, Sedlik C, Baharom F, Zhu Y,
Ramirez-Valdez RA, Coble VL, Tobin K, Nichols SR, Itzkowitz Y,
Zaidi N, et al: Peptide-TLR-7/8a conjugate vaccines chemically
programmed for nanoparticle self-assembly enhance CD8 T-cell
immunity to tumor antigens. Nat Biotechnol. 38:320–332. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang
B, Niu G, Su T, Zhu G, Lu G, et al: A bi-adjuvant nanovaccine that
potentiates immunogenicity of neoantigen for combination
immunotherapy of colorectal cancer. Sci Adv. 6:eaaw60712020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Esposito A, Criscitiello C and Curigliano
G: Immune checkpoint inhibitors with radiotherapy and locoregional
treatment: Synergism and potential clinical implications. Curr Opin
Oncol. 27:445–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ott PA, Hu-Lieskovan S, Chmielowski B,
Govindan R, Naing A, Bhardwaj N, Margolin K, Awad MM, Hellmann MD,
Lin JJ, et al: A Phase Ib trial of personalized neoantigen therapy
plus anti-PD-1 in patients with advanced melanoma, non-small cell
lung cancer, or bladder cancer. Cell. 183:347–362.e24. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shaw SM, Middleton J, Wigglesworth K,
Charlemagne A, Schulz O, Glossop MS, Whalen GF, Old R, Westby M,
Pickford C, et al: AGI-134: A fully synthetic α-Gal glycolipid that
converts tumors into in situ autologous vaccines, induces
anti-tumor immunity and is synergistic with an anti-PD-1 antibody
in mouse melanoma models. Cancer Cell Int. 19:3462019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fennemann FL, de Vries IJM, Figdor CG and
Verdoes M: Attacking tumors from all sides: Personalized multiplex
vaccines to tackle intratumor heterogeneity. Front Immunol.
10:8242019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J,
Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An
immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Keskin DB, Anandappa AJ, Sun J, Tirosh I,
Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E,
et al: Neoantigen vaccine generates intratumoral T cell responses
in phase Ib glioblastoma trial. Nature. 565:234–239. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zeng Y, Zhang W, Li Z, Zheng Y, Wang Y,
Chen G, Qiu L, Ke K, Su X, Cai Z, et al: Personalized
neoantigen-based immunotherapy for advanced collecting duct
carcinoma: Case report. J Immunother Cancer. 8:e0002172020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Caron E, Aebersold R, Banaei-Esfahani A,
Chong C and Bassani-Sternberg M: A case for a human
immuno-peptidome project consortium. Immunity. 47:203–208. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hellmann MD and Snyder A: Making it
personal: Neoantigen vaccines in metastatic melanoma. Immunity.
47:221–223. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fu C, Zhou L, Mi QS and Jiang A: DC-based
vaccines for cancer immunotherapy. Vaccines (Basel). 8:7062020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wculek SK, Cueto FJ, Mujal AM, Melero I,
Krummel MF and Sancho D: Dendritic cells in cancer immunology and
immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang R, Yuan F, Shu Y, Tian Y, Zhou B, Yi
L, Zhang X, Ding Z, Xu H and Yang L: Personalized neoantigen-pulsed
dendritic cell vaccines show superior immunogenicity to
neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol
Immunother. 69:135–145. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tang L, Zhang R, Zhang X and Yang L:
Personalized neoantigen-Pulsed DC vaccines: Advances in clinical
applications. Front Oncol. 11:7017772021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Carreno BM, Magrini V, Becker-Hapak M,
Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH,
Mardis ER and Linette GP: Cancer immunotherapy. A dendritic cell
vaccine increases the breadth and diversity of melanoma
neoantigen-specific T cells. Science. 348:803–808. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Charles J, Chaperot L, Hannani D, Bruder
Costa J, Templier I, Trabelsi S, Gil H, Moisan A, Persoons V,
Hegelhofer H, et al: An innovative plasmacytoid dendritic cell
line-based cancer vaccine primes and expands antitumor T-cells in
melanoma patients in a first-in-human trial. Oncoimmunology.
9:17388122020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pastor F, Berraondo P, Etxeberria I,
Frederick J, Sahin U, Gilboa E and Melero I: An RNA toolbox for
cancer immunotherapy. Nat Rev Drug Discov. 17:751–767. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lopes A, Vandermeulen G and Préat V:
Cancer DNA vaccines: Current preclinical and clinical developments
and future perspectives. J Exp Clin Cancer Res. 38:1462019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sahin U, Derhovanessian E, Miller M, Kloke
BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B,
et al: Personalized RNA mutanome vaccines mobilize poly-specific
therapeutic immunity against cancer. Nature. 547:222–226. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cafri G, Gartner JJ, Zaks T, Hopson K,
Levin N, Paria BC, Parkhurst MR, Yossef R, Lowery FJ, Jafferji MS,
et al: mRNA vaccine-induced neoantigen-specific T cell immunity in
patients with gastrointestinal cancer. J Clin Invest.
130:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Platten M, Bunse L, Wick A, Bunse T, Le
Cornet L, Harting I, Sahm F, Sanghvi K, Tan CL, Poschke I, et al: A
vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature.
592:463–468. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tondini E, Arakelian T, Oosterhuis K,
Camps M, van Duikeren S, Han W, Arens R, Zondag G, van Bergen J and
Ossendorp F: A poly-neoantigen DNA vaccine synergizes with PD-1
blockade to induce T cell-mediated tumor control. Oncoimmunology.
8:16525392019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li Q, Ren J, Liu W, Jiang G and Hu R: CpG
oligodeoxynucleotide developed to activate primate immune responses
promotes antitumoral effects in combination with a neoantigen-based
mRNA cancer vaccine. Drug Des Devel Ther. 15:3953–3963. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Duperret EK, Perales-Puchalt A, Stoltz R,
G HH, Mandloi N, Barlow J, Chaudhuri A, Sardesai NY and Weiner DB:
A synthetic DNA, multi-neoantigen vaccine drives predominately MHC
class I CD8+ T-cell responses, impacting tumor
challenge. Cancer Immunol Res. 7:174–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang Z and Wu X: Study and analysis of
antitumor resistance mechanism of PD1/PD-L1 immune checkpoint
blocker. Cancer Med. 9:8086–8121. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tan CL, Kuchroo JR, Sage PT, Liang D,
Francisco LM, Buck J, Thaker YR, Zhang Q, McArdel SL, Juneja VR, et
al: PD-1 restraint of regulatory T cell suppressive activity is
critical for immune tolerance. J Exp Med. 218:e201822322021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Buchbinder EI and Desai A: CTLA-4 and PD-1
pathways: Similarities, differences, and implications of their
inhibition. Am J Clin Oncol. 39:98–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wisdom AJ, Mowery YM, Riedel RF and Kirsch
DG: Rationale and emerging strategies for immune checkpoint
blockade in soft tissue sarcoma. Cancer. 124:3819–3829. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu F, Jin T, Zhu Y and Dai C: Immune
checkpoint therapy in liver cancer. J Exp Clin Cancer Res.
37:1102018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pianko MJ, Liu Y, Bagchi S and Lesokhin
AM: Immune checkpoint blockade for hematologic malignancies: A
review. Stem Cell Investig. 4:322017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kabacaoglu D, Ciecielski KJ, Ruess DA and
Algül H: Immune checkpoint inhibition for pancreatic ductal
adenocarcinoma: Current limitations and future options. Front
Immunol. 9:18782018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Anagnostou V, Smith KN, Forde PM, Niknafs
N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N,
et al: Evolution of neoantigen landscape during immune checkpoint
blockade in non-small cell lung cancer. Cancer Discov. 7:264–276.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hodi FS, O'Day SJ, McDermott DF, Weber RW,
Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel
JC, et al: Improved survival with ipilimumab in patients with
metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Isaacsson Velho P and Antonarakis ES:
PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert
Rev Clin Pharmacol. 11:475–486. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang X, Guo G, Guan H, Yu Y, Lu J and Yu
J: Challenges and potential of PD-1/PD-L1 checkpoint blockade
immunotherapy for glioblastoma. J Exp Clin Cancer Res. 38:872019.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jiang Y, Chen M, Nie H and Yuan Y: PD-1
and PD-L1 in cancer immunotherapy: Clinical implications and future
considerations. Hum Vaccin Immunother. 15:1111–1122. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong
F, Guo C, Wu X, Li Y, Li X, et al: Neoantigen vaccine: An emerging
tumor immunotherapy. Mol Cancer. 18:1282019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liu CJ, Schaettler M, Blaha DT,
Bowman-Kirigin JA, Kobayashi DK, Livingstone AJ, Bender D, Miller
CA, Kranz DM, Johanns TM and Dunn GP: Treatment of an aggressive
orthotopic murine glioblastoma model with combination checkpoint
blockade and a multivalent neoantigen vaccine. Neuro Oncol.
22:1276–1288. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Duraiswamy J, Kaluza KM, Freeman GJ and
Coukos G: Dual blockade of PD-1 and CTLA-4 combined with tumor
vaccine effectively restores T-cell rejection function in tumors.
Cancer Res. 73:3591–3603. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rohaan MW, Wilgenhof S and Haanen JBAG:
Adoptive cellular therapies: The current landscape. Virchows Arch.
474:449–461. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Rath JA and Arber C: Engineering
strategies to enhance TCR-based adoptive T cell therapy. Cells.
9:14852020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Weber J, Atkins M, Hwu P, Radvanyi L,
Sznol M and Yee C; Immunotherapy Task Force of the NCI
Investigational Drug Steering Committee, : White paper on adoptive
cell therapy for cancer with tumor-infiltrating lymphocytes: A
report of the CTEP subcommittee on adoptive cell therapy. Clin
Cancer Res. 17:1664–1673. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Rohaan MW, van den Berg JH, Kvistborg P
and Haanen JBAG: Adoptive transfer of tumor-infiltrating
lymphocytes in melanoma: A viable treatment option. J Immunother
Cancer. 6:1022018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
van den Berg JH, Heemskerk B, van Rooij N,
Gomez-Eerland R, Michels S, van Zon M, de Boer R, Bakker NAM,
Jorritsma-Smit A, van Buuren MM, et al: Tumor infiltrating
lymphocytes (TIL) therapy in metastatic melanoma: Boosting of
neoantigen-specific T cell reactivity and long-term follow-up. J
Immunother Cancer. 8:e0008482020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zacharakis N, Chinnasamy H, Black M, Xu H,
Lu YC, Zheng Z, Pasetto A, Langhan M, Shelton T, Prickett T, et al:
Immune recognition of somatic mutations leading to complete durable
regression in metastatic breast cancer. Nat Med. 24:724–730. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tran E, Robbins PF, Lu YC, Prickett TD,
Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, et al:
T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J
Med. 375:2255–2262. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sun J, Zhang J, Hu H, Qin H, Liao X, Wang
F, Zhang W, Yin Q, Su X, He Y, et al: Anti-tumour effect of
neo-antigen-reactive T cells induced by RNA mutanome vaccine in
mouse lung cancer. J Cancer Res Clin Oncol. 147:3255–3268. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rosenberg SA and Restifo NP: Adoptive cell
transfer as personalized immunotherapy for human cancer. Science.
348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lu YC, Yao X, Crystal JS, Li YF, El-Gamil
M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, et al:
Efficient identification of mutated cancer antigens recognized by T
cells associated with durable tumor regressions. Clin Cancer Res.
20:3401–3410. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gros A, Parkhurst MR, Tran E, Pasetto A,
Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts
IM, et al: Prospective identification of neoantigen-specific
lymphocytes in the peripheral blood of melanoma patients. Nat Med.
22:433–438. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Bailey P, Chang DK, Forget MA, Lucas FA,
Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S,
Grimm EA, et al: Exploiting the neoantigen landscape for
immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep.
6:358482016. View Article : Google Scholar : PubMed/NCBI
|