Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review)

  • Authors:
    • Samuel Longoria-García
    • Celia Nohemi Sánchez-Domínguez
    • Hugo Leonid Gallardo-Blanco
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico, Department of Genetics, University Hospital ‘José Eleuterio González’, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
    Copyright: © Longoria-García et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 103
    |
    Published online on: February 1, 2022
       https://doi.org/10.3892/ol.2022.13223
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cell-penetrating peptides (CPPs) are small peptides from natural sources or designed from other protein sequences that can penetrate cell membranes. This property has been used in biomedicine to add them to biomolecules to improve their capacity for cell internalization and as a guidance tool for specific cell types. CPPs have been shown to enhance cellular uptake in vitro and in vivo, improving the efficacy of anticancer drugs such as doxorubicin and paclitaxel, while also limiting their cytotoxic effects on healthy cells and tissues. The current study reviews the internalization and major therapeutic results achieved from the functionalization of nanosystems with CPPs for guidance into breast and prostate cancer cells in vitro and in vivo. In addition, the practical results obtained are specifically discussed for use as a starting point for scientists looking to begin research in this field.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Parsa Y, Mirmalek SA, Kani FE, Aidun A, Salimi-Tabatabaee SA, Yadollah-Damavandi S, Jangholi E, Parsa T and Shahverdi E: A review of the clinical implications of breast cancer biology. Electron Physician. 8:2416–2424. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Wu D, Si M, Xue HY and Wong HL: Nanomedicine applications in the treatment of breast cancer: Current state of the art. Int J Nanomedicine. 12:5879–5892. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Logothetis CJ, Gallick GE, Maity SN, Kim J, Aparicio A, Efstathiou E and Lin SH: Molecular classification of prostate cancer progression: Foundation for marker-driven treatment of prostate cancer. Cancer Discov. 3:849–861. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Zhang A, Zhang J, Plymate S and Mostaghel EA: Classical and Non-classical roles for pre-receptor control of DHT metabolism in prostate cancer progression. Horm Cancer. 7:104–113. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Liu LL, Xie N, Sun S, Plymate S, Mostaghel E and Dong X: Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene. 33:3140–3150. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Culig Z and Santer FR: Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 33:413–427. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Rebello RJ, Pearson RB, Hannan RD and Furic L: Therapeutic approaches targeting MYC-Driven prostate cancer. Genes (Basel). 8:712017. View Article : Google Scholar : PubMed/NCBI

10 

Blee AM, He Y, Yang Y, Ye Z, Yan Y, Pan Y, Dugdale J, Kuehn E, Kohli M, Jimenez R, et al: TMPRSS2-ERG controls luminal epithelial lineage and antiandrogen sensitivity in PTEN and TP53-mutated prostate cancer. Clin Cancer Res. 24:4551–4565. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Nadal M, Prekovic S, Gallastegui N, Helsen C, Abella M, Zielinska K, Gay M, Vilaseca M, Taulès M, Houtsmuller AB, et al: Structure of the homodimeric androgen receptor ligand-binding domain. Nat Commun. 8:143882017. View Article : Google Scholar : PubMed/NCBI

12 

Damyanov CA, Maslev IK and Pavlov VS: Conventional treatment of cancer realities and problems. Ann Complement Altern Med. 1:1–9. 2018.

13 

Schaue D and Mcbride WH: Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 12:527–540. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Estanqueiro M, Amaral MH, Conceição J and Sousa Lobo JM: Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surfaces B Biointerfaces. 126:631–648. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Vanneman M and Dranoff G: Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 12:237–251. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Gao QX, Zhou GX, Lin SJ, Paus R and Yue ZC: How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol. 28:413–418. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Shi J, Kantoff PW, Wooster R and Farokhzad OC: Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. 17:20–37. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W and Yogo T: High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces. 2:1903–1911. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Kong SD, Zhang W, Lee JH, Brammer K, Lal R, Karin M and Jin S: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 10:5088–5092. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Tang B, Zaro JL, Shen Y, Chen Q, Yu Y, Sun P, Wang Y, Shen WC, Tu J and Sun C: Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release. 279:147–156. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Liu Q, Song L, Chen S, Gao J, Zhao P and Du J: A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 114:23–33. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Ke W, Li J, Mohammed F, Wang Y, Tou K, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, et al: Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano. 13:2357–2369. 2019.PubMed/NCBI

23 

Gao X, Wang S, Wang BL, Deng S, Liu X, Zhang XN, Luo LL, Fan RR, Xiang ML, You C, et al: Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials. 53:646–658. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Mao HL, Qian F, Li S, Shen JW, Ye CK, Hua L, Zhang LZ, Wu DM, Lu J, Yu RT, et al: Delivery of doxorubicin from hyaluronic acid-modified glutathione-responsive ferrocene micelles for combination cancer therapy. Mol Pharm. 16:987–994. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Li Z, Tan S, Li S, Shen Q and Wang K: Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep. 38:611–624. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Zariwala MG, Bendre H, Markiv A, Farnaud S, Renshaw D, Taylor KM and Somavarapu S: Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery. Int J Nanomedicine. 13:5837–5848. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Hu Y, Liu X, Cai Z, Zhang H, Gao H, He W, Wu P, Cai C, Zhu JJ and Yan Z: Enhancing the plasmon resonance absorption of multibranched gold nanoparticles in the near-infrared region for photothermal cancer therapy: Theoretical predictions and experimental verification. Chem Mater. 31:471–482. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Bellassai N, D'Agata R, Jungbluth V and Spoto G: Surface plasmon resonance for biomarker detection: Advances in Non-invasive cancer diagnosis. Front Chem. 7:5702019. View Article : Google Scholar : PubMed/NCBI

29 

Kishimoto TK, Ferrari JD, Lamothe RA, Kolte PN, Griset AP, O'Neil C, Chan V, Browning E, Chalishazar A, Kuhlman W, et al: Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat Nanotechnol. 11:890–899. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Böhmová E, Machová D, Pechar M, Pola R, Venclíková K, Janoušková O and Etrych T: Cell-penetrating peptides: A useful tool for the delivery of various cargoes into cells. Physiol Res. 67 (Suppl 2):S267–S279. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Kauffman WB, Fuselier T, He J and Wimley WC: Mechanism matters: A taxonomy of cell penetrating peptides. Trends Biochem Sci. 40:749–764. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Frankel AD and Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55:1189–1193. 1988. View Article : Google Scholar : PubMed/NCBI

33 

Green M and Loewenstein PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 55:1179–1188. 1988. View Article : Google Scholar : PubMed/NCBI

34 

Bechara C and Sagan S: Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 587:1693–1702. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Guidotti G, Brambilla L and Rossi D: Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol Sci. 38:406–424. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Huang K and García AE: Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation. Biophys J. 104:412–420. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A and Milesi V: Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J. 97:1917–1925. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Islam MZ, Ariyama H, Alam JM and Yamazaki M: Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Biochemistry. 53:386–396. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Sharmin S, Islam MZ, Karal MAS, Alam Shibly SU, Dohra H and Yamazaki M: Effects of lipid composition on the entry of cell-penetrating peptide oligoarginine into single vesicles. Biochemistry. 55:4154–4165. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Lindgren M and Langel U: Classes and prediction of cell-penetrating peptides. Methods in molec8ular biology (Clifton N.J.). 683:3–19. 2011.PubMed/NCBI

41 

Cai D, Gao W, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X and Zhang Q: Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials. 35:2283–2294. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W, Wang Z and Mei X: PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials. 35:4368–4381. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, Yu D, Han Y, Zhang L, Wu M, Cheng Y and Lesniak MS: Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm. 13:1843–1854. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Zhu X, Xu Y, Solis LM, Tao W, Wang L, Behrens C, Xu X, Zhao L, Liu D, Wu J, et al: Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc Natl Acad Sci. 112:7779–7784. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Parvani JG, Gujrati MD, Mack MA, Schiemann WP and Lu ZR: Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res. 75:2316–2325. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, Sun D, Scheidt J, Qian V, He S, et al: Systemic delivery of tumor-targeting siRNA Nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 30:907–919. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Pasut G, Paolino D, Celia C, Mero A, Joseph AS, Wolfram J, Cosco D, Schiavon O, Shen H and Fresta M: Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J Control Release. 199:106–113. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Nag M, Gajbhiye V, Kesharwani P and Jain NK: Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. Colloids Surfaces B Biointerfaces. 148:363–370. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Ebbesen MF, Olesen MTJ, Gjelstrup MC, Pakula MM, Larsen EKU, Hansen IM, Hansen PL, Mollenhauer J, Malle BM and Howard KA: Tunable CD44-specific cellular retargeting with hyaluronic acid nanoshells. Pharm Res. 32:1462–1474. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Zhong L, Xu L, Liu Y, Li Q, Zhao D, Li Z, Zhang H, Zhang H, Kan Q, Wang Y, et al: Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm Sin B. 9:397–409. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Ben Djemaa S, David S, Hervé-Aubert K, Falanga A, Galdiero S, Allard-Vannier E, Chourpa I and Munnier E: Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharm. 131:99–108. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Mäe M, Myrberg H, El-Andaloussi S and Langel Ü: Design of a tumor homing cell-penetrating peptide for drug delivery. Int J Pept Res Ther. 15:11–15. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Lim KJ, Sung BH, Shin JR, Lee YW, Kim DJ, Yang KS and Kim SC: A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One. 8:e660842013. View Article : Google Scholar : PubMed/NCBI

54 

Fang SL, Fan TC, Fu HW, Chen CJ, Hwang CS, Hung TJ, Lin LY and Chang MD: A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One. 8:e573182013. View Article : Google Scholar : PubMed/NCBI

55 

Kalyanaraman B: Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 29:1013942020. View Article : Google Scholar : PubMed/NCBI

56 

Fales AM, Yuan H and Vo-Dinh T: Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol Pharm. 10:2291–2298. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Hossain MK, Cho HY, Kim KJ and Choi JW: In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosens Bioelectron. 71:300–305. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Wan Y, Dai W, Nevagi RJ, Toth I and Moyle PM: Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater. 59:257–268. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Hu G, Chun X, Wang Y, He Q and Gao H: Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget. 6:41258–41274. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Sardan M, Kilinc M, Genc R, Tekinay AB and Guler MO: Cell penetrating peptide amphiphile integrated liposomal systems for enhanced delivery of anticancer drugs to tumor cells. Faraday Discuss. 166:269–283. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Wang X, Chen X, Yang X, Gao W, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X, et al: A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer. Nanomedicine. 12:387–397. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Wang H, Wang H, Liang J, Jiang Y, Guo Q, Peng H, Xu Q and Huang Y: Cell-penetrating apoptotic peptide/p53 DNA nanocomplex as adjuvant therapy for drug-resistant breast cancer. Mol Pharm. 11:3352–3360. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Chen J, Li S and Shen Q: Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci. 47:430–443. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Hu H, Wang J, Wang H, Tan T, Li J, Wang Z, Sun K, Li Y and Zhang Z: Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics. 8:3597–3610. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh K, Yamada N, Higuchi Y, Konishi S, et al: Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano. 9:4957–4967. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, Kim H, Kim J, Shin EC and Jon S: Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release. 256:56–67. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Su J, Sun H, Meng Q, Yin Q, Tang S, Zhang P, Chen Y, Zhang Z, Yu H and Li Y: Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv Funct Mater. 26:1243–1252. 2016. View Article : Google Scholar

68 

Hamilton AM, Aidoudi-Ahmed S, Sharma S, Kotamraju VR, Foster PJ, Sugahara KN, Ruoslahti E and Rutt BK: Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. J Mol Med. 93:991–1001. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Jabir MS, Taha AA, Sahib UI, Taqi ZJ, Al-Shammari AM and Salman AS: Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line. Mater Sci Eng C Mater Biol Appl. 94:949–964. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Wan X, Liu C, Lin Y, Fu J, Lu G and Lu Z: pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv. 26:470–480. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Liang DS, Su HT, Liu YJ, Wang AT and Qi XR: Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials. 71:11–23. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Ding J, Yao J, Xue J, Li R, Bao B, Jiang L, Zhu JJ and He Z: Tumor-homing Cell-penetrating peptide linked to colloidal mesoporous silica Encapsulated (-)-Epigallocatechin-3-gallate as drug delivery system for breast cancer therapy in vivo. ACS Appl Mater Interfaces. 7:18145–18155. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Ding J, Liang T, Zhou Y, He Z, Min Q, Jiang L and Zhu J: Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Res. 10:690–703. 2016. View Article : Google Scholar

74 

Ding J, Liang T, Min Q, Jiang L and Zhu JJ: ‘Stealth and Fully-Laden’ Drug carriers: Self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy. ACS Appl Mater Interfaces. 10:9938–9948. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Huang R, Li J, Kebebe D, Wu Y, Zhang B and Liu Z: Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv. 25:757–765. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Perillo E, Hervé-Aubert K, Allard-Vannier E, Falanga A, Galdiero S and Chourpa I: Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. J Colloid Interface Sci. 499:209–217. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Cao H, Zou L, He B, Zeng L, Huang Y, Yu H, Zhang P, Yin Q, Zhang Z and Li Y: Albumin biomimetic nanocorona improves tumor targeting and penetration for synergistic therapy of metastatic breast cancer. Adv Funct Mater. 27:16056792017. View Article : Google Scholar

78 

Jing H, Cheng W, Li S, Wu B, Leng X, Xu S and Tian J: Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy. Colloids Surfaces B Biointerfaces. 146:387–395. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Govindarajan S, Sivakumar J, Garimidi P, Rangaraj N, Kumar JM, Rao NM and Gopal V: Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate. Biomaterials. 33:2570–2582. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Sharma S, Kotamraju VR, Mölder T, Tobi A, Teesalu T and Ruoslahti E: Tumor-penetrating nanosystem strongly suppresses breast tumor growth. Nano Lett. 17:1356–1364. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Li G, Gao Y, Gong C, Han Z, Qiang L, Tai Z, Tian J and Gao S: Dual-blockade immune checkpoint for breast cancer treatment based on a tumor-penetrating peptide assembling nanoparticle. ACS Appl Mater Interfaces. 11:39513–39524. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Xie X, Yang Y, Lin W, Liu H, Liu H, Yang Y, Chen Y, Fu X and Deng J: Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids Surfaces B Biointerfaces. 136:641–650. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Braun GB, Sugahara KN, Yu OM, Kotamraju VR, Mölder T, Lowy AM, Ruoslahti E and Teesalu T: Urokinase-controlled tumor penetrating peptide. J Control Release. 232:188–195. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Fei L, Yap LP, Conti PS, Shen WC and Zaro JL: Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials. 35:4082–4087. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding Y, Guan J, Ji T, Zhao Y and Nie G: Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 13:12357–12371. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, Cao DY and Qi XR: PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials. 34:6976–6991. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Zhou J, Fan J and Hsieh JT: Inhibition of mitogen-elicited signal transduction and growth in prostate cancer with a small peptide derived from the functional domain of DOC-2/DAB2 delivered by a unique vehicle. Cancer Res. 66:8954–8958. 2006. View Article : Google Scholar : PubMed/NCBI

88 

Zhang T, Xue X, He D and Hsieh JT: A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett. 365:156–165. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Kumar A, Huo S, Zhang X, Liu J, Tan A, Li S, Jin S, Xue X, Zhao Y, Ji T, et al: Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of Platinum(IV) drug for prostate cancer treatment. ACS Nano. 8:4205–4220. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Menon JU, Tumati V, Hsieh JT, Nguyen KT and Saha D: Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells. J Biomed Mater Res A. 103:1632–1639. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Wadajkar AS, Menon JU, Tsai YS, Gore C, Dobin T, Gandee L, Kangasniemi K, Takahashi M, Manandhar B, Ahn JM, et al: Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials. 34:3618–3625. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Yuan L, Liu CY, Chen Y, Zhang ZH, Zhou L and Qu D: Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model. Int J Nanomedicine. 8:4339–4350. 2013.PubMed/NCBI

93 

Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, Ocampo-García B, Luna-Gutiérrez M, Azorín-Vega E, Isaac-Olivé K, Camacho-López M and Torres-García E: Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49–57)-Lys(3)-bombesin internalized in nuclei of prostate cancer cells. J Label Compd Radiopharm. 56:663–671. 2013. View Article : Google Scholar : PubMed/NCBI

94 

DePorter SM and McNaughton BR: Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells. Bioconjug Chem. 25:1620–1625. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Longoria-García S, Sánchez-Domínguez C and Gallardo-Blanco HL: Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncol Lett 23: 103, 2022.
APA
Longoria-García, S., Sánchez-Domínguez, C., & Gallardo-Blanco, H.L. (2022). Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncology Letters, 23, 103. https://doi.org/10.3892/ol.2022.13223
MLA
Longoria-García, S., Sánchez-Domínguez, C., Gallardo-Blanco, H. L."Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review)". Oncology Letters 23.3 (2022): 103.
Chicago
Longoria-García, S., Sánchez-Domínguez, C., Gallardo-Blanco, H. L."Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review)". Oncology Letters 23, no. 3 (2022): 103. https://doi.org/10.3892/ol.2022.13223
Copy and paste a formatted citation
x
Spandidos Publications style
Longoria-García S, Sánchez-Domínguez C and Gallardo-Blanco HL: Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncol Lett 23: 103, 2022.
APA
Longoria-García, S., Sánchez-Domínguez, C., & Gallardo-Blanco, H.L. (2022). Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncology Letters, 23, 103. https://doi.org/10.3892/ol.2022.13223
MLA
Longoria-García, S., Sánchez-Domínguez, C., Gallardo-Blanco, H. L."Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review)". Oncology Letters 23.3 (2022): 103.
Chicago
Longoria-García, S., Sánchez-Domínguez, C., Gallardo-Blanco, H. L."Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review)". Oncology Letters 23, no. 3 (2022): 103. https://doi.org/10.3892/ol.2022.13223
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team