Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2022 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Transient receptor potential channels in multiple myeloma (Review)

  • Authors:
    • Lingjun Meng
    • Guiying Gu
    • Lintao Bi
  • View Affiliations / Copyright

    Affiliations: Department of Hematology and Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
  • Article Number: 108
    |
    Published online on: February 7, 2022
       https://doi.org/10.3892/ol.2022.13228
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Multiple myeloma is the second most commonly diagnosed hematologic malignancy. As an incurable disease, the molecular mechanisms underlying its many aspects remain unclear. Intracellular calcium ion is an essential signaling molecule that modulates malignant cell behavior, and abnormal regulation of cellular calcium homeostasis may promote cancer cell survival and induce drug resistance. Transient receptor potential (TRP) cation channels are a superfamily of non‑selective Ca2+‑permeable channels that regulate intracellular calcium signaling and are involved in the regulation of various characteristics of cancer cells. Emerging evidence shows a close connection between TRP channels and multiple myeloma. This review summarizes the roles of TRP channels in multiple myeloma progression, metastasis, bone destruction, and drug resistance. TRPV1 and TRPV2 orchestrate the progression of multiple myeloma, while TRPM7 promotes myeloma cell dissemination and spreading. TRPV2 and TRPV4, that activate osteoclasts, contribute to the development of osteolytic bone disease caused by multiple myeloma. Both TRPV1 inhibition and TRPV2 activation synergize with bortezomib in the chemotherapy of multiple myeloma, and TRPC1 can determine the responsiveness of multiple myeloma to MTI‑101, a cyclic beta‑hairpin peptide. Antagonizing TRPA1 can alleviate bortezomib‑induced painful peripheral neuropathy. Future studies in this field may identify certain TRP channels as markers or therapeutic targets for predicting the prognosis, preventing progression, and improving drug responsiveness in patients with multiple myeloma.
View Figures

Figure 1

View References

1 

van de Donk N, Pawlyn C and Yong KL: Multiple myeloma. Lancet. 397:410–427. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Ghandili S, Weisel KC, Bokemeyer C and Leypoldt LB: Current treatment approaches to newly diagnosed multiple myeloma. Oncol Res Treat. 44:690–699. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Kazandjian D: Multiple myeloma epidemiology and survival: A unique malignancy. Semin Oncol. 43:676–681. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Costa LJ and Usmani SZ: Defining and managing high-risk multiple myeloma: Current concepts. J Natl Compr Canc Netw. 18:1730–1737. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Li T, Chen J and Zeng Z: Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal. 19:992021. View Article : Google Scholar : PubMed/NCBI

6 

Stewart TA, Yapa KT and Monteith GR: Altered calcium signaling in cancer cells. Biochim Biophys Acta. 1848:2502–2511. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Deliot N and Constantin B: Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration. Biochim Biophys Acta. 1848:2512–2522. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Nilius B, Owsianik G, Voets T and Peters JA: Transient receptor potential cation channels in disease. Physiol Rev. 87:165–217. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I and Ferrer-Montiel A: Trafficking of ThermoTRP channels. Membranes (Basel). 4:525–564. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Kim M, Sisco NJ, Hilton JK, Montano CM, Castro MA, Cherry BR, Levitus M and Horn WD: Evidence that the TRPV1 S1-S4 membrane domain contributes to thermosensing. Nat Commun. 11:41692020. View Article : Google Scholar : PubMed/NCBI

11 

Gorbunov AS, Maslov LN, Jaggi AS, Singh N, Petrocellis LD, Boshchenko AA, Roohbakhsh A, Bezuglov VV and Oeltgen PR: Physiological and pathological role of TRPV1, TRPV2 and TRPV4 channels in heart. Curr Cardiol Rev. 15:244–251. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Vay L, Gu C and McNaughton PA: The thermo-TRP ion channel family: Properties and therapeutic implications. Br J Pharmacol. 165:787–801. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Ambudkar IS, de Souza LB and Ong HL: TRPC1, orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium. 63:33–39. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Santoni G and Farfariello V: TRP channels and cancer: new targets for diagnosis and chemotherapy. Endocr Metab Immune Disord Drug Targets. 11:54–67. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I and Cerda O: A TR(i)P to cell migration: New roles of TRP channels in mechanotransduction and cancer. Front Physiol. 10:7572019. View Article : Google Scholar : PubMed/NCBI

16 

Prevarskaya N, Zhang L and Barritt G: TRP channels in cancer. Biochim Biophys Acta. 1772:937–946. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Santoni G, Maggi F, Morelli MB, Santoni M and Marinelli O: Transient receptor potential cation channels in cancer therapy. Med Sci (Basel). 7:1082019.PubMed/NCBI

18 

Maggi F, Morelli MB, Nabissi M, Marinelli O, Zeppa L, Aguzzi C, Santoni G and Amantini C: Transient receptor potential (TRP) channels in haematological malignancies: An update. Biomolecules. 11:7652021. View Article : Google Scholar : PubMed/NCBI

19 

Heider M, Nickel K, Hogner M and Bassermann F: Multiple myeloma: Molecular pathogenesis and disease evolution. Oncol Res Treat. 44:672–681. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Hodeify R, Yu F, Courjaret R, Nader N, Dib M, Sun L, Adap E, Hubrack S and Machaca K: Regulation and Role of Store-Operated Ca(2+) Entry in Cellular Proliferation. In: Calcium Entry Channels in Non-Excitable Cells. Kozak JA and Putney JW Jr: CRC Press/Taylor & Francis; Boca Raton, FL: pp. 215–240. 2018, PubMed/NCBI

21 

Karki T and Tojkander S: TRPV protein family-from mechanosensing to cancer invasion. Biomolecules. 11:10192021. View Article : Google Scholar : PubMed/NCBI

22 

Kojima I and Nagasawa M: Trpv2. Handb Exp Pharmacol. 222:247–272. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Liberati S, Morelli MB, Amantini C, Santoni M, Nabissi M, Cardinali C and Santoni G: Advances in transient receptor potential vanilloid-2 channel expression and function in tumor growth and progression. Curr Protein Pept Sci. 15:732–737. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Siveen KS, Nizamuddin PB, Uddin S, Al-Thani M, Frenneaux MP, Janahi IA, Steinhoff M and Azizi F: TRPV2: A cancer biomarker and potential therapeutic target. Dis Markers. 2020:88923122020. View Article : Google Scholar : PubMed/NCBI

25 

Fabris S, Todoerti K, Mosca L, Agnelli L, Intini D, Lionetti M, Guerneri S, Lambertenghi-Deliliers G, Bertoni F and Neri A: Molecular and transcriptional characterization of the novel 17p11.2-p12 amplicon in multiple myeloma. Genes Chromosomes Cancer. 46:1109–1118. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Liberati S, Morelli MB, Amantini C, Farfariello V, Santoni M, Conti A, Nabissi M, Cascinu S and Santoni G: Loss of TRPV2 homeostatic control of cell proliferation drives tumor progression. Cells. 3:112–128. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Bai H, Zhu H, Yan Q, Shen X, Lu X, Wang J, Li J and Chen L: TRPV2-induced Ca(2+)-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun Signal. 16:682018. View Article : Google Scholar : PubMed/NCBI

28 

Morelli MB, Offidani M, Alesiani F, Discepoli G, Liberati S, Olivieri A, Santoni M, Santoni G, Leoni P and Nabissi M: The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2. Int J Cancer. 134:2534–2546. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Nabissi M, Offidani M, Morelli MB, Pettinari M, Caraffa P, Gentili S, Corvatta L, Santoni G, Alesiani F and Leoni P: TRPV2 expression and its role in proliferation of human multiple myeloma cell lines. Blood. 118:50032011. View Article : Google Scholar

30 

Boedtkjer E and Pedersen SF: The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 82:103–126. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD and Julius D: The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 389:816–824. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Swietach P, Vaughan-Jones RD, Harris AL and Hulikova A: The chemistry, physiology and pathology of pH in cancer. Philos Trans R Soc Lond B Biol Sci. 369:201300992014. View Article : Google Scholar : PubMed/NCBI

33 

Gastelum G, Veena M, Lyons K, Lamb C, Jacobs N, Yamada A, Baibussinov A, Sarafyan M, Shamis R, Kraut J and Frost P: Can targeting hypoxia-mediated acidification of the bone marrow microenvironment kill myeloma tumor cells? Front Oncol. 11:7038782021. View Article : Google Scholar : PubMed/NCBI

34 

Amachi R, Hiasa M, Teramachi J, Harada T, Oda A, Nakamura S, Hanson D, Watanabe K, Fujii S, Miki H, et al: A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration. Oncotarget. 7:70447–70461. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Ramakrishnan V and Kumar S: PI3K/AKT/mTOR pathway in multiple myeloma: From basic biology to clinical promise. Leuk Lymphoma. 59:2524–2534. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Ghobrial IM: Myeloma as a model for the process of metastasis: Implications for therapy. Blood. 120:20–30. 2012. View Article : Google Scholar : PubMed/NCBI

37 

White C: The regulation of tumor cell invasion and metastasis by endoplasmic reticulum-to-mitochondrial Ca(2+) transfer. Front Oncol. 7:1712017. View Article : Google Scholar : PubMed/NCBI

38 

Samart P, Luanpitpong S, Rojanasakul Y and Issaragrisil S: O-GlcNAcylation homeostasis controlled by calcium influx channels regulates multiple myeloma dissemination. J Exp Clin Cancer Res. 40:1002021. View Article : Google Scholar : PubMed/NCBI

39 

Pina R, Ugarte G, Campos M, Íñigo-Portugués A, Olivares E, Orio P, Belmonte C, Bacigalupo J and Madrid R: Role of TRPM8 channels in altered cold sensitivity of corneal primary sensory neurons induced by axonal damage. J Neurosci. 39:8177–8192. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Yee NS: Roles of TRPM8 ion channels in cancer: Proliferation, survival, and invasion. Cancers (Basel). 7:2134–2146. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, et al: Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest. 117:1647–1657. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Hirai A, Aung NY, Ohe R, Nishida A, Kato T, Meng H, Ishizawa K, Fujii J and Yamakawa M: Expression of TRPM8 in human reactive lymphoid tissues and mature B-cell neoplasms. Oncol Lett. 16:5930–5938. 2018.PubMed/NCBI

43 

Terpos E, Morgan G, Dimopoulos MA, Drake MT, Lentzsch S, Raje N, Sezer O, García-Sanz R, Shimizu K, Turesson I, et al: International myeloma working group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol. 31:2347–2357. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M and Dimopoulos MA: Pathogenesis of bone disease in multiple myeloma: From bench to bedside. Blood Cancer J. 8:72018. View Article : Google Scholar : PubMed/NCBI

45 

Beider K, Rosenberg E, Dimenshtein-Voevoda V, Sirovsky Y, Vladimirsky J, Magen H, Ostrovsky O, Shimoni A, Bromberg Z, Weiss L, et al: Blocking of transient receptor potential vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J Hematol Oncol. 13:1582020. View Article : Google Scholar : PubMed/NCBI

46 

Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Bosch AV, et al: TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 8:257–265. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Nishimura H, Kawasaki M, Tsukamoto M, Menuki K, Suzuki H, Matsuura T, Baba K, Motojima Y, Fujitani T, Ohnishi H, et al: Transient receptor potential vanilloid 1 and 4 double knockout leads to increased bone mass in mice. Bone Rep. 12:1002682020. View Article : Google Scholar : PubMed/NCBI

48 

Raje NS, Bhatta S and Terpos E: Role of the RANK/RANKL pathway in multiple myeloma. Clin Cancer Res. 25:12–20. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE and Vasconcelos MH: Multiple myeloma: Available therapies and causes of drug resistance. Cancers (Basel). 12:4072020. View Article : Google Scholar : PubMed/NCBI

50 

Painuly U, Ramakrishnan V, Kimlinger T, Wellik L, Haug J, Gonsalves W, Bi L, Huang Z, Rajkumar SV and Kumar S: Aurora kinase and FGFR3 inhibition results in significant apoptosis in molecular subgroups of multiple myeloma. Oncotarget. 9:34582–34594. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Ramakrishnan V, Gomez M, Prasad V, Kimlinger T, Painuly U, Mukhopadhyay B, Haug J, Bi L, Rajkumar SV and Kumar S: Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma. Oncotarget. 7:56253–56265. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Robak P, Drozdz I, Szemraj J and Robak T: Drug resistance in multiple myeloma. Cancer Treat Rev. 70:199–208. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB and Bultynck G: Emerging molecular mechanisms in chemotherapy: Ca(2+) signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis. 9:3342018. View Article : Google Scholar : PubMed/NCBI

54 

Liu M, Wang Y, Miettinen JJ, Kumari R, Majumder MM, Tierney C, Bazou D, Parsons A, Suvela M, Lievonen J, et al: S100 calcium binding protein family members associate with poor patient outcome and response to proteasome inhibition in multiple myeloma. Front Cell Dev Biol. 9:7230162021. View Article : Google Scholar : PubMed/NCBI

55 

Ito S: Proteasome inhibitors for the treatment of multiple myeloma. Cancers (Basel). 12:2652020. View Article : Google Scholar : PubMed/NCBI

56 

Robak P, Szemraj J, Mikulski D, Drozdz I, Juszczak K, Jarych D, Misiewicz M, Kościelny K, Fendler W and Robak T: Prognostic value of resistance proteins in plasma cells from multiple myeloma patients treated with bortezomib-based regimens. J Clin Med. 10:50282021. View Article : Google Scholar : PubMed/NCBI

57 

Zaal EA, Wu W, Jansen G, Zweegman S, Cloos J and Berkers CR: Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab. 5:72017. View Article : Google Scholar : PubMed/NCBI

58 

Bromberg Z, Goloubinoff P, Saidi Y and Weiss YG: The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PLoS One. 8:e571492013. View Article : Google Scholar : PubMed/NCBI

59 

Emmons MF, Anreddy N, Cuevas J, Steinberger K, Yang S, McLaughlin M, Silva A and Hazlehurst LA: MTI-101 treatment inducing activation of Stim1 and TRPC1 expression is a determinant of response in multiple myeloma. Sci Rep. 7:26852017. View Article : Google Scholar : PubMed/NCBI

60 

Xu SZ and Beech DJ: TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells. Circ Res. 88:84–87. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Elzamzamy OM, Johnson BE, Chen WC, Hu G, Penner R and Hazlehurst LA: Transient receptor potential C 1/4/5 is a determinant of MTI-101 induced calcium influx and cell death in multiple myeloma. Cells. 10:14902021. View Article : Google Scholar : PubMed/NCBI

62 

Carozzi VA, Renn CL, Bardini M, Fazio G, Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP, et al: Bortezomib-induced painful peripheral neuropathy: An electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One. 8:e729952013. View Article : Google Scholar : PubMed/NCBI

63 

Argyriou AA, Iconomou G and Kalofonos HP: Bortezomib-induced peripheral neuropathy in multiple myeloma: A comprehensive review of the literature. Blood. 112:1593–1599. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Hu F, Song X and Long D: Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med. 22:14622021. View Article : Google Scholar : PubMed/NCBI

65 

Nilius B, Appendino G and Owsianik G: The transient receptor potential channel TRPA1: From gene to pathophysiology. Pflugers Arch. 464:425–458. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Wang Q, Wang J, Gao D and Li J: Inhibition of PAR2 and TRPA1 signals alleviates neuropathic pain evoked by chemotherapeutic bortezomib. J Biol Regul Homeost Agents. 31:977–983. 2017.PubMed/NCBI

67 

Liu D, Sun M, Xu D, Ma X, Gao D and Yu H: Inhibition of TRPA1 and IL-6 signal alleviates neuropathic pain following chemotherapeutic bortezomib. Physiol Res. 68:845–855. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Meng L, Gu G and Bi L: Transient receptor potential channels in multiple myeloma (Review). Oncol Lett 23: 108, 2022.
APA
Meng, L., Gu, G., & Bi, L. (2022). Transient receptor potential channels in multiple myeloma (Review). Oncology Letters, 23, 108. https://doi.org/10.3892/ol.2022.13228
MLA
Meng, L., Gu, G., Bi, L."Transient receptor potential channels in multiple myeloma (Review)". Oncology Letters 23.4 (2022): 108.
Chicago
Meng, L., Gu, G., Bi, L."Transient receptor potential channels in multiple myeloma (Review)". Oncology Letters 23, no. 4 (2022): 108. https://doi.org/10.3892/ol.2022.13228
Copy and paste a formatted citation
x
Spandidos Publications style
Meng L, Gu G and Bi L: Transient receptor potential channels in multiple myeloma (Review). Oncol Lett 23: 108, 2022.
APA
Meng, L., Gu, G., & Bi, L. (2022). Transient receptor potential channels in multiple myeloma (Review). Oncology Letters, 23, 108. https://doi.org/10.3892/ol.2022.13228
MLA
Meng, L., Gu, G., Bi, L."Transient receptor potential channels in multiple myeloma (Review)". Oncology Letters 23.4 (2022): 108.
Chicago
Meng, L., Gu, G., Bi, L."Transient receptor potential channels in multiple myeloma (Review)". Oncology Letters 23, no. 4 (2022): 108. https://doi.org/10.3892/ol.2022.13228
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team