|
1
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang
J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem
cell pathways for cancer therapy. Signal Transduct Target Ther.
5:82020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jung Y and Kim WY: Cancer stem cell
targeting: Are we there yet? Arch Pharm Res. 38:414–422. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dando I, Dalla Pozza E, Biondani G,
Cordani M, Palmieri M and Donadelli M: The metabolic landscape of
cancer stem cells. IUBMB Life. 67:687–693. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sancho P, Barneda D and Heeschen C:
Hallmarks of cancer stem cell metabolism. Br J Cancer.
114:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Martinez-Outschoorn UE, Peiris-Pages M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Capp JP: Cancer stem cells: From
historical roots to a new perspective. J Oncol. 2019:51892322019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang S, Balch C, Chan MW, Lai HC, Matei
D, Schilder JM, Yan PS, Huang TH and Nephew KP: Identification and
characterization of ovarian cancer-initiating cells from primary
human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dalerba P, Dylla SJ, Park IK, Liu R, Wang
X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al:
Phenotypic characterization of human colorectal cancer stem cells.
Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hermann PC, Huber SL, Herrler T, Aicher A,
Ellwart JW, Guba M, Bruns CJ and Heeschen C: Distinct populations
of cancer stem cells determine tumor growth and metastatic activity
in human pancreatic cancer. Cell Stem Cell. 1:313–323. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai
P, Chu PW, Lam CT, Poon RT and Fan ST: Significance of
CD90+ cancer stem cells in human liver cancer. Cancer
Cell. 13:153–166. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Meacham CE and Morrison SJ: Tumour
heterogeneity and cancer cell plasticity. Nature. 501:328–337.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen K, Huang YH and Chen JL:
Understanding and targeting cancer stem cells: Therapeutic
implications and challenges. Acta Pharmacol Sin. 34:732–740. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dean M, Fojo T and Bates S: Tumour stem
cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dalla Pozza E, Dando I, Biondani G, Brandi
J, Costanzo C, Zoratti E, Fassan M, Boschi F, Melisi D, Cecconi D,
et al: Pancreatic ductal adenocarcinoma cell lines display a
plastic ability to bidirectionally convert into cancer stem cells.
Int J Oncol. 46:1099–1108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Toh TB, Lim JJ and Chow EK: Epigenetics in
cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bröske AM, Vockentanz L, Kharazi S, Huska
MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, et
al: DNA methylation protects hematopoietic stem cell multipotency
from myeloerythroid restriction. Nat Genet. 41:1207–1215. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Morita R, Hirohashi Y, Suzuki H, Takahashi
A, Tamura Y, Kanaseki T, Asanuma H, Inoda S, Kondo T, Hashino S, et
al: DNA methyltransferase 1 is essential for initiation of the
colon cancers. Exp Mol Pathol. 94:322–329. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wongtrakoongate P: Epigenetic therapy of
cancer stem and progenitor cells by targeting DNA methylation
machineries. World J Stem Cells. 7:137–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Esteller M: Epigenetic gene silencing in
cancer: The DNA hypermethylome. Hum Mol Genet. 16:Spec No: 1.
R50–R59. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hoffmeyer K, Raggioli A, Rudloff S, Anton
R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R:
Wnt/β-catenin signaling regulates telomerase in stem cells and
cancer cells. Science. 336:1549–1554. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Myant KB, Cammareri P, McGhee EJ, Ridgway
RA, Huels DJ, Cordero JB, Schwitalla S, Kalna G, Ogg EL, Athineos
D, et al: ROS production and NF-κB activation triggered by RAC1
facilitate WNT-driven intestinal stem cell proliferation and
colorectal cancer initiation. Cell Stem Cell. 12:761–773. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Beachy PA, Karhadkar SS and Berman DM:
Tissue repair and stem cell renewal in carcinogenesis. Nature.
432:324–331. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Andersson ER, Sandberg R and Lendahl U:
Notch signaling: Simplicity in design, versatility in function.
Development. 138:3593–3612. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Eyler CE and Rich JN: Survival of the
fittest: Cancer stem cells in therapeutic resistance and
angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhou HM, Zhang JG, Zhang X and Li Q:
Targeting cancer stem cells for reversing therapy resistance:
Mechanism, signaling, and prospective agents. Signal Transduct
Target Ther. 6:622021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dick JE: Stem cell concepts renew cancer
research. Blood. 112:4793–4807. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gerlinger M, Rowan AJ, Horswell S, Math M,
Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N,
Stewart A, et al: Intratumor heterogeneity and branched evolution
revealed by multiregion sequencing. N Engl J Med. 366:883–892.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Robey RW, Pluchino KM, Hall MD, Fojo AT,
Bates SE and Gottesman MM: Revisiting the role of ABC transporters
in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Arnold CR, Mangesius J, Skvortsova II and
Ganswindt U: The role of cancer stem cells in radiation resistance.
Front Oncol. 10:1642020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
van Jaarsveld MTM, Deng D, Ordoñez-Rueda
D, Paulsen M, Wiemer EAC and Zi Z: Cell-type-specific role of CHK2
in mediating DNA damage-induced G2 cell cycle arrest. Oncogenesis.
9:352020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Patil M, Pabla N and Dong Z: Checkpoint
kinase 1 in DNA damage response and cell cycle regulation. Cell Mol
Life Sci. 70:4009–4021. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hambardzumyan D, Squatrito M and Holland
EC: Radiation resistance and stem-like cells in brain tumors.
Cancer Cell. 10:454–456. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
LaCasse EC, Mahoney DJ, Cheung HH,
Plenchette S, Baird S and Korneluk RG: IAP-targeted therapies for
cancer. Oncogene. 27:6252–6275. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Morrison R, Schleicher SM, Sun Y, Niermann
KJ, Kim S, Spratt DE, Chung CH and Lu B: Targeting the mechanisms
of resistance to chemotherapy and radiotherapy with the cancer stem
cell hypothesis. J Oncol. 2011:9418762011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Luo M and Wicha MS: Targeting cancer stem
cell redox metabolism to enhance therapy responses. Semin Radiat
Oncol. 29:42–54. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gealy R, Zhang L, Siegfried JM, Luketich
JD and Keohavong P: Comparison of mutations in the p53 and K-ras
genes in lung carcinomas from smoking and nonsmoking women. Cancer
Epidemiol Biomarkers Prev. 8:297–302. 1999.PubMed/NCBI
|
|
39
|
Liberti MV and Locasale JW: The Warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Guppy M, Greiner E and Brand K: The role
of the Crabtree effect and an endogenous fuel in the energy
metabolism of resting and proliferating thymocytes. Eur J Biochem.
212:95–99. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ciavardelli D, Rossi C, Barcaroli D, Volpe
S, Consalvo A, Zucchelli M, De Cola A, Scavo E, Carollo R,
D'Agostino D, et al: Breast cancer stem cells rely on fermentative
glycolysis and are sensitive to 2-deoxyglucose treatment. Cell
Death Dis. 5:e13362014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pasto A, Bellio C, Pilotto G, Ciminale V,
Silic-Benussi M, Guzzo G, Rasola A, Frasson C, Nardo G, Zulato E,
et al: Cancer stem cells from epithelial ovarian cancer patients
privilege oxidative phosphorylation, and resist glucose
deprivation. Oncotarget. 5:4305–4319. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shen YA, Wang CY, Hsieh YT, Chen YJ and
Wei YH: Metabolic reprogramming orchestrates cancer stem cell
properties in nasopharyngeal carcinoma. Cell Cycle. 14:86–98. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liao J, Qian F, Tchabo N,
Mhawech-Fauceglia P, Beck A, Qian Z, Wang X, Huss WJ, Lele SB,
Morrison CD and Odunsi K: Ovarian cancer spheroid cells with stem
cell-like properties contribute to tumor generation, metastasis and
chemotherapy resistance through hypoxia-resistant metabolism. PLoS
One. 9:e849412014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Palorini R, Votta G, Balestrieri C,
Monestiroli A, Olivieri S, Vento R and Chiaradonna F: Energy
metabolism characterization of a novel cancer stem cell-like line
3AB-OS. J Cell Biochem. 115:368–379. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z,
Ogasawara M, Keating MJ, Kondo S and Huang P: Metabolic alterations
in highly tumorigenic glioblastoma cells: Preference for hypoxia
and high dependency on glycolysis. J Biol Chem. 286:32843–32853.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Song IS, Jeong YJ and Han J: Mitochondrial
metabolism in cancer stem cells: A therapeutic target for colon
cancer. BMB Rep. 48:539–540. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Folmes CD, Nelson TJ, Martinez-Fernandez
A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C and
Terzic A: Somatic oxidative bioenergetics transitions into
pluripotency-dependent glycolysis to facilitate nuclear
reprogramming. Cell Metab. 14:264–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Snaebjornsson MT, Janaki-Raman S and
Schulze A: Greasing the wheels of the cancer machine: The Role of
lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Luo X, Cheng C, Tan Z, Li N, Tang M, Yang
L and Cao Y: Emerging roles of lipid metabolism in cancer
metastasis. Mol Cancer. 16:762017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Santos CR and Schulze A: Lipid metabolism
in cancer. FEBS J. 279:2610–2623. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rohrig F and Schulze A: The multifaceted
roles of fatty acid synthesis in cancer. Nat Rev Cancer.
16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Geng F, Cheng X, Wu X, Yoo JY, Cheng C,
Guo JY, Mo X, Ru P, Hurwitz B and Kim SH: Inhibition of SOAT1
suppresses glioblastoma growth via blocking SREBP-1-Mediated
lipogenesis. Clin Cancer Res. 22:5337–5348. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gopal K, Grossi E, Paoletti P and Usardi
M: Lipid composition of human intracranial tumors: A biochemical
study. Acta Neurochir (Wien). 11:333–347. 1963. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Currie E, Schulze A, Zechner R, Walther TC
and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell
Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shimano H and Sato R: SREBP-regulated
lipid metabolism: Convergent physiology-divergent pathophysiology.
Nat Rev Endocrinol. 13:710–730. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Schlosser HA, Drebber U, Urbanski A, Haase
S, Baltin C, Berlth F, Neiss S, von Bergwelt-Baildon M, Fetzner UK,
Warnecke-Eberz U, et al: Glucose transporters 1, 3, 6, and 10 are
expressed in gastric cancer and glucose transporter 3 is associated
with UICC stage and survival. Gastric Cancer. 20:83–91. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sharen G, Peng Y, Cheng H, Liu Y, Shi Y
and Zhao J: Prognostic value of GLUT-1 expression in pancreatic
cancer: Results from 538 patients. Oncotarget. 8:19760–19767. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sun HW, Yu XJ, Wu WC, Chen J, Shi M, Zheng
L and Xu J: GLUT1 and ASCT2 as predictors for prognosis of
hepatocellular carcinoma. PLoS One. 11:e01689072016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Williams NC and O'Neill LAJ: A Role for
the krebs cycle intermediate citrate in metabolic reprogramming in
innate immunity and inflammation. Front Immunol. 9:1412018.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mancini R, Noto A, Pisanu ME, De Vitis C,
Maugeri-Saccà M and Ciliberto G: Metabolic features of cancer stem
cells: The emerging role of lipid metabolism. Oncogene.
37:2367–2378. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang T, Fahrmann JF, Lee H, Li YJ,
Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al:
JAK/STAT3-Regulated fatty Acid β-oxidation is critical for breast
cancer stem cell self-renewal and chemoresistance. Cell Metab.
27:136–150.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li J, Condello S, Thomes-Pepin J, Ma X,
Xia Y, Hurley TD, Matei D and Cheng JX: Lipid Desaturation is a
metabolic marker and therapeutic target of ovarian cancer stem
cells. Cell Stem Cell. 20:303–314.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Brandi J, Dando I, Pozza ED, Biondani G,
Jenkins R, Elliott V, Park K, Fanelli G, Zolla L, Costello E, et
al: Proteomic analysis of pancreatic cancer stem cells: Functional
role of fatty acid synthesis and mevalonate pathways. J Proteomics.
150:310–322. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen CL, Uthaya Kumar DB, Punj V, Xu J,
Sher L, Tahara SM, Hess S and Machida K: NANOG metabolically
reprograms tumor-initiating Stem-like cells through tumorigenic
changes in oxidative phosphorylation and fatty acid metabolism.
Cell Metab. 23:206–219. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ito K, Carracedo A, Weiss D, Arai F, Ala
U, Avigan DE, Schafer ZT, Evans RM, Suda T, Lee CH and Pandolfi PP:
A PML-PPAR-δ pathway for fatty acid oxidation regulates
hematopoietic stem cell maintenance. Nat Med. 18:1350–1358. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Beloribi-Djefaflia S, Vasseur S and
Guillaumond F: Lipid metabolic reprogramming in cancer cells.
Oncogenesis. 5:e1892016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tirinato L, Liberale C, Di Franco S,
Candeloro P, Benfante A, La Rocca R, Potze L, Marotta R, Ruffilli
R, Rajamanickam VP, et al: Lipid droplets: A new player in
colorectal cancer stem cells unveiled by spectroscopic imaging.
Stem Cells. 33:35–44. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
de Gonzalo-Calvo D, López-Vilaró L,
Nasarre L, Perez-Olabarria M, Vázquez T, Escuin D, Badimon L,
Barnadas A, Lerma E and Llorente-Cortés V: Intratumor cholesteryl
ester accumulation is associated with human breast cancer
proliferation and aggressive potential: A molecular and
clinicopathological study. BMC Cancer. 15:4602015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song
B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX:
Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT
activation underlies human prostate cancer aggressiveness. Cell
Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa
Y, Ebrahimi M, Yamamoto Y, Ogata M, Katsuyama Y, Sadahiro H, Suzuki
M and Owada Y: Inhibition of fatty acid synthase decreases
expression of stemness markers in glioma stem cells. PLoS One.
11:e01477172016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li H, Feng Z and He ML: Lipid metabolism
alteration contributes to and maintains the properties of cancer
stem cells. Theranostics. 10:7053–7069. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Clémot M, Sênos Demarco R and Jones DL:
Lipid mediated regulation of adult stem cell behavior. Front Cell
Dev Biol. 8:1152020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Castro LF, Wilson JM, Goncalves O,
Galante-Oliveira S, Rocha E and Cunha I: The evolutionary history
of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol
Biol. 11:1322011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q,
Zhou Y, Zeng Z, Peng S, Li X, et al: Emerging role of lipid
metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res.
37:1182018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Colacino JA, McDermott SP, Sartor MA,
Wicha MS and Rozek LS: Transcriptomic profiling of curcumin-treated
human breast stem cells identifies a role for stearoyl-coa
desaturase in breast cancer prevention. Breast Cancer Res Treat.
158:29–41. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lai KKY, Kweon SM, Chi F, Hwang E, Kabe Y,
Higashiyama R, Qin L, Yan R, Wu RP, Lai K, et al: Stearoyl-CoA
desaturase promotes liver fibrosis and tumor development in mice
via a wnt positive-signaling loop by stabilization of low-density
lipoprotein-receptor-related proteins 5 and 6. Gastroenterology.
152:1477–1491. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bansal S, Berk M, Alkhouri N, Partrick DA,
Fung JJ and Feldstein A: Stearoyl-CoA desaturase plays an important
role in proliferation and chemoresistance in human hepatocellular
carcinoma. J Surg Res. 186:29–38. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mason P, Liang B, Li L, Fremgen T, Murphy
E, Quinn A, Madden SL, Biemann HP, Wang B, Cohen A, et al: SCD1
inhibition causes cancer cell death by depleting mono-unsaturated
fatty acids. PLoS One. 7:e338232012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pandey PR, Xing F, Sharma S, Watabe M, Pai
SK, Iiizumi-Gairani M, Fukuda K, Hirota S, Mo YY and Watabe K:
Elevated lipogenesis in epithelial stem-like cell confers survival
advantage in ductal carcinoma in situ of breast cancer. Oncogene.
32:5111–5122. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sun Y, He W, Luo M, Zhou Y, Chang G, Ren
W, Wu K, Li X, Shen J, Zhao X and Hu Y: SREBP1 regulates
tumorigenesis and prognosis of pancreatic cancer through targeting
lipid metabolism. Tumour Biol. 36:4133–4141. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Raulien N, Friedrich K, Strobel S, Rubner
S, Baumann S, von Bergen M, Körner A, Krueger M, Rossol M and
Wagner U: Fatty acid oxidation compensates for
lipopolysaccharide-induced warburg effect in glucose-deprived
monocytes. Front Immunol. 8:6092017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Carracedo A, Cantley LC and Pandolfi PP:
Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev
Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mullen PJ, Yu R, Longo J, Archer MC and
Penn LZ: The interplay between cell signalling and the mevalonate
pathway in cancer. Nat Rev Cancer. 16:718–731. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ginestier C, Monville F, Wicinski J,
Cabaud O, Cervera N, Josselin E, Finetti P, Guille A, Larderet G,
Viens P, et al: Mevalonate metabolism regulates Basal breast cancer
stem cells and is a potential therapeutic target. Stem Cells.
30:1327–1337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mak D and Kramvis A: Epidemiology and
aetiology of hepatocellular carcinoma in Sub-Saharan Africa.
Hepatoma Res. 7:392021.
|
|
88
|
Afify SM, Sanchez Calle A, Hassan G, Kumon
K, Nawara HM, Zahra MH, Mansour HM, Khayrani AC, Alam MJ, Du J, et
al: A novel model of liver cancer stem cells developed from induced
pluripotent stem cells. Br J Cancer. 122:1378–1390. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Song K, Kwon H, Han C, Zhang J, Dash S,
Lim K and Wu T: Active glycolytic metabolism in CD133(+)
hepatocellular cancer stem cells: Regulation by MIR-122.
Oncotarget. 6:40822–40835. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Rawla P, Sunkara T and Barsouk A:
Epidemiology of colorectal cancer: Incidence, mortality, survival,
and risk factors. Prz Gastroenterol. 14:89–103. 2019.PubMed/NCBI
|
|
91
|
Vázquez-Iglesias L, Barcia-Castro L,
Rodríguez-Quiroga M, Páez de la Cadena M, Rodríguez-Berrocal J and
Cordero OJ: Surface expression marker profile in colon cancer cell
lines and sphere-derived cells suggests complexity in CD26+ cancer
stem cells subsets. Biology Open. 8:bio0416732019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen KY, Liu X, Bu P, Lin CS, Rakhilin N,
Locasale JW and Shen X: A metabolic signature of colon cancer
initiating cells. Annu Int Conf IEEE Eng Med Biol Soc.
2014:4759–4762. 2014.PubMed/NCBI
|
|
93
|
Huang B, Li X, Li Y, Zhang J, Zong Z and
Zhang H: Current immunotherapies for glioblastoma multiforme. Front
Immunol. 11:6039112021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Menard JA, Christianson HC, Kucharzewska
P, Bourseau-Guilmain E, Svensson KJ, Lindqvist E, Indira Chandran
V, Kjellén L, Welinder C, Bengzon J, et al: Metastasis stimulation
by hypoxia and acidosis-induced extracellular lipid uptake is
mediated by proteoglycan-dependent endocytosis. Cancer Res.
76:4828–4840. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rawla P, Sunkara T and Gaduputi V:
Epidemiology of pancreatic cancer: Global trends, etiology and risk
factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li C, Heidt DG, Dalerba P, Burant CF,
Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification
of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Arasanz H, Hernández C, Bocanegra A,
Chocarro L, Zuazo M, Gato M, Ausin K, Santamaría E,
Fernández-Irigoyen J, Fernandez G, et al: Profound reprogramming
towards stemness in pancreatic cancer cells as adaptation to AKT
inhibition. Cancers. 12:21812020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bian Y, Yu Y, Wang S and Li L:
Up-regulation of fatty acid synthase induced by EGFR/ERK activation
promotes tumor growth in pancreatic cancer. Biochem Biophys Res
Commun. 463:612–617. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Visweswaran M, Arfuso F, Warrier S and
Dharmarajan A: Aberrant lipid metabolism as an emerging therapeutic
strategy to target cancer stem cells. Stem Cells. 38:6–14. 2020.
View Article : Google Scholar : PubMed/NCBI
|